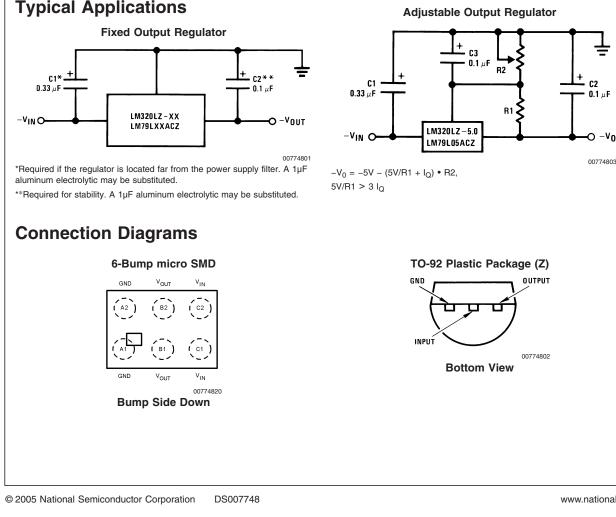


LM320L/LM79LXXAC Series **3-Terminal Negative Regulators General Description**


The LM320L/LM79LXXAC dual marked series of 3-terminal negative voltage regulators features fixed output voltages of -5V, -12V, and -15V with output current capabilities in excess of 100mA. These devices were designed using the latest computer techniques for optimizing the packaged IC thermal/electrical performance. The LM79LXXAC series, even when combined with a minimum output compensation capacitor of 0.1µF, exhibits an excellent transient response, a maximum line regulation of 0.07% $V_{\rm O}/V$, and a maximum load regulation of 0.01% V_O/mA.

The LM320L/LM79LXXAC series also includes, as selfprotection circuitry: safe operating area circuitry for output transistor power dissipation limiting, a temperature independent short circuit current limit for peak output current limiting, and a thermal shutdown circuit to prevent excessive junction temperature. Although designed primarily as fixed voltage regulators, these devices may be combined with simple external circuitry for boosted and/or adjustable voltages and currents. The LM79LXXAC series is available in the 3-lead TO-92 package, 8-lead SOIC package, and the 6-Bump micro SMD package. The LM320L series is available in the 3-lead TO-92 package.

For output voltage other than -5V, -12V and -15V, the LM137L series provides an output voltage range from 1.2V to 47V.

Features

- Preset output voltage error is less than ±5% overload, line and temperature
- Specified at an output current of 100mA
- Easily compensated with a small 0.1µF output capacitor
- Internal short-circuit, thermal and safe operating area protection
- Easily adjustable to higher output voltages
- Maximum line regulation less than 0.07% V_{OUT}/V
- Maximum load regulation less than 0.01% $V_{\rm OUT}/mA$
- See AN-1112 for micro SMD considerations

Connection Diagrams (Continued)

Ordering Information

Package Part Number		Package Marking	Transport Media	NSC Drawing		
8-Lead SOIC	LM79L05ACM	LM79L05ACM	95 Units/Rail	M08A		
-	LM79L05ACMX		2.5k Units Tape and Reel			
-	LM79L13ACM	LM79L12ACM	95 Units/Rail			
-	LM79L13ACMX		2.5k Units Tape and Reel			
-	LM79L15ACM	LM79L15ACM	95 Units/Rail			
-	LM79L15ACMX		2.5k Units Tape and Reel			
3-Pin TO-92	LM79L05ACZ	320L79L05	1800 Units Per Box	Z03A		
-	LM79L12ACZ	320L79L12	1800 Units Per Box			
	LM79L15ACZ	320L79L15	1800 Units Per Box			
6-Bump	IP LM79L15ACTL XTPB		250 Units Tape and Reel	TLA06AMA		
micro SMD	LM79L05ACTLX		3k Units Tape and Reel			

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Input Voltage

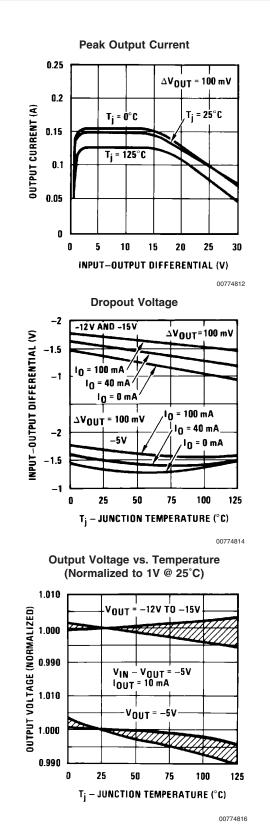
$V_{\rm O} = -5V, -12V, -15V$	-35V
Internal Power Dissipation (Note 2)	Internally Limited

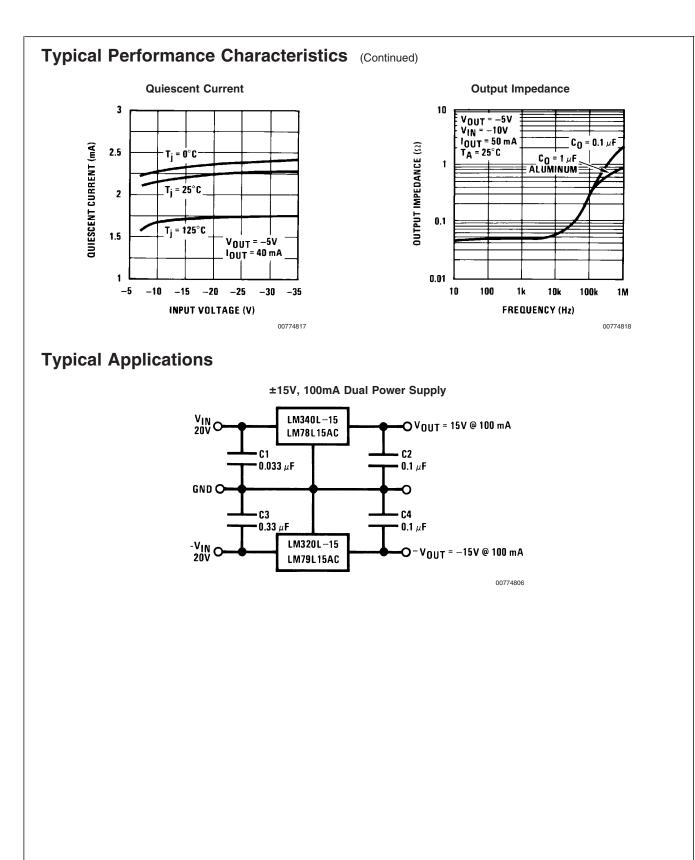
Electrical Characteristics (Note 3)

 $T_{A} = 0^{\circ}C$ to +70°C unless otherwise noted.

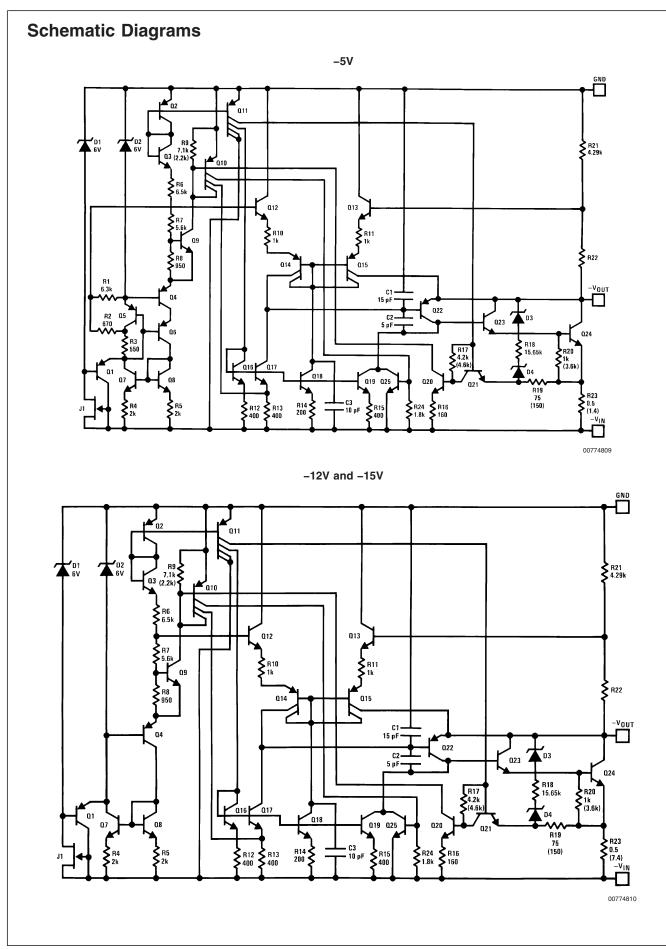
Operating Temperature Range0°C to +70°CMaximum Junction Temperature+125°CStorage Temperature Range-55°C to +150°CLead Temperature(Soldering, 10 sec.)260°C

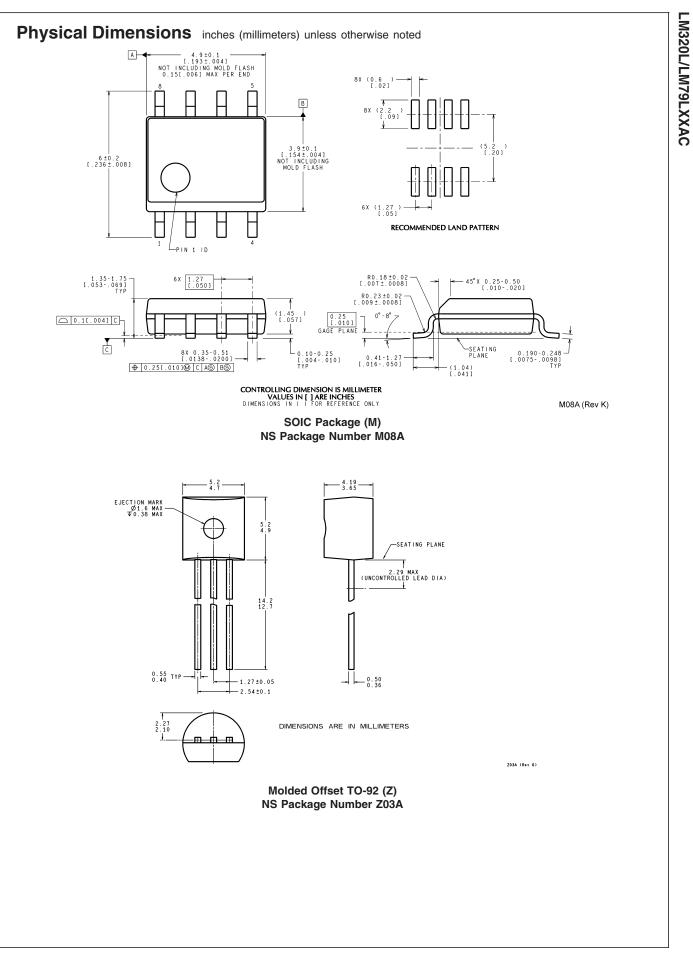
$T_A = 0^{\circ}$	C to +70°C unl	less otherwise noted.										
Output Voltage			–5V			-12V			-15V -20V			Units
Input Voltage (unless otherwise noted)			-10V		–17V							
Symbol	Parameter	Conditions	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	
Vo	Output	$T_{J} = 25^{\circ}C, I_{O} = 100mA$	-5.2	-5	-4.8	-12.5	-12	-11.5	-15.6	-15	-14.4	
	Voltage											
		$1mA \le I_O \le 100mA$	-5.25		-4.75	-12.6		-11.4	-15.75		-14.25	
		$V_{MIN} \le V_{IN} \le V_{MAX}$		$\leq V_{IN} \leq$	-7.5)		$\leq V_{IN} \leq$	–14.8)	(-30			V
		$1mA \le I_O \le 40mA$	-5.25		-4.75				-15.75		-14.25	
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(–20	$\leq V_{IN} \leq$	≤ -7)	(–27	$\leq V_{IN} \leq$		(-30	$\leq V_{IN} \leq$	–17.5)	
ΔV_O	Line	$T_{J} = 25^{\circ}C, I_{O} = 100mA$			60			45			45	mV
	Regulation											
		$V_{MIN} \le V_{IN} \le V_{MAX}$				$(-27 \le V_{IN} \le -14.6)$					V	
		$T_{J} = 25^{\circ}C, I_{O} = 40mA$			60			45			45	mV
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(–20	$\leq V_{IN}$	≤ -7)	(–27	$\leq V_{IN} \leq$	-14.5)	(-30	$\leq V_{IN} \leq$	–17.5)	V
ΔV_{O}	Load	$T_J = 25^{\circ}C$			50			100			125	mV
	Regulation											
		$1\text{mA} \le I_{O} \le 100\text{mA}$										
ΔV _O	Long Term Stability	I _O = 100mA		20			48			60		mV/khrs
l _Q	Quiescent Current	l _O = 100mA		2	6		2	6		2	6	mA
Δl _Q	Quiescent Current	$1\text{mA} \le I_{O} \le 100\text{mA}$			0.3			0.3			0.3	
	Change	1mA ≤ I _O ≤ 40mA			0.1			0.1			0.1	mA
	0	$I_{O} = 100 \text{mA}$			0.25			0.25			0.25	mA
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(-20 :	≤ V _{IN} ≤	-7.5)	(-27	$\leq V_{IN} \leq$	-14.8)	(-30	$\leq V_{IN} \leq$	≤ –18)	V
V _n	Output Noise Voltage	$T_{\rm J} = 25^{\circ} {\rm C}, \ {\rm I}_{\rm O} = 100 {\rm mA}$		40			96			120		μV
	-	f = 10Hz – 10kHz										
	Ripple	T _J = 25°C, I _O = 100mA	50			52			50			dB
	Rejection	f = 120Hz										
	Input Voltage	$T_{J} = 25^{\circ}C, I_{O} = 100mA$			-7.3			-14.6			-17.7	V
	Required to	$I_{O} = 40 \text{mA}$			-7.0			-14.5			-17.5	V
	Maintain Line											

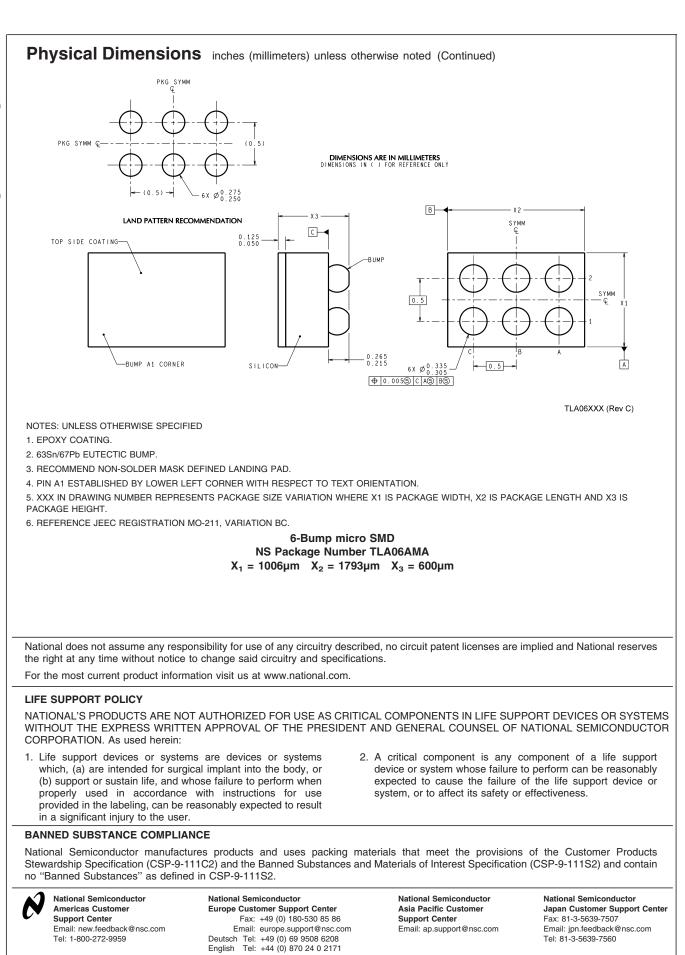

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.


Note 2: Thermal resistance of Z package is 60° C/W θ_{JC} , 232°C/W θ_{JA} at still air, and 88°C/W at 400 ft/min of air. The M package θ_{JA} is 180°C/W in still air. The maximum junction temperature shall not exceed 125°C on electrical parameters.

Note 3: To ensure constant junction temperature, low duty cycle pulse testing is used.




Typical Performance Characteristics Maximum Average Power Dissipation (TO-92) 1 0.125" LEAD LENGTH FROM PC BOARD 0.7 FREE AIR POWER DISSIPATION (W) 0.4 0.4" LEAD LENGTH FROM PC BOARD FREE AIR 0.2 0.1 45 60 75 0 15 30 $\textbf{T}_{\textbf{A}} - \textbf{AMBIENT TEMPERATURE}$ (°C) 00774811 **Short Circuit Output Current** 0.25 V_{OUT} = 0V T_i = 0°C 0.2 - 25 Ti **OUTPUT CURRENT (A)** 0.15 T_i = 125°C 0.1 0.05 ۵ 0 -5 -10 -15 -20 -25 -30 -35 INPUT VOLTAGE (V) 00774813 **Ripple Rejection** 80 $V_{DUT} = -12V$ -5V VOUT RIPPLE REJECTION (dB) 60 40 20 lout = 50 mA T_A = 25°C | | Î LEIO 0 10 100 1k 10k 100k **FREQUENCY** (Hz) 00774815



LM320L/LM79LXXAC

Français Tel: +33 (0) 1 41 91 8790

www.national.com