Ultra High Accuracy, Low Iq, 500 mA Low Dropout Regulator

The NCP3335A is a high performance, low dropout regulator. With accuracy of $\pm 0.9\%$ over line and load and ultra–low quiescent current and noise it encompasses all of the necessary features required by today's consumer electronics. This unique device is guaranteed to be stable without a minimum load current requirement and stable with any type of capacitor as small as $1.0 \,\mu\text{F}$. The NCP3335A also comes equipped with sense and noise reduction pins to increase the overall utility of the device. The NCP3335A offers reverse bias protection.

Features

- High Accuracy Over Line and Load (±0.9% at 25°C)
- Ultra-Low Dropout Voltage at Full Load (260 mV typ.)
- No Minimum Output Current Required for Stability
- Low Noise (35 $\mu Vrms$ w/10 nF C_{nr} and 56 $\mu Vrms$ w/out $C_{nr})$
- Low Shutdown Current (0.07 µA)
- Reverse Bias Protected
- 2.6 V to 12 V Supply Range
- Thermal Shutdown Protection
- Current Limitation
- Requires Only 1.0 µF Output Capacitance for Stability
- Stable with Any Type of Capacitor (including MLCC)
- Available in 2.5 V, 2.85 V, 3.3 V, 5.0 V and Adjustable Output Voltages
- These are Pb–Free Devices

Applications

- PCMCIA Card
- Cellular Phones
- Camcoders and Cameras
- Networking Systems, DSL/Cable Modems
- Cable Set-Top Box
- MP3/CD Players
- DSP Supply
- Displays and Monitors

ON Semiconductor®

http://onsemi.com

Micro8™ DM SUFFIX CASE 846A

DFN10 MN SUFFIX CASE 485C

MARKING DIAGRAM

	Fixed Version	Adj Version
8 8 8 8 8 8	Pin 1, 2. V _{out}	Pin 1, 2. V _{out}
لصحيحا	3. Sense	3. Adj
XXX	4. GND	4. GND
AYVV■	5. NR	5. NR
	6. <u>SD</u>	6. <u>SD</u>
18888	7, 8. V _{in}	7, 8. V _{in}

		Fixed Version	Adj Version
1	0	Pin 1, 2. V _{out}	Pin 1, 2. V _{out}
	^O 3335A	3. Sense	3. Adj
	XXX	4. GND	4. GND
	ALYW=	5, 6. NC	5, 6. NC
	•	7. NR	7. NR
		8. <u>SD</u>	8. <u>SD</u>
		9, 10. V _{in}	9, 10. V _{in}

Micr	·08		
ххх	= LI	Q for	2

= LIQ for 2.5 V	XXX	= 25 for 2.5 V
= LIR for 2.85 V		= 285 for 2.85 V
= LIS for 3.3 V		= 33 for 3.3 V
= LIT for 5.0 V		= 50 for 5.0 V
= LIO for Adj.		= ADJ for Adj.
Assembly Issetion		

DFN10

- A = Assembly Location
- L = Wafer Lot
- Y = Year
- W = Work Week
- = Pb–Free Package
- (Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet.

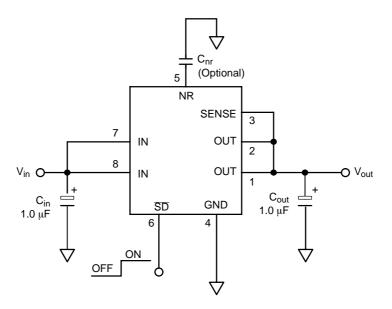


Figure 1. Typical Fixed Version Application Schematic (Micro8 Package)

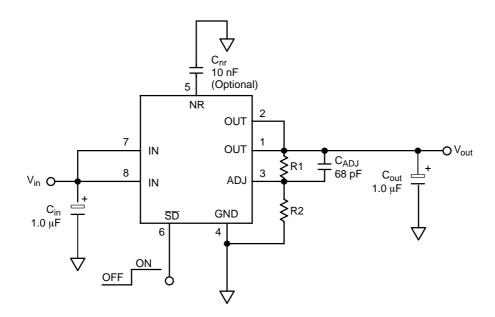


Figure 2. Typical Adjustable Version Application Schematic (Micro8 Package)

PIN FUNCTION DESCRIPTION

Fixed Version

Micro8 Pin No.	DFN10 Pin No.	Pin Name	Description
1, 2	1, 2	V _{out}	Regulated output voltage. Bypass to ground with $C_{out} \ge 1.0 \ \mu F$.
3	3	SENSE	For output voltage sensing, connect to Pins 1 and 2.
4	4	GND	Power Supply Ground
5	7	NR	Noise Reduction Pin. This is an optional pin used to further reduce noise.
6	8	SD	Shutdown pin. When not in use, this pin should be connected to the input pin.
7, 8	9, 10	V _{in}	Power Supply Input Voltage
_	5, 6	NC	Not Connected

Adjustable Version

1, 2	1, 2	Vout	Regulated output voltage. Bypass to ground with $C_{out} \geq 1.0 \ \mu\text{F}.$
3	3	Adj	Adjustable pin; reference voltage = 1.25 V.
4	4	GND	Power Supply Ground
5	7	NR	Noise Reduction Pin. This is an optional pin used to further reduce noise.
6	8	SD	Shutdown pin. When not in use, this pin should be connected to the input pin.
7, 8	9, 10	V _{in}	Power Supply Input Voltage
-	5, 6	NC	Not Connected

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	V _{in}	–0.3 to +16	V
Output Voltage	V _{out}	–0.3 to V _{in} +0.3 or 10 V*	V
Shutdown Pin Voltage	V _{sh}	–0.3 to +16	V
Thermal Characteristics Thermal Resistance, Junction-to-Air	R _{θJA}	238	°C/W
Operating Junction Temperature Range, Micro8	TJ	-40 to +150	°C
Storage Temperature Range	T _{stg}	-50 to+150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

NOTE: This device series contains ESD protection and exceeds the following tests:

Human Body Model (HBM) JESD 22-A114-B

Machine Model (MM) JESD 22-A115-A

*Which ever is less. Reverse bias protection feature valid only if $V_{out}-V_{in} \leq 7$ V.

ELECTRICAL CHARACTERISTICS –	2.5 V (V_{out} = 2.5 V typical, V_{in} = 2.9 V, T_A = -40°C to +85°C, unless otherw	ise noted)
-------------------------------------	---	------------

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (Accuracy) V_{in} = 2.9 V to 6.5 V, I _{load} = 0.1 mA to 500 mA, T _J = 25°C	V _{out}	-0.9% 2.477	2.5	+0.9% 2.523	V
Output Voltage (Accuracy) V_{in} = 2.9 V to 6.5 V, I _{load} = 0.1 mA to 500 mA, T _J = 0°C to +85°C	V _{out}	-1.4% 2.465	2.5	+1.4% 2.535	V
Output Voltage (Accuracy), (Note 1) $V_{in} = 2.9$ V to 6.5 V, I _{load} = 0.1 mA to 500 mA, T _J = -40°C to +150°C	V _{out}	-1.5% 2.462	2.5	+1.5% 2.538	V
Line Regulation $V_{in} = 2.9 \text{ V to } 12 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA}$	Line _{Reg}		0.04		mV/V
Load Regulation $V_{in} = 2.9 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA to } 500 \text{ mA}$	Load _{Reg}		0.04		mV/mA
Dropout Voltage (See App Note) $I_{load} = 500 \text{ mA}$ (Note 2) $I_{load} = 300 \text{ mA}$ (Note 2) $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1 \text{ mA}$	V _{DO}			340 230 110 10	mV
Peak Output Current (See Figure 7)	I _{pk}	500	700	800	mA
Short Output Current (See Figure 7)	I _{sc}			900	mA
Thermal Shutdown	TJ		160		°C
Ground Current In Regulation $I_{load} = 500 \text{ mA} \text{ (Note 2)}$ $I_{load} = 300 \text{ mA} \text{ (Note 2)}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1 \text{ mA}$	I _{GND}		9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA
In Dropout V _{in} = 2.4 V, I _{load} = 0.1 mA				500	μΑ
In Shutdown $S_D = 0 V$	I _{GNDsh}		0.07	1.0	μΑ
Output Noise $C_{nr} = 0 \text{ nF}$, $I_{load} = 500 \text{ mA}$, f = 10 Hz to 100 kHz, $C_{out} = 10 \mu\text{F}$ $C_{nr} = 10 \text{ nF}$, $I_{load} = 500 \text{ mA}$, f = 10 Hz to 100 kHz, $C_{out} = 10 \mu\text{F}$	V _{noise}		56 35		μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	V V
\overline{SD} Input Current, V _{SD} = 0 V to 0.4 V or V _{SD} = 2.0 V to V _{in}	I _{SD}		0.07	1.0	μΑ
Output Current In Shutdown Mode, V _{out} = 0 V	I _{OSD}		0.07	1.0	μΑ
Reverse Bias Protection, Current Flowing from the Output Pin to GND $(V_{in} = 0 \text{ V}, V_{out_forced} = 2.5 \text{ V})$	I _{OUTR}		10		μΑ

1. For output current capability for $T_J < 0^{\circ}C$, please refer to Figure 9. 2. T_A must be greater than $0^{\circ}C$.

ELECTRICAL CHARACTERISTICS - 2.85 V (Val	$_{\rm H}$ = 2.85 V typical, V _{in} = 3.25 V, T _A = -40°C to +85°C, unless otherwise noted)
	-2.00 V typical, V _{II} - 0.20 V, T_{Δ} - 40 0 to 100 0, alloss otherwise hotea)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (Accuracy) V_{in} = 3.25 V to 6.85 V, I _{load} = 0.1 mA to 500 mA, T _J = 25°C	V _{out}	-0.9% 2.824	2.85	+0.9% 2.876	V
Output Voltage (Accuracy) $V_{in} = 3.25$ V to 6.85 V, $I_{load} = 0.1$ mA to 500 mA, $T_J = 0^{\circ}$ C to +85°C	V _{out}	-1.4% 2.810	2.85	+1.4% 2.890	V
Output Voltage (Accuracy) (Note 3) V_{in} = 3.25 V to 6.85 V, I _{load} = 0.1 mA to 500 mA, T _J = -40°C to +150°C	V _{out}	-1.5% 2.807	2.85	+1.5% 2.893	V
Line Regulation $V_{in} = 3.25 \text{ V to } 12 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA}$	Line _{Reg}		0.04		mV/V
Load Regulation $V_{in} = 3.25 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA to } 500 \text{ mA}$	Load _{Reg}		0.04		mV/mA
Dropout Voltage (See App Note) $I_{load} = 500 \text{ mA}$ $I_{load} = 300 \text{ mA}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1\text{mA}$	V _{DO}			340 230 110 10	mV
Peak Output Current (See Figure 7)	I _{pk}	500	700	800	mA
Short Output Current (See Figure 7)	I _{sc}			900	mA
Thermal Shutdown	TJ		160		°C
Ground Current In Regulation $I_{load} = 500 \text{ mA}$ (Note 4) $I_{load} = 300 \text{ mA}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1 \text{ mA}$	I _{GND}		9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA
In Dropout $V_{in} = 2.75 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA}$			-	500	μΑ
In Shutdown SD = 0 V	I _{GNDsh}		0.07	1.0	μΑ
Output Noise $C_{nr} = 0 \text{ nF}$, $I_{load} = 500 \text{ mA}$, f = 10 Hz to 100 kHz, $C_{out} = 10 \mu F$ $C_{nr} = 10 \text{ nF}$, $I_{load} = 500 \text{ mA}$, f = 10 Hz to 100 kHz, $C_{out} = 10 \mu F$	V _{noise}		61 40		μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	V V
S_D Input Current, V_{SD} = 0 V to 0.4 V or V_{SD} = 2.0 V to V_{in}	I _{SD}		0.07	1.0	μΑ
Output Current In Shutdown Mode, V _{out} = 0 V	I _{OSD}		0.07	1.0	μΑ
Reverse Bias Protection, Current Flowing from the Output Pin to GND (V _{in} = 0 V, V _{out_forced} = 2.85 V)	I _{OUTR}		10		μΑ

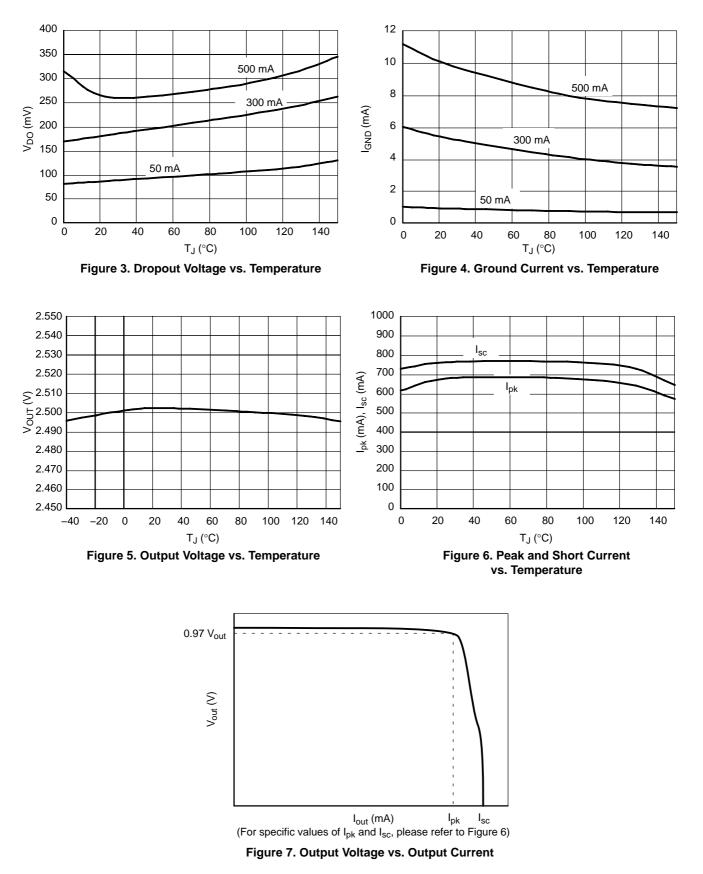
3. For output current capability for $T_J < 0^{\circ}C$, please refer to Figure 8. 4. T_A must be greater than $0^{\circ}C$.

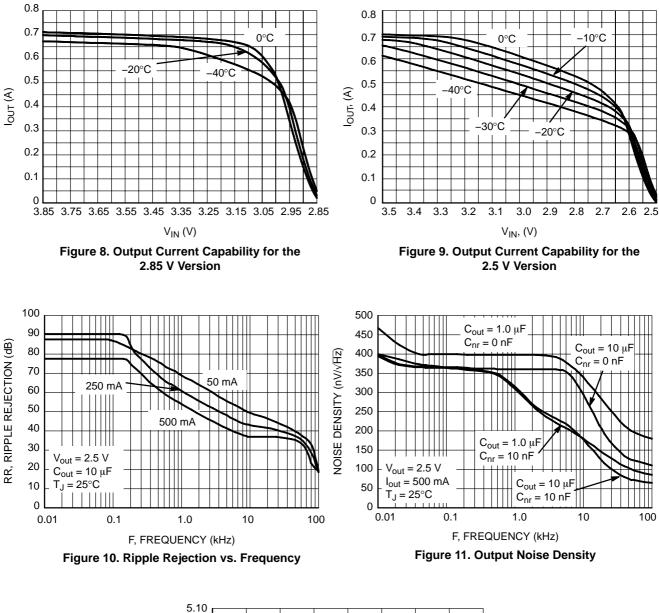
ELECTRICAL CHARACTERISTICS – 3.3 V	$V_{out} = 3.3 \text{ V typical}, V_{in} = 3.7 \text{ V}, T_{\Delta} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted}$)
ELECTRICAL CHARACTERISTICS - 3.3 V	$v_{out} = 3.3 \text{ V}$ (vplcal, $v_{in} = 3.7 \text{ V}$, $I_{\Delta} = -40 \text{ C}$ to $\pm 03 \text{ C}$, unless otherwise noted	,

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (Accuracy) V_{in} = 3.7 V to 7.3 V, I _{load} = 0.1 mA to 500 mA, T _J = 25°C	V _{out}	-0.9% 3.270	3.3	+0.9% 3.330	V
Output Voltage (Accuracy) Vin = 3.7 V to 7.3 V, I _{load} = 0.1 mA to 500 mA, T _J = 0°C to +85°C	V _{out}	-1.4% 3.254	3.3	+1.4% 3.346	V
Output Voltage (Accuracy) V _{in} = 3.7 V to 7.3 V, I _{load} = 0.1 mA to 500 mA, T _J = -40° C to $+150^{\circ}$ C	V _{out}	-1.5% 3.250	3.3	+1.5% 3.350	V
Line Regulation $V_{in} = 3.7 \text{ V to } 12 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA}$	Line _{Reg}		0.04		mV/V
Load Regulation $V_{in} = 3.7 \text{ V}, I_{load} = 0.1 \text{ mA to } 500 \text{ mA}$	Load _{Reg}		0.04		mV/mA
Dropout Voltage (See App Note) $I_{load} = 500 \text{ mA}$ $I_{load} = 300 \text{ mA}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1 \text{ mA}$	V _{DO}			340 230 110 10	mV
Peak Output Current (See Figure 7)	lpk	500	700	800	mA
Short Output Current (See Figure 7)	I _{sc}			900	mA
Thermal Shutdown	TJ		160		°C
Ground Current In Regulation $I_{load} = 500 \text{ mA} \text{ (Note 5)}$ $I_{load} = 300 \text{ mA}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1 \text{ mA}$	I _{GND}		9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA
In Dropout $V_{in} = 3.2 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA}$			-	500	μΑ
In Shutdown S _D = 0 V	I _{GNDsh}		0.07	1.0	μΑ
Output Noise $C_{nr} = 0 \text{ nF}, \text{ I}_{load} = 500 \text{ mA}, \text{ f} = 10 \text{ Hz to } 100 \text{ kHz}, C_{out} = 10 \mu\text{F}$ $C_{nr} = 10 \text{ nF}, \text{ I}_{load} = 500 \text{ mA}, \text{ f} = 10 \text{ Hz to } 100 \text{ kHz}, C_{out} = 10 \mu\text{F}$	V _{noise}		69 46		μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	V V
S_D Input Current, V_{SD} = 0 V to 0.4 V or V_{SD} = 2.0 V to V_{in}	I _{SD}		0.07	1.0	μΑ
Output Current In Shutdown Mode, V _{out} = 0 V	I _{OSD}		0.07	1.0	μΑ
Reverse Bias Protection, Current Flowing from the Output Pin to GND $(V_{in} = 0 \text{ V}, V_{out_forced} = 3.3 \text{ V})$	I _{OUTR}		10		μΑ

5. T_A must be greater than 0°C.

FI FCTRICAL CHARACTERISTICS - 5.0 V (V.	$t_{f} = 5.0 \text{ V typical}, V_{in} = 5.4 \text{ V}, T_{A} = -40^{\circ}\text{C}$ to +85°C, unless otherwise noted)
	$r = 0.0$ V (vploal, $v_{in} = 0.4$ V, $r_{\Delta} = -40$ O to 100 O, unloss otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
utput Voltage (Accuracy) V _{in} = 5.4 V to 9.0 V, I _{load} = 0.1 mA to 500 mA, T _J = 25°C	V _{out}	-0.9% 4.955	5.0	+0.9% 5.045	V
utput Voltage (Accuracy) $V_{in} = 5.4$ V to 9.0 V, $I_{load} = 0.1$ mA to 500 mA, $T_J = 0^{\circ}C$ to +85°C	V _{out}	-1.4% 4.930	5.0	+1.4% 5.070	V
utput Voltage (Accuracy) $V_{in} = 5.4$ V to 9.0 V, $I_{load} = 0.1$ mA to 500 mA, $T_J = -40^{\circ}$ C to +150°C	V _{out}	-1.5% 4.925	5.0	+1.5% 5.075	V
ne Regulation V _{in} = 5.4 V to 12 V, I _{load} = 0.1 mA	Line _{Reg}		0.04		mV/V
oad Regulation _{in} = 5.4 V, I _{load} = 0.1 mA to 500 mA	Load _{Reg}		0.04		mV/mA
ropout Voltage (See App Note) $I_{load} = 500 \text{ mA}$ $I_{load} = 300 \text{ mA}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1 \text{ mA}$	V _{DO}			340 230 110 10	mV
eak Output Current (See Figure 7)	lpk	500	700	830	mA
hort Output Current (See Figure 7)	I _{sc}			930	mA
hermal Shutdown	TJ		160		°C
$ \begin{array}{l} \text{In Regulation} \\ I_{\text{load}} = 500 \text{ mA (Note 6)} \\ I_{\text{load}} = 300 \text{ mA (Note 6)} \\ I_{\text{load}} = 50 \text{ mA} \\ I_{\text{load}} = 50 \text{ mA} \\ I_{\text{load}} = 0.1 \text{ mA} \end{array} $	I _{GND}		9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA
In Dropout $V_{in} = V_{out} - 0.1 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA}$			-	500	μΑ
In Shutdown S _D = 0 V	I _{GNDsh}		0.07	1.0	μΑ
utput Noise $C_{nr} = 0 \text{ nF}, I_{load} = 500 \text{ mA}, f = 10 \text{ Hz to } 100 \text{ kHz}, C_{out} = 10 \mu\text{F}$ $C_{nr} = 10 \text{ nF}, I_{load} = 500 \text{ mA}, f = 10 \text{ Hz to } 100 \text{ kHz}, C_{out} = 10 \mu\text{F}$	V _{noise}		93 58		μVrms μVrms
hutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	V V
$_{\rm D}$ Input Current, V_{\rm SD} = 0 V to 0.4 V or V_{\rm SD} = 2.0 V to V _{in}	I _{SD}		0.07	1.0	μΑ
utput Current In Shutdown Mode, V _{out} = 0 V	I _{OSD}		0.07	1.0	μΑ
everse Bias Protection, Current Flowing from the Output Pin to GND $(V_{in} = 0 \text{ V}, V_{out_{forced}} = 5.0 \text{ V})$	I _{OUTR}		10		μΑ
Putput Noise C _{nr} = 0 nF, I _{load} = 500 mA, f = 10 Hz to 100 kHz, C _{out} = 10 μ F C _{nr} = 10 nF, I _{load} = 500 mA, f = 10 Hz to 100 kHz, C _{out} = 10 μ F hutdown Threshold Voltage ON Threshold Voltage OFF D Input Current, V _{SD} = 0 V to 0.4 V or V _{SD} = 2.0 V to V _{in} Putput Current In Shutdown Mode, V _{out} = 0 V everse Bias Protection, Current Flowing from the Output Pin to GND	V _{noise} I _{SD} I _{OSD}	2.0	93 58 0.07 0.07	0.4	


6. T_A must be greater than 0°C.

Characteristic	Symbol	Min	Тур	Max	Unit
Reference Voltage (Accuracy) $V_{in} = 2.9 V$ to $V_{out} + 4.0 V$, $I_{load} = 0.1 mA$ to 500 mA, $T_J = 25^{\circ}C$	V _{ref}	-0.9% 1.239	1.25	+0.9% 1.261	V
Reference Voltage (Accuracy) $V_{in} = 2.9 \text{ V to } V_{out} + 4.0 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA to } 500 \text{ mA}, \text{ T}_{J} = 0^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$	V _{ref}	-1.4% 1.233	1.25	+1.4% 1.268	V
Reference Voltage (Accuracy) (Note 7) $V_{in} = 2.9$ V to V _{out} + 4.0 V, I _{load} = 0.1 mA to 500 mA, T _J = -40°C to +150°C	V _{ref}	-1.5% 1.231	1.25	+1.5% 1.269	V
Line Regulation $V_{in} = 2.9 \text{ V to } 12 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA}$	Line _{Reg}		0.04		mV/V
Load Regulation V _{in} = 2.9 V, I _{load} = 0.1 mA to 500 mA	Load _{Reg}		0.04		mV/mA
Dropout Voltage (See App Note), $V_{out} = 2.5$ V to 10 V $I_{load} = 500$ mA (Note 8) $I_{load} = 300$ mA $I_{load} = 50$ mA $I_{load} = 0.1$ mA	V _{DO}			340 230 110 10	mV
Peak Output Current (Note 8) (See Figure 7)	lpk	500	700	860	mA
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	I _{sc}			900 990	mA
Thermal Shutdown	TJ		160		°C
Ground Current In Regulation $I_{load} = 500 \text{ mA} \text{ (Note 8)}$ $I_{load} = 300 \text{ mA} \text{ (Note 8)}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1 \text{ mA}$	I _{GND}		9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA
In Dropout $V_{in} = V_{out} - 0.1 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA}$			-	500	μΑ
In Shutdown $S_D = 0 V$	I _{GNDsh}		0.07	1.0	μΑ
Output Noise $C_{nr} = 0 \text{ nF}$, $I_{load} = 500 \text{ mA}$, f = 10 Hz to 100 kHz, $C_{out} = 10 \mu \text{F}$ $C_{nr} = 10 \text{ nF}$, $I_{load} = 500 \text{ mA}$, f = 10 Hz to 100 kHz, $C_{out} = 10 \mu \text{F}$	V _{noise}		38 26		μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	V V
SD Input Current, V_{SD} = 0 V to 0.4 V or V_{SD} = 2.0 V to V_{in} $V_{in} \le 5.4 V$ $V_{in} > 5.4 V$	I _{SD}		0.07	1.0 5.0	μΑ
Output Current In Shutdown Mode, V _{out} = 0 V	I _{OSD}		0.07	1.0	μΑ
Reverse Bias Protection, Current Flowing from the Output Pin to GND (V _{in} = 0 V, V _{out_forced} = V _{out} (nom) ≤ 7 V) (Note 9)	I _{OUTR}		1.0		μΑ

ELECTRICAL CHARACTERISTICS - Adjustable (Vout = 1.25 V typical, Vin = 2.9 V, To = -40°C to +85°C, unless otherwise noted)

7. For output current capability for $T_J < 0^{\circ}C$, please refer to Figure 9.8. T_A must be greater than $0^{\circ}C$.9. Reverse bias protection feature valid only if $V_{out} - V_{in} \le 7$ V.

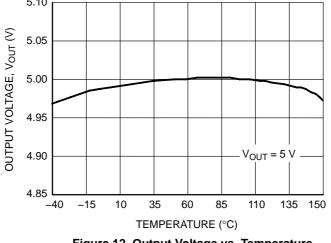


Figure 12. Output Voltage vs. Temperature

APPLICATIONS INFORMATION

Reverse Bias Protection

Reverse bias is a condition caused when the input voltage goes to zero, but the output voltage is kept high either by a large output capacitor or another source in the application which feeds the output pin.

Normally in a bipolar LDO all the current will flow from the output pin to input pin through the PN junction with limited current capability and with the potential to destroy the IC.

Due to an improved architecture, the NCP3335A can withstand up to 7.0 V on the output pin with virtually no current flowing from output pin to input pin, and only negligible amount of current (tens of μ A) flowing from the output pin to ground for infinite duration.

Input Capacitor

An input capacitor of at least 1.0 μ F, any type, is recommended to improve the transient response of the regulator and/or if the regulator is located more than a few inches from the power source. It will also reduce the circuit's sensitivity to the input line impedance at high frequencies. The capacitor should be mounted with the shortest possible track length directly across the regular's input terminals.

Output Capacitor

The NCP3335A remains stable with any type of capacitor as long as it fulfills its 1.0 μ F requirement. There are no constraints on the minimum ESR and it will remain stable up to an ESR of 5.0 Ω . Larger capacitor values will improve the noise rejection and load transient response.

Noise Reduction Pin

Output noise can be greatly reduced by connecting a 10 nF capacitor (C_{nr}) between the noise reduction pin and ground (see Figure 1). In applications where very low noise is not required, the noise reduction pin can be left unconnected.

For the adjustable version, in addition to the 10 nF C_{nr} , a 68 pF capacitor connected in parallel with R1 (see Figure 2)

is recommended to further reduce output noise and improve stability.

Adjustable Operation

The output voltage can be set by using a resistor divider as shown in Figure 2 with a range of 1.25 to 10 V. The appropriate resistor divider can be found by solving the equation below. The recommended current through the resistor divider is from 10 μ A to 100 μ A. This can be accomplished by selecting resistors in the k Ω range. As result, the I_{adj}*R2 becomes negligible in the equation and can be ignored.

$$V_{out} = 1.25 * \left(1 + \frac{R1}{R2}\right) + I_{adj} * R2$$
 (eq. 1)

Example:

For $V_{out} = 2.9$ V, can use $R_1 = 36$ k Ω and $R_2 = 27$ k Ω .

$$1.25 * \left(1 + \frac{36 \text{ k}\Omega}{27 \text{ k}\Omega}\right) = 2.91 \text{ V}$$
 (eq. 2)

Dropout Voltage

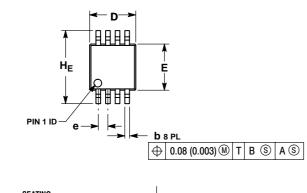
The voltage dropout is measured at 97% of the nominal output voltage.

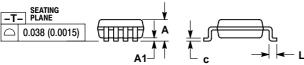
Thermal Considerations

Internal thermal limiting circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. This feature provides protection from a catastrophic device failure due to accidental overheating. This protection feature is not intended to be used as a substitute to heat sinking. The maximum power that can be dissipated, can be calculated with the equation below:

$$P_{D} = \frac{T_{J}(max) - T_{A}}{R_{\theta}JA} \qquad (eq. 3)$$

For improved thermal performance, contact the factory for the DFN package option. The DFN package includes an exposed metal pad that is specifically designed to reduce the junction to air thermal resistance, $R_{\theta JA}$.

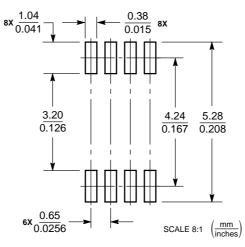

ORDERING INFORMATION


Device	Nominal Output Voltage	Package	Shipping [†]
NCP3335ADM250R2G	2.5 V	Micro8 (Pb–Free)	4000 / Tape & Reel
NCP3335ADM285R2G	2.85 V	Micro8 (Pb–Free)	4000 / Tape & Reel
NCP3335ADM330R2G	3.3 V	Micro8 (Pb–Free)	4000 / Tape & Reel
NCP3335ADM500R2G	5.0 V	Micro8 (Pb–Free)	4000 / Tape & Reel
NCP3335ADMADJR2G	Adj.	Micro8 (Pb–Free)	4000 / Tape & Reel
NCP3335AMN250R2G	2.5 V	DFN10 (Pb–Free)	3000 / Tape & Reel
NCP3335AMN285R2G	2.85 V	DFN10 (Pb–Free)	3000 / Tape & Reel
NCP3335AMN330R2G	3.3 V	DFN10 (Pb–Free)	3000 / Tape & Reel
NCP3335AMN500R2G	5.0 V	DFN10 (Pb-Free)	3000 / Tape & Reel
NCP3335AMNADJR2G	Adj.	DFN10 (Pb–Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
 *Please contact factory for other voltage options.

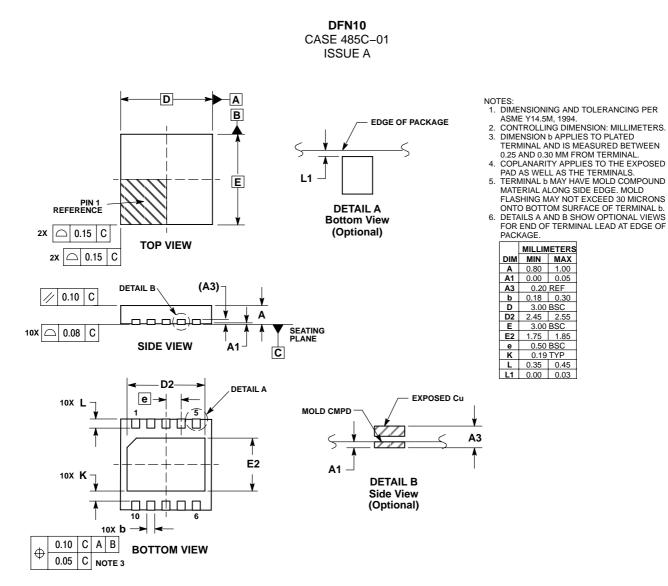
PACKAGE DIMENSIONS

Micro8 CASE 846A-02 ISSUE G


NOTES:

- IDIRESIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED OVER (2000 PED DIRES) DURAS. MOLED FLASH, FRO HOSIONS ON GATE BORRS STALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 846A-01 OBSOLETE, NEW STANDARD 846A-02.

	MILLIMETERS	INCHES


	M	ILLIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α			1.10			0.043	
A1	0.05	0.08	0.15	0.002	0.003	0.006	
b	0.25	0.33	0.40	0.010	0.013	0.016	
С	0.13	0.18	0.23	0.005	0.007	0.009	
D	2.90	3.00	3.10	0.114	0.118	0.122	
Е	2.90	3.00	3.10	0.114	0.118	0.122	
е	0.65 BSC			0.026 BSC			
L	0.40	0.55	0.70	0.016	0.021	0.028	
HE	4.75	4.90	5.05	0.187	0.193	0.199	
L UE	4./5	4.90	0.05	0.167	0.193	0.199	

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

The products described herein NCP3335A, may be covered by one or more of the following U.S. patents; 5,920,184, 5,966,004, and 5,834,926. There may be other patents pending.

Micro8 is a trademark of International Rectifier.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use payes that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.