5V ECL 1:9 Differential Clock Driver

The MC10E/100E111 is a low skew 1-to-9 differential driver, designed with clock distribution in mind. It accepts one signal input, which can be either differential or else single-ended if the V_{BB} output is used. The signal is fanned out to 9 identical differential outputs. An enable input is also provided. A HIGH disables the device by forcing all Q outputs LOW and all \overline{Q} outputs HIGH.

The device is specifically designed, modeled and produced with low skew as the key goal. Optimal design and layout serve to minimize gate to gate skew within-device, and empirical modeling is used to determine process control limits that ensure consistent t_{pd} distributions from lot to lot. The net result is a dependable, guaranteed low skew device.

To ensure that the tight skew specification is met it is necessary that both sides of the differential output are terminated into 50 Ω , even if only one side is being used. In most applications, all nine differential pairs will be used and therefore terminated. In the case where fewer than nine pairs are used, it is necessary to terminate at least the output pairs on the same package side (i.e., sharing the same V_{CCO}) as the pair(s) being used on that side, in order to maintain minimum skew. Failure to do this will result in small degradations of propagation delay (on the order of 10–20 ps) of the output(s) being used which, while not being catastrophic to most designs, will mean a loss of skew margin.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

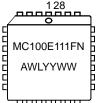
The 100 Series contains temperature compensation.

- Guaranteed Skew Spec
- Differential Design
- V_{BB} Output
- PECL Mode Operating Range: V_{CC}= 4.2 V to 5.7 V with V_{EE}= 0 V
- NECL Mode Operating Range: V_{CC}= 0 V with V_{EE}= -4.2 V to -5.7 V
- Internal Input Pulldown Resistors
- ESD Protection: > 3 KV HBM
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1
 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL-94 code V-0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 178 devices

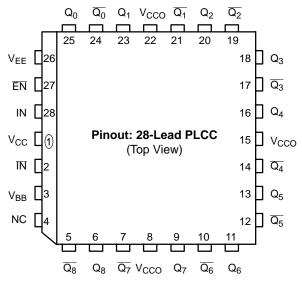
ON Semiconductor®

http://onsemi.com

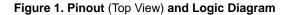
MARKING DIAGRAMS



PLCC-28 FN SUFFIX CASE 776


A = Assembly Location
WL = Wafer Lot

YY = Year WW = Work Week


ORDERING INFORMATION

Device	Package	Shipping
MC10E111FN	PLCC-28	37 Units/Rail
MC10E111FNR2	PLCC-28	500 Units/Reel
MC100E111FN	PLCC-28	37 Units/Rail
MC100E111FNR2	PLCC-28	500 Units/Reel

 $^{^{\}ast}$ All V_{CC} and V_{CCO} pins are tied together on the die.

Warning: All V_{CC} , V_{CCO} , and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

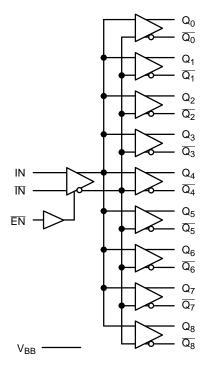


Figure 2. Logic Symbol

PIN DESCRIPTION

PIN	FUNCTION
IN, ĪN	ECL Differential Input Pair
ĒN	ECL Enable
$Q_0, \overline{Q_0} - Q_8, \overline{Q_8}$	ECL Differential Outputs
V_{BB}	Reference Voltage Output
V_{CC} , V_{CCO}	Positive Supply
V_{EE}	Negative Supply
NC	No Connect

MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$	6 6	V V
V _{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-8	V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
TA	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	28 PLCC 28 PLCC	63.5 43.5	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	std bd	28 PLCC	22 to 26	°C/W
V _{EE}	PECL Operating Range NECL Operating Range			4.2 to 5.7 -5.7 to -4.2	V V
T _{sol}	Wave Solder	< 2 to 3 sec @ 248°C		265	°C

^{1.} Maximum Ratings are those values beyond which device damage may occur.

10E SERIES PECL DC CHARACTERISTICS V_{CCx} = 5.0 V; V_{EE} = 0.0 V (Note 2)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		48	60		48	60		48	60	mA
V _{OH}	Output HIGH Voltage (Note 3)				4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 3)				3050	3210	3370	3050	3227	3405	mV
V _{IH}	Input HIGH Voltage (Single Ended)				3870	4030	4190	3940	4110	4280	mV
V _{IL}	Input LOW Voltage (Single Ended)				3050	3285	3520	3050	3302	3555	mV
V _{BB}	Output Voltage Reference	3.57		3.7	3.65		3.75	3.69		3.90	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 4)	3.4		4.6	3.4		4.6	3.4		4.6	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current				0.5	0.25		0.3	0.2		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

- 2. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.46 V / -0.06 V. 3. Outputs are terminated through a 50 Ω resistor to V_{CC} 2 volts.
- 4. V_{IHCMR} min and max vary 1:1 with V_{CC}.

10E SERIES NECL DC CHARACTERISTICS V_{CCx}= 0.0 V; V_{EE}= -5.0 V (Note 5)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		48	60		48	60		48	60	mA
V _{OH}	Output HIGH Voltage (Note 6)				-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 6)				-1950	-1790	-1630	-1950	-1773	-1595	mV
V _{IH}	Input HIGH Voltage (Single Ended)				-1130	-970	-810	-1060	-890	-720	mV
V_{IL}	Input LOW Voltage (Single Ended)				-1950	-1715	-1480	-1950	-1698	-1445	mV
V _{BB}	Output Voltage Reference	-1.43		-1.30	-1.35		-1.25	-1.31		-1.19	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 7)	-1.6		-0.4	-1.6		-0.4		1.6	-0.4	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current				0.5	0.065		0.3	0.2		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

- 5. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.46 V / -0.06 V. 6. Outputs are terminated through a 50 Ω resistor to V_{CC} 2 volts.
- 7. V_{IHCMR} min and max vary 1:1 with V_{CC} .

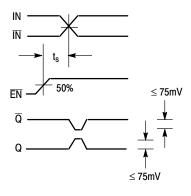
100E SERIES PECL DC CHARACTERISTICS V_{CCx}= 5.0 V; V_{EE}= 0.0 V (Note 8)

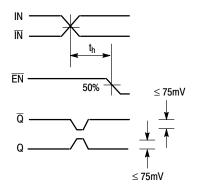
			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		48	60		48	60		55	69	mA
V _{OH}	Output HIGH Voltage (Note 9)				3975	4050	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 9)				3190	3255	3380	3190	3260	3380	mV
V _{IH}	Input HIGH Voltage (Single Ended)				3835	4120	4120	3835	4120	4120	mV
V _{IL}	Input LOW Voltage (Single Ended)				3190	3525	3525	3190	3525	3525	mV
V _{BB}	Output Voltage Reference	3.64		3.75	3.62		3.74	3.62		3.74	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 10)	3.4		4.6	3.4		4.6	3.4		4.6	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current				0.5	0.25		0.5	0.2		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

- 8. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.46 V / –0.8 V. 9. Outputs are terminated through a 50 Ω resistor to V_{CC} 2 volts.
- 10. V_{IHCMR} min and max vary 1:1 with V_{CC} .

100E SERIES NECL DC CHARACTERISTICS V_{CCx} = 0.0 V; V_{EE} = -5.0 V (Note 11)


			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		48	60		48	60		55	69	mA
V _{OH}	Output HIGH Voltage (Note 12)				-1025	-950	-880	-1025	-950	-880	mV
V _{OL}	Output LOW Voltage (Note 12)				-1810	-1745	-1620	-1810	-1740	-1620	mV
V _{IH}	Input HIGH Voltage (Single Ended)				-1165	-880	-880	-1165	-880	-880	mV
V _{IL}	Input LOW Voltage (Single Ended)				-1810	-1475	-1475	-1810	-1475	-1475	mV
V _{BB}	Output Voltage Reference	-1.38		-1.25	-1.38		-1.26	-1.38		-1.26	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 13)	-1.6		-0.4	-1.6		-0.4	-1.6		-0.4	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current				0.5	0.25		0.5	0.2		μΑ


NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. 11. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.46 V / -0.8 V. 12. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2 volts. 13. V_{IHCMR} min and max vary 1:1 with V_{CC} .

AC CHARACTERISTICS $V_{CCx} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CCx} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 14)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{MAX}	Maximum Toggle Frequency		> 1.5			> 1.5			> 1.5		GHz
tPLH t _{PHL}	Propagation Delay to Output IN (Diff) (Note 15) IN (SE) (Note 16) Enable (Note 17) Disable (Note 17)	430 380 400 400		630 680 900 900	430 380 450 450		630 680 850 850	430 380 450 450		630 680 850 850	ps
t _s	Setup Time (Note 19) EN to IN	250	0		200	0		200	0		ps
t _H	Hold Time (Note 20) IN to EN	50	-200		0	-200		0	-200		ps
t _R	Release Time (Note 21) EN to IN	350	100		300	100		300	100		ps
t _{skew}	Within-Device Skew (Note 18)		25	75		25	50		25	50	ps
t _{JITTER}	Cycle-to-Cycle Jitter		0.2	< 2		0.2	< 2		0.2	< 2	ps
V _{PP}	Minimum Input Swing	50			50			50			mV
t _r , t _f	Rise/Fall Time	250	450	650	275	375	600	275	375	600	ps

- 14.10 Series: V_{EE} can vary +0.46 V / -0.06 V. 100 Series: V_{EE} can vary +0.46 / -0.8 V.
- 15. The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the differential output signals.
- 16. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal.
- 17. Enable is defined as the propagation delay from the 50% point of a **negative** transition on EN to the 50% point of a **positive** transition on Q (or a negative transition on Q). Disable is defined as the propagation delay from the 50% point of a **positive** transition on EN to the 50% point of a **negative** transition on Q (or a positive transition on Q).
- 18. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device.
- 19. The setup time is the minimum time that EN must be asserted prior to the next transition of IN/IN to prevent an output response greater than ±75 mV to that IN/IN transition (see Figure 3).
- 20. The hold time is the minimum time that $\overline{\text{EN}}$ must remain asserted after a negative going IN or a positive going $\overline{\text{IN}}$ to prevent an output response greater than ± 75 mV to that $\overline{\text{IN/IN}}$ transition (see Figure 4).
- 21. The release time is the minimum time that $\overline{\text{EN}}$ must be deasserted prior to the next $\overline{\text{IN}/\text{IN}}$ transition to ensure an output response that meets the specified IN to Q propagation delay and output transition times (see Figure 5).

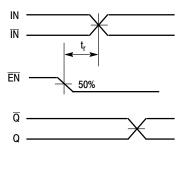


Figure 3. Setup Time

Figure 4. Hold Time

Figure 5. Release Time

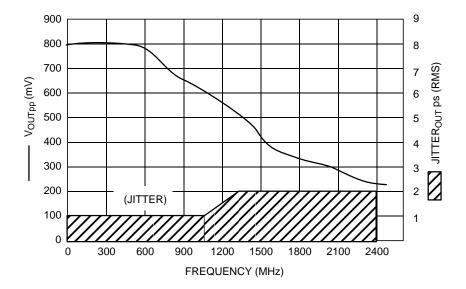


Figure 6. F_{max}/Jitter

Figure 7. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1404 - ECLinPS Circuit Performance at Non–Standard V_{IH} Levels

AN1405 – ECL Clock Distribution Techniques

AN1406 – Designing with PECL (ECL at +5.0 V)

AN1503 – ECLinPS I/O SPICE Modeling Kit

AN1504 – Metastability and the ECLinPS Family

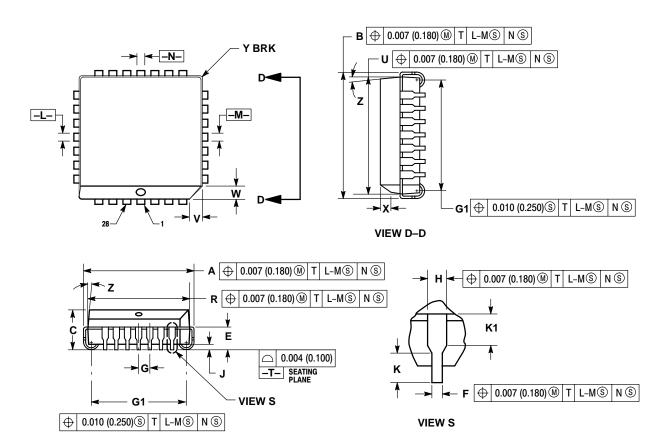
AN1568 – Interfacing Between LVDS and ECL

AN1596 - ECLinPS Lite Translator ELT Family SPICE I/O Model Kit

AN1650 - Using Wire-OR Ties in ECLinPS Designs

AND8001 - The ECL Translator Guide

AND8001 - Odd Number Counters Design


AND8002 - Marking and Date Codes

AND8020 - Termination of ECL Logic Devices

PACKAGE DIMENSIONS

PLCC-28 **FN SUFFIX**

PLASTIC PLCC PACKAGE CASE 776-02 **ISSUE E**

NOTES:

- IOTES:

 1. DATUMS -L-, -M-, AND -N- DETERMINED
 WHERE TOP OF LEAD SHOULDER EXITS
 PLASTIC BODY AT MOLD PARTING LINE.

 2. DIMENSION G1, TRUE POSITION TO BE
 MEASURED AT DATUM -T-, SEATING PLANE.

 3. DIMENSIONS R AND U DO NOT INCLUDE
- MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE. 4. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. 5. CONTROLLING DIMENSION: INCH.
- 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR EXCLUSIVE OF MOLID FLASH, HE BAH
 BURRS, GATE BURRS AND INTERLEAD
 FLASH, BUT INCLUDING ANY MISMATCH
 BETWEEN THE TOP AND BOTTOM OF THE
 PLASTIC BODY.
 7. DIMENSION H DOES NOT INCLUDE DAMBAR
 PROTERIOR OF DAMBAR INCLUDED THE P
- PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	0.485	0.495	12.32	12.57		
В	0.485	0.495	12.32	12.57		
С	0.165	0.180	4.20	4.57		
E	0.090	0.110	2.29	2.79		
F	0.013	0.019	0.33	0.48		
G	0.050	BSC	1.27	BSC		
Н	0.026	0.032	0.66	0.81		
J	0.020		0.51			
K	0.025		0.64			
R	0.450	0.456	11.43	11.58		
υ	0.450	0.456	11.43	11.58		
٧	0.042	0.048	1.07	1.21		
W	0.042	0.048	1.07	1.21		
Х	0.042	0.056	1.07	1.42		
Υ		0.020		0.50		
Z	2 °	10°	2 °	10°		
G1	0.410	0.430	10.42	10.92		
K1	0.040		1.02			

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.