12-Stage Binary Ripple Counter

The MC74AC4040 consists of 12 master-slave flip-flops. The output of each flip-flop feeds the next and the frequency at each output is half that of the preceding one. The state of the counter advances on the negative-going edge of the Clock input. Reset is asynchronous and active-high.

State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and may have to be gated with the Clock of the MC74AC4040 for some designs.

- 140 MHz Typ. Clock
- Outputs Source/Sink 24 mA
- Operating Voltage Range: 2.0 to 6.0 V
- High Noise Immunity

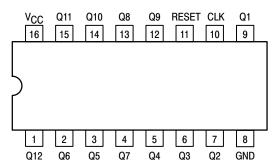
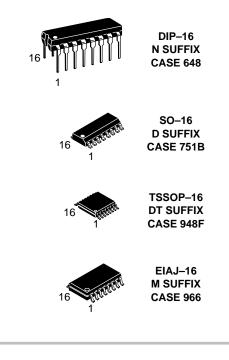


Figure 1. Pinout: 16–Lead Packages Conductors (Top View)


FUNCTION TABLE

Clock	Reset	Output State
	L	No Change
	L	Advance to next state
Х	Н	All Outputs are low

ON Semiconductor[™]

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
MC74AC4040N	PDIP-16	25 Units/Rail
MC74AC4040D	SOIC-16	48 Units/Rail
MC74AC4040DR2	SOIC-16	2500 Tape & Reel
MC74AC4040DT	TSSOP-16	96 Units/Rail
MC74AC4040DTR2	TSSOP-16	2500 Tape & Reel
MC74AC4040M	EIAJ–16	50 Units/Rail

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 4 of this data sheet.

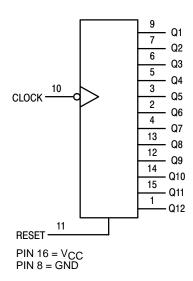


Figure 2. Logic Diagram

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
VIN	DC Input Voltage (Referenced to GND)	–0.5 to V _{CC} +0.5	V
Vout	DC Output Voltage (Referenced to GND)	–0.5 to V _{CC} +0.5	V
IIN	DC Input Current, per Pin	±20	mA
IOUT	DC Output Current, per Pin	±50	mA
ICC	DC V _{CC} or GND Current per Output Pin	±50	mA
PD	Power Dissipation in Still Air Plastic† SOIC Package†	750 500	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 seconds (Plastic DIP or SOIC Package)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur. †Derating: Plastic DIP: – 10mW/°C from 65°C to 125°C SOIC Package: –7.0 mW/°C from 65°C to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
VCC	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
VIN/VOUT	Input Voltage, Output Voltage (Ref. to GND)	0	VCC	-
T _A	Operating Temperature, All Package Types	-40	+85	°C
tr/tf	Input Rise/Fall Time $V_{CC} = 3.0 \text{ V}$ (Figure 1) $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 5.5 \text{ V}$	0 0 0	150 40 25	ns/V

DC CHARACTERISTICS (unless otherwise specified)

Symbol	Parameter	Value	Unit	
ICC	Maximum Quiescent Supply Voltage	80	μΑ	$V_{in} = V_{CC}$ or GND $V_{CC} = 5.5 V$, $T_A = Worst Case$
lcc	Maximum Quiescent Supply Current	8.0	μΑ	$V_{in} = V_{CC}$ or GND $V_{CC} = 5.5 V$, $T_A = 25^{\circ}C$

DC CHARACTERISTICS

	Parameter		74	AC	74AC			
Symbol		V _{CC} (V)	T _A = +25°C		T _A = 40°C to +85°C	Unit	Conditions	
			Тур	Guara	anteed Limits			
VIH	Minimum High Level Input Voltage	3.0 4.5 5.5	- 2.1 - 3.15 - 3.85		2.1 3.15 3.85	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	- - -	0.9 1.35 1.65	0.9 1.35 1.65	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$	
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	I _{OUT} = -50 μA	
		3.0 4.5 5.5	- -	2.56 3.86 4.86	2.46 3.76 4.76	v	*V _{IN} = V _{IL} or V _{IH} -12 mA I _{OH} -24 mA -24 mA	
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	l _{OUT} = 50 μA	
		3.0 4.5 5.5	- - -	0.36 0.36 0.36	0.44 0.44 0.44	v	*V _{IN} = V _{IL} or V _{IH} 12 mA I _{OL} 24 mA 24 mA	
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μA	V _I = V _{CC} , GND	
IOLD	Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max	
IOHD	Output Current†	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min	

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms - See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

				74AC		74	AC		
Symbol	Parameter		T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
f _{max}	Maximum Clock Frequency	3.3 5.0	110 130	120 140	-	100 120		MHz	-
n _{CP} to Q1	Propagation Delay nCP to Q1	3.3 5.0	2.0 2.0	-	11 8.0	2.0 2.0	14 10	ns	-
Q _n to Q _n +1	Propagation Delay Q _n to Q _n +1	3.3 5.0	0 0	-	5.5 3.5	0 0	6.5 4.5	ns	-
MR to Q ^t HL	Propagation Delay MR to Q	3.3 5.0	3.0 3.0	-	12 10	3.0 3.0	15 12	ns	-
t _{rec} n _{CP} to MR	Recovery Time	3.3 5.0	0 0	-2.5 -1.5	-	0 0	-	ns	-
tw nCP	Minimum Pulse Width Clock Pin	3.3 5.0	4.0 3.0	3.5 2.5	-	4.5 3.5		ns	-
t _w MR	Minimum Pulse Width Master Reset	3.3 3.0	4.0 3.0	3.5 2.5	-	4.5 3.5	-	ns	-

*Voltage Range 3.3 V is 3.3 V ± 0.3 V. *Voltage Range 5.0 V is 5.0 V ± 0.5 V.

CAPACITANCE

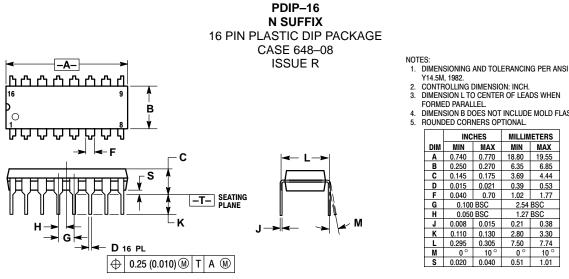
Symbol	Parameter	Value Typ	Unit	Test Conditions
CIN	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	50	pF	V _{CC} = 5.0 V

MARKING DIAGRAMS

DIP-16

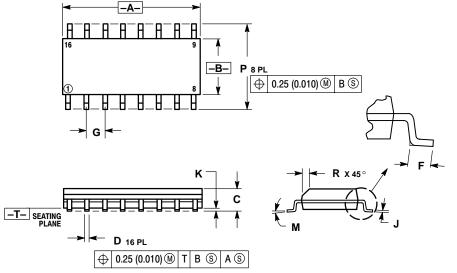
ለለለለለለለ MC74AC4040N AWLYYWW 0 ŏvvvvvvv

SO-16					
88888888					
AC4040 o AWLYWW					


TSSOP-16 AAAAAAAA AC 4040 ALYW <u>BBBBBBBB</u>

<u></u>
74AC4040
o ^{alyw}

- = Assembly Location А WL, L = Wafer Lot YY, Y = Year
- WW, W = Work Week


PACKAGE DIMENSIONS

DIMENSIONING AND TOLEHANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL DIMENSION B DOES NOT INCLUDE MOLD FLASH. ROUNDED CORNERS OPTIONAL MILLIMETERS INCHES

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
С	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100	BSC	2.54	BSC
н	0.050	BSC	1.27	BSC
J	0.008	0.015	0.21	0.38
ĸ	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0 °	10 °	0 °	10 °
S	0.020	0.040	0.51	1.01

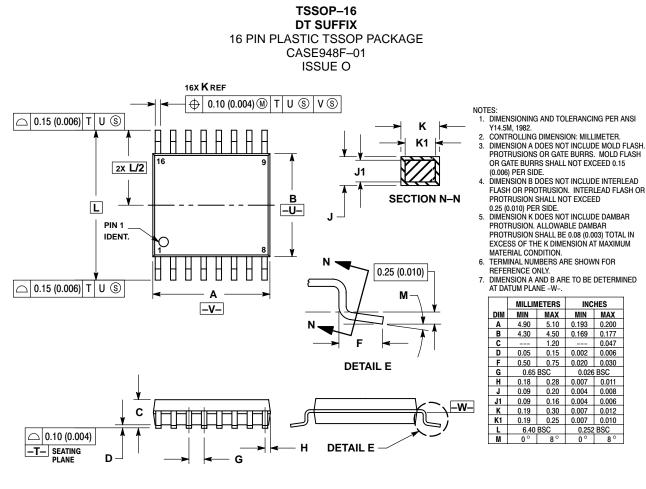
SO-16 **D SUFFIX 16 PIN PLASTIC SOIC PACKAGE** CASE 751B-05 **ISSUE J**

NOTES:

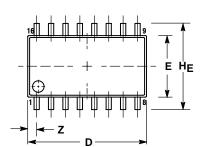
- NOTES:

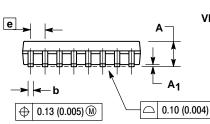
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

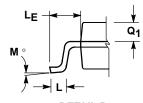
 2. CONTROLLING DIMENSION: MILLIMETER.

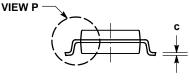

 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)


 DEFE DIRC
- MAXIMUM MOLD PROTINGSION 0.15 (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.


			-	
	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
М	0 °	7°	0 °	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019


PACKAGE DIMENSIONS


EIAJ-16 **M SUFFIX 16 PIN PLASTIC EIAJ PACKAGE** CASE966-01 ISSUE O

2.

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI
 - Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED 3. AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)

0.047

- PER SIDE. TERMINAL NUMBERS ARE SHOWN FOR 4
- I EHMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH 5. DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018)

10 DE 0.40 (0.010).				
	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
C	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
Е	5.10	5.45	0.201	0.215
e	1.27 BSC		0.050 BSC	
Η _E	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
M	0 °	10 °	0 °	10 °
Q1	0.70	0.90	0.028	0.035
Z		0.78		0.031

<u>Notes</u>

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.