Small Signal MOSFET

20 V, Dual N-Channel, SC-88 ESD Protection

Features

- Small Footprint (2 x 2 mm)
- Low Gate Charge N-Channel Device
- ESD Protected Gate
- Pb-Free Package for Green Manufacturing (G Suffix)
- Same Package as SC-70 (6 Leads)

Applications

- Load Power switching
- Li-Ion Battery Supplied Devices
- Cell Phones, Media Players, Digital Cameras, PDAs
- DC-DC Conversion

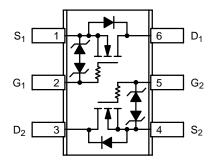
MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parame	Symbol	Value	Units				
Drain-to-Source Voltage			V_{DSS}	20	V		
Gate-to-Source Voltage			V_{GS}	±12	V		
		T _A = 25 °C	I _D	0.63	Α		
Current (Based on R _{0JA})	State	T _A = 85 °C		0.46			
Power Dissipation	Steady	T _A = 25 °C	P _D	0.27	W		
(Based on R _{θJA})	State	T _A = 85 °C		0.14			
Continuous Drain	Steady	T _A = 25 °C	I _D	0.91	Α		
Current (Based on R _{0JL})	State	T _A = 85 °C		0.65			
Power Dissipation				0.55	W		
(Based on R _{θJL})	State	T _A = 85 °C	P_{D}	0.29			
Pulsed Drain Current	I _{DM}	±1.2	Α				
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C		
Continuous Source Current (Body Diode)			IS	0.63	Α		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C		

THERMAL RESISTANCE RATINGS (Note 1)

Parameter	Symbol	Тур	Max	Units
Junction-to-Ambient - Steady State	$R_{\theta JA}$	400	460	°C/W
Junction-to-Lead (Drain) - Steady State	$R_{\theta JL}$	194	226	

1. Surface mounted on FR4 board using 1 oz Cu area = 0.9523 in sq.



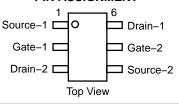
ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D Max	
20 V	0.29 Ω @ 4.5 V	0.63 A	
	0.36 Ω @ 2.5 V	0.03 A	

SOT-363 SC-88 (6 LEADS)

Top View



TDD O

MARKING DIAGRAM

TD = Device Code
D = Date Code

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping
NTJD4401NT1	SOT-363	3000 Units/Reel
NTJD4401NT1G	SOT-363 (Pb-Free)	3000 Units/Reel

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit	
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V, } I_{D}$	20	27		V		
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				22		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V	_{DS} = 16 V			1.0	μА	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{C}$	_{SS} = ±12 V			10	μА	
ON CHARACTERISTICS (Note 2)								
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{DS}$	ο = 250 μΑ	0.6	0.92	1.5	V	
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-2.1		mV/°C	
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 0.63 \text{ A}$			0.29	0.375	Ω	
		$V_{GS} = 2.5 \text{ V}, I_D = 0.40 \text{ A}$			0.36	0.445		
Forward Transconductance	9 _{FS}	V _{DS} = 4.0 V, I _D = 0.63 A			2.0		S	
CHARGES AND CAPACITANCES								
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 20 \text{ V}$			33	46	pF	
Output Capacitance	C _{OSS}				13	22		
Reverse Transfer Capacitance	C _{RSS}				2.8	5.0		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V	' _{DS} = 10 V,		1.3	3.0	nC	
Threshold Gate Charge	Q _{G(TH)}	$I_{D} = 0.6$	03 A		0.1			
Gate-to-Source Charge	Q _{GS}				0.2			
Gate-to-Drain Charge	Q_{GD}				0.4			
SWITCHING CHARACTERISTICS (No	ote 3)							
Turn-On Delay Time	td _(ON)	V _{GS} = 4.5 V, V	_{DD} = 10 V,		0.083		μs	
Rise Time	tr	$I_D = 0.5 \text{ A}, R_G = 20 \Omega$			0.227			
Turn-Off Delay Time	td _(OFF)				0.786			
Fall Time	tf				0.506			
DRAIN-SOURCE DIODE CHARACTE	RISTICS							
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V},$	T _J = 25°C		0.76	1.1	V	
		I _S =0.23 Å	T _J = 125°C		0.63			
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, dI}_{S}/dt$ $I_{S} = 0.6$			0.410		μs	

Pulse Test: pulse width ≤ 300µs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

Figure 1. On-Region Characteristics

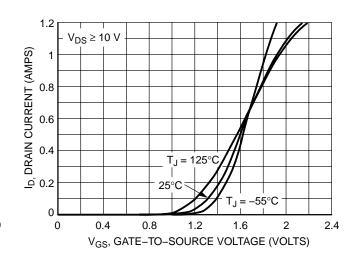


Figure 2. Transfer Characteristics

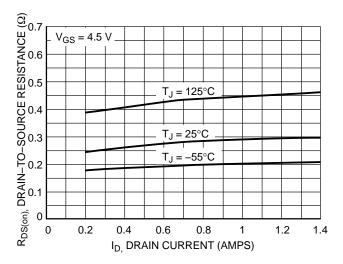


Figure 3. On–Resistance vs. Drain Current and Temperature

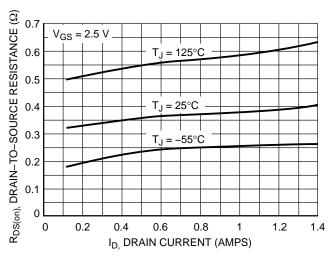


Figure 4. On–Resistance vs. Drain Current and Temperature

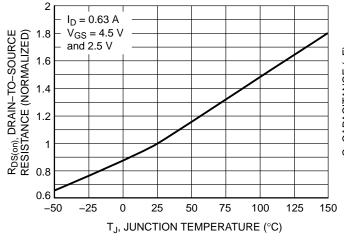


Figure 5. On–Resistance Variation with Temperature

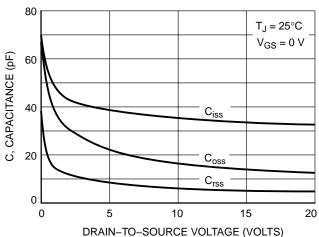


Figure 6. Capacitance Variation

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

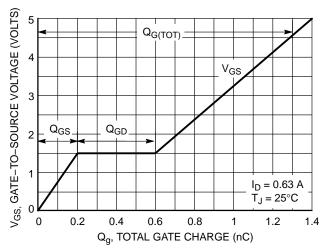
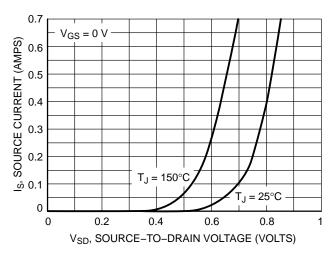
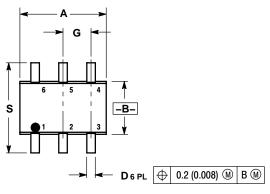
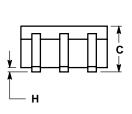
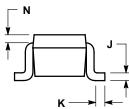


Figure 7. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge


Figure 8. Diode Forward Voltage vs. Current

PACKAGE DIMENSIONS

SC-88 (SOT-363) CASE 419B-02 ISSUE R

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. 419B-01 OBSOLETE, NEW STANDARD 419B-02.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.071	0.087	1.80	2.20	
В	0.045	0.053	1.15	1.35	
С	0.031	0.043	0.80	1.10	
D	0.004	0.012	0.10	0.30	
G	0.026	BSC	0.65 BSC		
Н		0.004		0.10	
J	0.004	0.010	0.10	0.25	
K	0.004	0.012	0.10	0.30	
N	0.008	REF	0.20 REF		
S	0.079	0.087	2.00	2.20	

- STYLE 26: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2 6. DRAIN 1

ON Semiconductor and War registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051

Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.