5V ECL Quad Differential AND/NAND

The MC10E404/100E404 is a 4-bit differential AND/NAND device. The differential operation of the device makes it ideal for pulse shaping applications where duty cycle skew is critical. Special design techniques were incorporated to minimize the skew between the upper and lower level gate inputs.

Because a negative 2-input NAND function is equivalent to a 2-input OR function, the differential inputs and outputs of the device also allow for its use as a fully differential 2 input OR/NOR function.

The output RISE/FALL times of this device are significantly faster than most other standard ECLinPS $^{\text{\tiny M}}$ devices resulting in an increased bandwidth.

The differential inputs have clamp structures which will force the Q output of a gate in an open input condition to go to a LOW state. Thus, inputs of unused gates can be left open and will not affect the operation of the rest of the device. Note that the input clamp will take affect only if both inputs fall 2.5 V below V_{CC} .

The 100 Series contains temperature compensation.

- Differential D and Q
- 700 ps Max. Propagation Delay
- High Frequency Outputs
- PECL Mode Operating Range: V_{CC}= 4.2 V to 5.7 V with V_{EE}= 0 V
- NECL Mode Operating Range: V_{CC}= 0 V with V_{EE}= -4.2 V to -5.7 V
- Internal Input Pulldown Resistors
- ESD Protection: >1 KV HBM, >75 V MM
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL-94 code V-0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 274 devices

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
MC10E404FN	PLCC-28	37 Units/Rail
MC10E404FNR2	PLCC-28	500 Units/Reel
MC100E404FN	PLCC-28	37 Units/Rail
MC100E404FNR2	PLCC-28	500 Units/Reel

LOGIC DIAGRAM AND PINOUT ASSIGNMENT

* All V_{CC} and V_{CCO} pins are tied together on the die.

Warning: All V_{CC} , V_{CCO} , and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

PIN DESCRIPTION

PIN	FUNCTION
D[0:4], D[0:4]	ECL Differential Data Inputs
Q[0:4], <u>Q</u> [0:4]	ECL Differential Data Outputs
V _{CC} , V _{CCO}	Positive Supply
V _{EE}	Negative Supply

FUNCTION TABLE

Da	Db	Q	Da	Db	Q
L	L	L	L	L	L
L	Н	L	L	Н	н
н	L	L	Н	L	н
н	н	Н	Н	Н	Н

MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
VCC	PECL Mode Power Supply	V _{EE} = 0 V		8	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V ^{CC} = 0 V	$V_I \leq V_{CC}$ $V_I \geq V_{EE}$	6 6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
ТА	Operating Temperature Range			0 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	28 PLCC 28 PLCC	63.5 43.5	°C/W °C/W
θJC	Thermal Resistance (Junction to Case)	std bd	28 PLCC	22 to 26	°C/W
V_{EE}	PECL Operating Range NECL Operating Range			4.2 to 5.7 -5.7 to -4.2	V V
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

1. Maximum Ratings are those values beyond which device damage may occur.

10E SERIES PECL DC CHARACTERISTICS V_{CCx}= 5.0 V; V_{EE}= 0.0 V (Note 1)

		0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current		106	127		106	127		106	127	mA
VOH	Output HIGH Voltage (Note 2)	3980	4070	4160	4020	4105	4190	4090	4185	4280	mV
VOL	Output LOW Voltage (Note 2)	3050	3210	3370	3050	3210	3370	3050	3227	3405	mV
VIH	Input HIGH Voltage	3830	3995	4160	3870	4030	4190	3940	4110	4280	mV
VIL	Input LOW Voltage	3050	3285	3520	3050	3285	3520	3050	3302	3555	mV
IIН	Input HIGH Current			150			150			150	μΑ
Ι _{ΙL}	Input LOW Current	0.5	0.3		0.5	0.25		0.3	0.2		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.46 V / -0.06 V. 2. Outputs are terminated through a 50 ohm resistor to V_{CC} -2 volts.

10E SERIES NECL DC CHARACTERISTICS $V_{CCx}{=}~0.0$ V; $V_{EE}{=}-5.0$ V (Note 1)

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current		106	127		106	127		106	127	mA
VOH	Output HIGH Voltage (Note 2)	-1020	-930	-840	-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 2)	-1950	-1790	-1630	-1950	-1790	-1630	-1950	-1773	-1595	mV
VIH	Input HIGH Voltage	-1170	-1005	-840	-1130	-970	-810	-1060	-890	-720	mV
VIL	Input LOW Voltage	-1950	-1715	-1480	-1950	-1715	-1480	-1950	-1698	-1445	mV
ЧΗ	Input HIGH Current			150			150			150	μA
۱ _{IL}	Input LOW Current	0.5	0.3		0.5	0.065		0.3	0.2		μA

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.46 V / -0.06 V.
 Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

100E SERIES PECL DC CHARACTERISTICS V_{CCx}= 5.0 V; V_{EE}= 0.0 V (Note 1)

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current		106	127		106	127		122	146	mA
VOH	Output HIGH Voltage (Note 2)	3975	4050	4120	3975	4050	4120	3975	4050	4120	mV
VOL	Output LOW Voltage (Note 2)	3190	3295	3380	3190	3255	3380	3190	3260	3380	mV
VIH	Input HIGH Voltage	3835	4050	4120	3835	4120	4120	3835	4120	4120	mV
VIL	Input LOW Voltage	3190	3300	3525	3190	3525	3525	3190	3525	3525	mV
Ι _Η	Input HIGH Current			150			150			150	μΑ
Ι _{ΙL}	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.46 V / –0.8 V. 2. Outputs are terminated through a 50 ohm resistor to V_{CC}–2 volts.

100E SERIES NECL DC CHARACTERISTICS V_{CCx}= 0.0 V; V_{EE}= -5.0 V (Note 1)

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current		106	127		106	127		122	146	mA
VOH	Output HIGH Voltage (Note 2)	-1025	-950	-880	-1025	-950	-880	-1025	-950	-880	mV
V _{OL}	Output LOW Voltage (Note 2)	-1810	-1705	-1620	-1810	-1745	-1620	-1810	-1740	-1620	mV
VIH	Input HIGH Voltage	-1165	-950	-880	-1165	-880	-880	-1165	-880	-880	mV
VIL	Input LOW Voltage	-1810	-1700	-1475	-1810	-1475	-1475	-1810	-1475	-1475	mV
IIН	Input HIGH Current			150			150			150	μA
۱ _{IL}	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μA

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.46 V / -0.8 V.
 Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

AC CHARACTERISTICS V_{CCx} = 5.0 V; V_{EE} = 0.0 V or V_{CCx} = 0.0 V; V_{EE} = -5.0 V (Note 1)

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
fMAX	Maximum Toggle Frequency		TBD			TBD			TBD		GHz
^t PLH ^t PHL	Propagation Delay to Output Da (Diff) Da (SE) Db (Diff) Db (SE)	350 300 375 325	475 475 500 500	650 700 675 725	350 300 375 325	475 475 500 500	650 700 675 725	350 300 375 325	475 475 500 500	650 700 675 725	ps
^t SKEW	Within-Device Skew (Note 1.)		50			50			50		ps
^t JITTER	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
V _{PP} (AC)	Minimum Input Swing (Note 2.)	150			150			150			mV
t _r t _f	Rise/Fall Time (20 - 80%)	150		400	150		400	150		400	ps

1. 10 Series: VEE can vary +0.46 V / -0.06 V.

100 Series: VEE can vary +0.46 V / -0.8 V.

1. Within-device skew is defined as identical transitions on similar paths through a device.

2. Minimum input swing for which AC parameters are guaranteed.

Figure 1. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1404	$$ ECLinPS Circuit Performance at Non–Standard $V_{\mbox{\scriptsize IH}}$ Levels
AN1405	 ECL Clock Distribution Techniques
AN1406	 Designing with PECL (ECL at +5.0 V)
AN1503	 ECLinPS I/O SPICE Modeling Kit
AN1504	 Metastability and the ECLinPS Family
AN1568	 Interfacing Between LVDS and ECL
AN1596	 ECLinPS Lite Translator ELT Family SPICE I/O Model Kit
AN1650	 Using Wire–OR Ties in ECLinPS Designs
AN1672	 The ECL Translator Guide
AND8001	 Odd Number Counters Design
AND8002	 Marking and Date Codes

AND8020 – Termination of ECL Logic Devices

PACKAGE DIMENSIONS

NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

<u>Notes</u>

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death wits such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.