LM2642

Two-Phase Synchronous Step-Down Switching Controller

General Description

The LM2642 consists of two current mode synchronous buck regulator controllers with a switching frequency of 300 kHz .
The two switching regulator controllers operate 180° out of phase. This feature reduces the input ripple RMS current, thereby significantly reducing the required input capacitance. The two switching regulator outputs can also be paralleled to operate as a dual-phase single output regulator.
The output of each channel can be independently adjusted from 1.3 to $\mathrm{V}_{I N^{\bullet}}$ maximum duty cycle. An internal 5 V rail is also available externally for driving bootstrap circuitry.
Current-mode feedback control assures excellent line and load regulation and a wide loop bandwidth for excellent response to fast load transients. Current is sensed across either the Vds of the top FET or across an external currentsense resistor connected in series with the drain of the top FET. Current limit is independently adjustable for each channel.
The LM2642 features analog soft-start circuitry that is independent of the output load and output capacitance. This makes the soft-start behavior more predictable and controllable than traditional soft-start circuits.
A PGOOD1 pin is provided to monitor the dc output of channel 1. Over-voltage protection is available for both outputs. A UV-Delay pin is also available to allow delayed shut off time for the IC during an output under-voltage event.

Features

- Two synchronous buck regulators
- 180° out of phase operation
- 4.5 V to 30 V input range
- Power good function monitors Ch. 1
- $37 \mu \mathrm{~A}$ Shutdown current
- 0.04% (typical) line and load regulation error
- Current mode control with or without a sense resistor
- Independent enable/soft-start pins allow simple sequential startup configuration.
- Configurable for single output parallel operation. (See Figure 2).
- Adjustable cycle-by-cycle current limit
- Input under-voltage lockout
- Output over-voltage latch protection
- Output under-voltage protection with delay
- Thermal shutdown
- Self discharge of output capacitors when the regulator is OFF
- TSSOP package

Applications

- Embedded computer systems
- High end gaming systems
- Set-top boxes
- WebPAD

Block Diagram

Connection Diagram

Pin Descriptions

KS1 (Pin 1): The positive (+) Kelvin sense for the internal current sense amplifier of Channel 1 . Use a separate trace to connect this pin to the current sense point. It should be connected to VIN as close as possible to the node of the current sense resistor. When no current-sense resistor is used, connect as close as possible to the drain node of the upper MOSFET.
ILIM1 (Pin 2): Current limit threshold setting for Channel 1. It sinks a constant current of $10 \mu \mathrm{~A}$, which is converted to a voltage across a resistor connected from this pin to VIN. The voltage across the resistor is compared with either the VDS of the top MOSFET or the voltage across the external current sense resistor to determine if an over-current condition has occurred in Channel 1.
COMP1 (Pin 3): Compensation pin for Channel 1. This is the output of the internal transconductance amplifier. The compensation network should be connected between this pin and the signal ground, SGND (Pin 8).
FB1 (Pin 4): Feedback input for channel 1. Connect to VOUT through a voltage divider to set the channel 1 output voltage.
PGOOD1 (Pin 5): An open-drain power-good output for Channel 1. It is 'LOW' (low impedance to ground) whenever the output voltage of Channel 1 falls outside of a $+15 \%$ to -9% window. PGOOD1 stays latched in a 'LOW' state during OVP or UVP on either channel. It will recover to a 'HIGH' state (high impedance to ground) after a Channel 1 output under-voltage event (<91\%) when the output returns to within 6% of its nominal value. See Operation Descriptions for details.
UV_DELAY (Pin 6): A capacitor from this pin to ground sets the delay time for UVP. The capacitor is charged from a $5 \mu \mathrm{~A}$ current source. When UV_DELAY charges to 2.3V (typical), the system immediately latches off. Connecting this pin to ground will disable the output under-voltage protection.

VLIN5 (Pin 7): The output of an internal 5V LDO regulator derived from VIN. It supplies the internal bias for the chip and supplies the bootstrap circuitry for gate drive. Bypass this pin to signal ground with a minimum of $4.7 \mu \mathrm{~F}$ capacitor.
SGND (Pin 8): The ground connection for the signal-level circuitry. It should be connected to the ground rail of the system.
ON/SS1 (Pin 9): Channel 1 enable pin. This pin is internally pulled up to one diode drop above VLIN5. Pulling this pin below 1.2V (open-collector type) turns off Channel 1. If both ON/SS1 and ON/SS2 pins are pulled below 1.2 V , the whole chip goes into shut down mode. Adding a capacitor to this pin provides a soft-start feature that minimizes inrush current and output voltage overshoot.
ON/SS2 (Pin 10): Channel 2 enable pin. See the description for Pin 9, ON/SS1. May be connected to ON/SS1 for simultaneous startup or for parallel operation.
FB2 (Pin 11): Feedback input for channel 2. Connect to VOUT through a voltage divider to set the Channel 2 output voltage.
COMP2 (Pin 12): Compensation pin for Channel 2. This is the output of the internal transconductance amplifier. The compensation network should be connected between this pin and the signal ground SGND (Pin 8).
ILIM2 (Pin 13): Current limit threshold setting for Channel 2. See ILIM1 (Pin 2).
KS2 (Pin 14): The positive (+) Kelvin sense for the internal current sense amplifier of Channel 2. See KS1 (Pin 1).
RSNS2 (Pin 15): The negative (-) Kelvin sense for the internal current sense amplifier of Channel 2. Connect this pin to the low side of the current sense resistor that is placed between VIN and the drain of the top MOSFET. When the Rds of the top MOSFET is used for current sensing, connect this pin to the source of the top MOSFET. Always use a separate trace to form a Kelvin connection to this pin.

Pin Descriptions（Continued）

SW2（Pin 16）：Switch－node connection for Channel 2，which is connected to the source of the top MOSFET of Channel 2. It serves as the negative supply rail for the top－side gate driver，HDRV2．
HDRV2（Pin 17）：Top－side gate－drive output for Channel 2. HDRV is a floating drive output that rides on the correspond－ ing switching－node voltage．
CBOOT2（Pin 18）：Bootstrap capacitor connection．It serves as the positive supply rail for the Channel 2 top－side gate drive．Connect this pin to VDD2（Pin 19）through a diode， and connect the low side of the bootstrap capacitor to SW2 （Pin16）．
VDD2（Pin 19）：The supply rail for the Channel 2 low－side gate drive．Connected to VLIN5（Pin 7）through a 4.7Ω resistor and bypassed to power ground with a ceramic ca－ pacitor of at least $1 \mu \mathrm{~F}$ ．Tie this pin to VDD1（Pin 24）．
LDRV2（Pin 20）：Low－side gate－drive output for Channel 2. PGND（Pin 21）：The power ground connection for both channels．Connect to the ground rail of the system．

VIN（Pin 22）：The power input pin for the chip．Connect to the positive（＋）input rail of the system．This pin must be connected to the same voltage rail as the top FET drain（or the current sense resistor when used）．
LDRV1（Pin 23）：Low－side gate－drive output for Channel 1. VDD1（Pin 24）：The supply rail for Channel 1 low－side gate drive．Tie this pin to VDD2（Pin 19）．
CBOOT1（Pin 25）：：Bootstrap capacitor connection．It serves as the positive supply rail for Channel 1 top－side gate drive．See CBOOT2（Pin 18）．
HDRV1（Pin 26）：Top－side gate－drive output for Channel 1. See HDRV2（Pin 17）．
SW1（Pin 27）：Switch－node connection for Channel 1．See SW2（Pin16）．
RSNS1（Pin 28）：The negative（－）Kelvin sense for the internal current sense amplifier of Channel 1．See RSNS2 （Pin 15）．

Absolute Maximum Ratings (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Voltages from the indicated pins to SGND/PGND:
VIN, ILIM1, ILIM2, KS1, KS2
SW1, SW2, RSNS1, RSNS2

FB1, FB2, VDD1, VDD2
PGOOD, COMP1, COMP2, UV
Delay
ON/SS1, ON/SS2 (Note 2)

CBOOT1 to SW1, CBOOT2 to SW2
LDRV1, LDRV2

HDRV1 to SW1, HDRV2 to SW2
HDRV1 to CBOOT1, HDRV2 to
CBOOT2
Electrical Characteristics
Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$, GND $=\mathrm{PGND}=0 \mathrm{~V}$, VLIN5 $=$ VDD1 $=$ VDD2. Limits appearing in boldface type apply over the specified operating junction temperature range, $\left(-20^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, if not otherwise specified). Specifications appearing in plain type are measured using low duty cycle pulse testing with $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6), (Note 7). Min/Max limits are guaranteed by design, test, or statistical analysis.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
System						
$\Delta \mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {OUT }}$	Load Regulation	$\mathrm{VIN}=15 \mathrm{~V}, \mathrm{~V}_{\text {compx }}=0.5 \mathrm{~V}$ to 1.5 V		0.04		\%
$\Delta \mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {OUT }}$	Line Regulation	$5.5 \mathrm{~V} \leq \mathrm{VIN} \leq 30 \mathrm{~V}, \mathrm{~V}_{\text {compx }}=1.25 \mathrm{~V}$		0.04		\%
$\mathrm{V}_{\text {FB1_FI2 }}$	Feedback Voltage	$5.5 \mathrm{~V} \leq \mathrm{VIN} \leq 30 \mathrm{~V}$	1.215	1.238	1.260	V
		$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	1.217		1.259	
		$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	1.212		1.261	
$\mathrm{I}_{\mathrm{VIN}}$	Input Supply Current	$\begin{aligned} & \mathrm{V}_{\text {ON_Ssx }}>2 \mathrm{~V} \\ & 5.5 \mathrm{~V} \leq \mathrm{VIN} \leq 30 \mathrm{~V} \end{aligned}$		1.0	2.0	mA
		Shutdown (Note 8) $\mathrm{V}_{\mathrm{ON} _s \mathrm{~s} 1}=\mathrm{V}_{\mathrm{ON} _\mathrm{ss} 2}=0 \mathrm{~V}$		37	110	$\mu \mathrm{A}$
VLIN5	VLIN5 Output Voltage	$\begin{aligned} & \text { IVLIN5 }=0 \text { to } 25 \mathrm{~mA}, \\ & 5.5 \mathrm{~V} \leq \mathrm{VIN} \leq 30 \mathrm{~V} \end{aligned}$	4.70	5	5.30	V
		$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	4.68		5.30	
$\mathrm{V}_{\text {CLos }}$	Current Limit Comparator Offset (VILIMX -VRSNSX)			± 2	± 7.0	mV
$\mathrm{I}_{\text {CL }}$	Current Limit Sink Current		9	10	11	$\mu \mathrm{A}$
		$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	8.67		11	
$\begin{aligned} & \hline \mathrm{I}_{\mathrm{ss} _\mathrm{sc} 1}, \\ & \mathrm{I}_{\mathrm{ss} 1} \mathrm{SC} 2 \end{aligned}$	Soft-Start Source Current	$\mathrm{V}_{\text {ON_ss1 }}=\mathrm{V}_{\text {ON_ss2 }}=1.5 \mathrm{~V}$ (on)	0.5	2	5.0	$\mu \mathrm{A}$
$\begin{aligned} & \hline \mathrm{I}_{\text {ss_SK1 }}, \\ & \mathrm{I}_{\text {ss_SK2 }} \end{aligned}$	Soft-Start Sink Current	$\mathrm{V}_{\text {ON_ss1 }}=\mathrm{V}_{\text {ON_ss2 }}=2 \mathrm{~V}$	2	5.2	10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{ON} \text { _SS1 }}$, $\mathrm{V}_{\mathrm{ON} \text { ss2 }}$	Soft-Start On Threshold		0.7	1.12	1.4	V
$\mathrm{V}_{\text {SSTO }}$	Soft-Start Timeout Threshold	(Note 9)		3.3		V
$\mathrm{I}_{\text {sc_uvdelay }}$	UV_DELAY Source Current	UV-DELAY $=2 \mathrm{~V}$	2	5	9	$\mu \mathrm{A}$

Electrical Characteristics (Continued)
Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$, GND $=\mathrm{PGND}=0 \mathrm{~V}$, VLIN5 = VDD1 = VDD2. Limits appearing in boldface type apply over the specified operating junction temperature range, $\left(-20^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, if not otherwise specified). Specifications appearing in plain type are measured using low duty cycle pulse testing with $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6), (Note 7). Min/Max limits are guaranteed by design, test, or statistical analysis.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{I}_{\text {sk_uvdelay }}$	UV_DELAY Sink Current	UV-DELAY $=0.4 \mathrm{~V}$	0.2	0.48	1.2	mA
$\mathrm{V}_{\text {UVDelay }}$	UV_DELAY Threshold Voltage			2.3		V
$\mathrm{V}_{\text {UVP }}$	FB1, FB2, Under Voltage Protection Latch Threshold	As a percentage of nominal output voltage (falling edge)	75	80	86	\%
	Hysteresis			4		\%
$\mathrm{V}_{\text {OVP }}$	$\mathrm{V}_{\text {Out }}$ Overvoltage Shutdown Latch Threshold	As a percentage measured at $\mathrm{V}_{\mathrm{FB} 1}$, $\mathrm{V}_{\mathrm{FB} 2}$	107	113	122	\%
$\mathrm{V}_{\text {pwrbad }}$	Regulator Window Detector Thresholds (PGOOD1 from High to Low)	As a percentage of output voltage	86.5	90.3	94.5	\%
$\mathrm{V}_{\text {pwrgd }}$	Regulator Window Detector Thresholds (PGOOD1 from Low to High)		91.5	94	97.0	\%
$\mathrm{S}_{\text {wx_R }}$	SW1, SW2 ON-Resistance	$\mathrm{V}_{\mathrm{SW} 1}=\mathrm{V}_{\text {SW } 2}=2 \mathrm{~V}$	420	480	535	Ω
Gate Drive						
$\mathrm{I}_{\text {Cboot }}$	CBOOTx Leakage Current	$\mathrm{V}_{\text {СВООТ1 }}=\mathrm{V}_{\text {СВООТ } 2}=7 \mathrm{~V}$		10		nA
$\mathrm{I}_{\text {SC_DRV }}$	HDRVx and LDRVx Source Current	$\begin{aligned} & \mathrm{V}_{\text {СВоот1 }}=\mathrm{V}_{\text {СВОот2 }}=5 \mathrm{~V}, \mathrm{VSW}=0 \mathrm{~V}, \\ & \mathrm{HDRV}=L D R V \mathrm{x}=2.5 \mathrm{~V} \end{aligned}$		0.5		A
$\mathrm{I}_{\text {sk_HDRV }}$	HDRVx Sink Current	$\begin{aligned} & \mathrm{V}_{\text {Своотх }}=\mathrm{VDDx}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SW} x}=0 \mathrm{~V}, \\ & \mathrm{HDRVX}=2.5 \mathrm{~V} \end{aligned}$		0.8		A
$\mathrm{I}_{\text {sk_LDRV }}$	LDRVx Sink Current	$\begin{aligned} & \mathrm{V}_{\text {Своот }}=\mathrm{VDDx}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SW} \times}=0 \mathrm{~V}, \\ & \text { LDRVX }=2.5 \mathrm{~V} \end{aligned}$		1.1		A
$\mathrm{R}_{\text {HDRV }}$	HDRV1 \& 2 Source On-Resistance	$\begin{aligned} & \mathrm{V}_{\text {СBOOT1 }}=\mathrm{V}_{\text {СBOOT2 }}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SW} 1}=\mathrm{V}_{\mathrm{SW} 2}=0 \mathrm{~V} \end{aligned}$		3.1		Ω
	HDRV1 \& 2 Sink On-Resistance			1.5		Ω
$\mathrm{R}_{\text {LDRV }}$	LDRV1 \& 2 Source On-Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{CBOOT} 1}=\mathrm{V}_{\mathrm{CBOOT} 2}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SW} 1}=\mathrm{V}_{\mathrm{SW} 2}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V} \end{aligned}$		3.1		Ω
	LDRV1 \& 2 Sink On-Resistance			1.1		Ω
Oscillator						
$\mathrm{F}_{\text {osc }}$	Oscillator Frequency		260	300	340	kHz
		$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	257.5		340	
Don_max	Maximum On-Duty Cycle	$\mathrm{V}_{\mathrm{FB} 1}=\mathrm{V}_{\mathrm{FB} 2}=1 \mathrm{~V}$, Measured at pins HDRV1 and HDRV2	96	98		\%
		$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	95.64			
$\mathrm{T}_{\text {on_min }}$	Minimum On-Time			166		ns
SS ${ }_{\text {OT_delta }}$	HDRV1 and HDRV2 Delta On Time	ON/SS1 = ON/SS2 = 2V		20	150	ns

Error Amplifier

Electrical Characteristics (Continued)
Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$, GND $=\mathrm{PGND}=0 \mathrm{~V}, \mathrm{VLIN5}=\mathrm{VDD} 1=$ VDD2. Limits appearing in boldface type apply over the specified operating junction temperature range, $\left(-20^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, if not otherwise specified). Specifications appearing in plain type are measured using low duty cycle pulse testing with $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6), (Note 7). Min/Max limits are guaranteed by design, test, or statistical analysis.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{I}_{\text {FB1 }}, \mathrm{I}_{\text {FB2 }}$	Feedback Input Bias Current	$\mathrm{V}_{\text {FB1_FIX }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {FB2_FIX }}=1.5 \mathrm{~V}$		65	± 200	nA
$\mathrm{I}_{\text {comp1_sc }}$, $\mathrm{I}_{\text {comp2_sc }}$	COMP Output Source Current	$\begin{aligned} & \mathrm{V}_{\text {FB1_FIX }}=\mathrm{V}_{\text {FB2_FIX }}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COMP} 1}=\mathrm{V}_{\mathrm{COMP2}}=1 \mathrm{~V} \\ & \hline \end{aligned}$	18	113		$\mu \mathrm{A}$
		$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	32			
		$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	6			
$\mathrm{I}_{\text {comp1_SK }}$, I comp2_Sk	COMP Output Sink Current	$\begin{aligned} & \mathrm{V}_{\text {FB1_FIX }}=\mathrm{V}_{\text {FB2_FIX }}=1.5 \mathrm{~V} \text { and } \\ & \mathrm{V}_{\mathrm{COMP} 1}=\mathrm{V}_{\mathrm{COMP2}}=0.5 \mathrm{~V} \end{aligned}$	18	108		$\mu \mathrm{A}$
		$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	32			
		$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	6			
gm1, gm2	Transconductance			650		$\mu \mathrm{mho}$
$\mathrm{Gl}_{\mathrm{SNS} 1}$, $\mathrm{Gl}_{\text {SNS2 }}$	Current Sense Amplifier (1\&2) Gain	$\mathrm{V}_{\text {COMPX }}=1.25 \mathrm{~V}$	4.2	5.2	7.5	
Voltage References and Linear Voltage Regulators						
UVLO	VLIN5 Under-voltage Lockout Threshold Rising	ON/SS1, ON/SS2 transition from low to high	3.6	4.0	4.4	V
Logic Outputs						
$\mathrm{l}_{\text {OL }}$	PGOOD Low Sink Current	$\mathrm{V}_{\text {PGOOD }}=0.4 \mathrm{~V}$	0.60	0.95		mA
${ }^{\text {OH }}$	PGOOD High Leakage Current	$\mathrm{V}_{\text {PGOOD }}=5 \mathrm{~V}$		5	200	nA

Note 1: Absolute maximum ratings indicate limits beyond which damage to the device may occur. Operating Range indicates conditions for which the device is intended to be functional, but does not guarantee specfic performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: ON/SS1 and ON/SS2 are internally pulled up to one diode drop above VLIN5. Do not apply an external pull-up voltage to these pins. It may cause damage to the IC.
Note 3: The maximum allowable power dissipation is calculated by using $P_{D M A X}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$, where $T_{J M A X}$ is the maximum junction temperature, T_{A} is the ambient temperature and θ_{JA} is the junction-to-ambient thermal resistance of the specified package. The 1.1 W rating results from using $125^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$, and $90.6^{\circ} \mathrm{C} / \mathrm{W}$ for $\mathrm{T}_{\mathrm{JMAX}}, \mathrm{T}_{\mathrm{A}}$, and θ_{JA} respectively. A θ_{JA} of $90.6^{\circ} \mathrm{C} / \mathrm{W}$ represents the worst-case condition of no heat sinking of the 28 -pin TSSOP. A thermal shutdown will occur if the temperature exceeds the maximum junction temperature of the device.
Note 4: For detailed information on soldering plastic small-outline packages, refer to the Packaging Databook available from National Semiconductor Corporation.
Note 5: For testing purposes, ESD was applied using the human-body model, a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: A typical is the center of characterization data measured with low duty cycle pulse tsting at $T_{A}=25^{\circ} \mathrm{C}$. Typicals are not guaranteed.
Note 7: All limits are guaranteed. All electrical characteristics having room-temperature limits are tested during production with $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. All hot and cold limits are guaranteed by correlating the electrical characteristics to process and temperature variations and applying statistical process control.
Note 8: Both switching controllers are off. The linear regulator VLIN5 remains on.
Note 9: When SS1 and SS2 pins are charged above this voltage and either of the output voltages at Vout1 or Vout2 is still below the regulation limit, the under voltage protection feature is initialized.

FIGURE 1. Typical 2 Channel Application Circuit

FIGURE 2. Typical Single Channel Application Circuit
Block Diagram

Typical Performance Characteristics

Softstart Waveforms
$\left(\mathrm{I}_{\text {LOAD1 }}=\mathrm{I}_{\text {LOAD2 }}=0 \mathrm{~A}\right)$

$2 \mathrm{~ms} / \mathrm{div}$
20046223

UVP Startup Waveforms

$10 \mathrm{~ms} / \mathrm{div}$
20046268

Power On and PGOOD1 Waveforms $\left(\mathrm{I}_{\text {LOAD1 }}=\mathrm{I}_{\text {LOAD2 }}=0 \mathrm{~A}\right)$

$2 \mathrm{~ms} / \mathrm{div}$
20046221
Over-Current and UVP Shutdown
$\left(I_{\text {LOAD2 }}=0 A\right)$

$10 \mathrm{~ms} / \mathrm{div}$
20046220
Ch. 1 Load Transient Response $5 V_{\text {OUT }}, 12 V_{\text {IN }}$

Ch. 2 Load Transient Response
$3.3 \mathrm{~V}_{\text {out }}, 12 \mathrm{~V}_{\text {IN }}$

$20 \mu \mathrm{~s} / \mathrm{DIV}$

Input Supply Current vs Temperature (Shutdown Mode $\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$)

20046224

Load Transient Response Parallel Operation $1.8 \mathrm{~V}_{\text {OUT }}, \mathbf{1 2 V}_{\text {IN }}$

$20 \mu \mathrm{~s} /$ DIV
20046228
Input Supply Current vs $\mathrm{V}_{\text {IN }}$ Shutdown Mode ($\mathbf{5 5}^{\circ} \mathrm{C}$)

20046225

Error Amplifier Gain vs Temperature

20046269
Efficiency vs Load Current
Ch. 2 = 2.5V, Ch. $1=$ Off

Operating Frequency vs Temperature

Efficiency vs Load Current Ch. $1=5 \mathrm{~V}$, Ch. 2 = Off

20046270
Efficiency vs Load Current
Ch. 2 = 3.3V, Ch. 1 = Off

Operation Descriptions

SOFT START

The ON/SS1 pin has dual functionality as both channel enable and soft start control. The soft start block diagram is shown in Figure 3.
The LM2642 will remain in shutdown mode while both soft start pins are grounded.In a normal application (with a soft start capacitor connected between the ON/SS1 pin and SGND) soft start functions as follows. As the input voltage rises (note: Iss starts to flow when $\mathrm{VIN} \geq 2.2 \mathrm{~V}$), the internal 5 V LDO starts up, and an internal $2 \mu \mathrm{~A}$ current charges the soft start capacitor. During soft start phase, the error amplifier output voltage at the COMPx pin is clamped at 0.55 V and the duty cycle is controlled only by the soft start voltage. As the SSx pin voltage ramps up, the duty cycle increases proportional to the soft start ramp, causing the output voltage to ramp up. The rate at which the duty cycle increases depends on the capacitance of the soft start capacitor. The higher the capacitance, the slower the output voltage ramps up. When the corresponding output voltage exceeds 98% (typical) of the set target voltage, the regulator switches from soft start to normal operating mode. At this time, the 0.55 V clamp at the output of the error amplifier releases and peak current feedback control takes over. Once in peak current feedback control mode, the output of the error amplifier will travel within the 0.5 V and 2 V window to achieve PWM control. See Figure 4.
During soft start, over-voltage protection and current limit remain in effect. The under voltage protection feature is activated when the ON/SS pin exceeds the timeout threshold (3.3V typical). If the ON/SSx capacitor is too small, the duty cycle may increase too rapidly, causing the device to latch off due to output voltage overshoot above the OVP threshold. This becomes more likely in applications requiring low output voltage, high input voltage and light load. A capacitance of 10 nF is recommended at each soft start pin to provide a smooth monotonic output ramp.

FIGURE 3. Soft Start and ON/OFF

FIGURE 4. VoItage Clamp at COMPx Pin

SEQUENTIAL STARTUP

Sequential startup can be implemented by simply connecting PGOOD1 to SS/ON2. Once channel 1 has reached 94% of nominal, PGOOD1 will go high, thus enabling SS/ON2. In this mode of operation, channel 2 will be controlled by the state of channel 1. If channel 1 falls out of the PGOOD1 window, channel 2 will be switched off immediately.

FIGURE 5. PGOOD, OVP and UVP

OVER VOLTAGE PROTECTION (OVP)

If the output voltage on either channel rises above 113% of nominal, over voltage protection activates. Both channels will latch off, and the PGOOD1 pin will go low. When the OVP latch is set, the high side FET driver, HDRVx, is immediately turned off and the low side FET driver, LDRVx, is turned on to discharge the output capacitor through the inductor. To reset the OVP latch, either the input voltage must be cycled, or both channels must be switched off.

UNDER VOLTAGE PROTECTION (UVP) AND UV DELAY

If the output voltage on either channel falls below 80% of nominal, under voltage protection activates. As shown in Figure 5, an under-voltage event will shut off the UV_DELAY MOSFET, which will allow the UV_DELAY capacitor to charge at 5uA (typical). At the UV_DELAY threshold (2.3 V

Operation Descriptions (Continued)

typical) both channels will latch off. Also, UV_DELAY will be disabled and the UV_DELAY pin will return to OV. During UVP, both the high side and low side FET drivers will be turned off. If no capacitor is connected to the UV_DELAY pin, the UVP latch will be activated immediately. To reset the UVP latch, either the input voltage must be cycled, or both ON/SS pins must be pulled low. The UVP function can be disabled by connecting the UV_DELAY pin to ground.

POWER GOOD

A power good pin (PGOOD1) is available to monitor the output status of Channel 1. As shown in Figure 5, the pin connects to the output of an open drain MOSFET, which will remain open while Channel 1 is within operating range. PGOOD1 will go low (low impedance to ground) under the following four conditions:

1. Channel 1 is turned off
2. Channel 1 output falls below 90.3% of nominal (UVPG1)
3. OVP on either channel
4. UVP on either channel

When on, the PGOOD1 pin is capable of sinking 0.95 mA (typical). If an OVP or UVP condition occurs, both channels will latch off, and the PGOOD1 pin will be latched low. During a UVPG1 condition, however, PGOOD1 will not latch off. The pin will stay low until Channel 1 output voltage returns to 94\% (typical) of nominal. See Vpwrgd in the Electrical Characteristics table.

OUTPUT CAPACITOR DISCHARGE

Each channel has an embedded 480Ω MOSFET with the drain connected to the SWx pin. This MOSFET will discharge the output capacitor of its channel if its channel is off, or the IC enters a fault state caused by one of the following conditions:

1. UVP
2. UVLO
3. Thermal shut-down (TSD)

If an output over voltage event occurs, the HDRVx will be turned off and LDRVx will be turned on immediately to discharge the output capacitor of both channels through the inductor.

SWITCHING NOISE REDUCTION

Power MOSFETs are very fast switching devices. In synchronous rectifier converters, the rapid increase of drain current in the top FET coupled with parasitic inductance will generate unwanted Ldi/dt noise spikes at the source node of the FET (SWx node) and also at the VIN node. The magnitude of this noise will increase as the output current increases. This parasitic spike noise may turn into electromagnetic interference (EMI), and can also cause problems in device performance. Therefore, it must be suppressed using one of the following methods.
It is strongly recommended to add R-C filters to the current sense amplifier inputs as shown in Figure 7. This will reduce the susceptibility to switching noise, especially during heavy load transients and short on time conditions. The filter components should be connected as close as possible to the IC.
As shown in Figure 6, adding a resistor in series with the SWx pin will slow down the gate drive (HDRVx), thus slowing the rise and fall time of the top FET, yielding a longer drain current transition time.

Usually a 3.3Ω to 4.7Ω resistor is sufficient to suppress the noise. Top FET switching losses will increase with higher resistance values.
Small resistors (1-5 ohms) can also be placed in series with the HDRVx pin or the CBOOTx pin to effectively reduce switch node ringing. A CBOOT resistor will slow the rise time of the FET, whereas a resistor at HDRV will reduce both rise and fall times.

FIGURE 6. SW Series Resistor

CURRENT SENSING AND LIMITING

As shown in Figure 7, the KSx and RSNSx pins are the inputs of the current sense amplifier. Current sensing is accomplished either by sensing the Vds of the top FET or by sensing the voltage across a current sense resistor connected from VIN to the drain of the top FET. The advantage of sensing current across the top FET are reduced parts count, cost and power loss, whereas using a current sense resistor improves the current sense accuracy. Keeping the differential current-sense voltage below 200 mV ensures linear operation of the current sense amplifier. Therefore, the Rdson of the top FET or the current sense resistor must be small enough so that the current sense voltage does not exceed 200 mV when the top FET is on. There is a leading edge blanking circuit that forces the top FET on for at least 166 ns . Beyond this minimum on time, the output of the PWM comparator is used to turn off the top FET. Additionally, a minimum voltage of at least 50 mV across Rsns is recommended to ensure a high SNR at the current sense amplifier.
Assuming a maximum of 200 mV across Rsns, the current sense resistor can be calculated as follows:

$$
R_{\text {sns } \max }=\frac{200 \mathrm{mV}}{I_{\max }+\frac{1}{2} I_{\text {rip }}}
$$

where Imax is the maximum expected load current, including overload multiplier (ie:120\%), and Irip is the inductor ripple current (See equation 7). The above equation gives the maximum allowable value for Rsns. Switching losses will increase with Rsns, thus lowering efficiency.
The peak current limit is set by an external resistor connected between the ILIMx pin and the KSx pin. An internal $10 \mu \mathrm{~A}$ current sink on the ILIMx pin produces a voltage across the resistor to set the current limit threshold which is compared to the current sense voltage. A 10 nF capacitor across this resistor is required to filter unwanted noise that could improperly trip the current limit comparator.

Operation Descriptions
 (Continued)

FIGURE 7. Current Sense and Current Limit
Current limit is activated when the inductor current is high enough to cause the voltage at the RSNSx pin to be lower than that of the ILIMx pin. This toggles the comparator, thus turning off the top FET immediately. The comparator is disabled either when the top FET is turned off or during the leading edge blanking time. The equation for current limit resistor, $\mathrm{R}_{\text {lim }}$, is as follows:

$$
R_{\text {lim }}=\frac{\left(I_{\text {lim }}+\frac{1}{2} I_{\text {rip }}\right) R_{\text {sns }}}{10 \mu \mathrm{~A}}
$$

Where llim is the load current at which the current limit comparator will be tripped.
When sensing current across the top FET, replace Rsns with the Rdson of the FET. This calculated Rlim value guarantees that the minimum current limit will not be less than Imax. It is recommended that a 1% tolerance resistor be used.
When sensing across the top FET, Rdson will show more variation than a current sense resistor, largely due to temperature. Rdson will increase proportional to temperature according to a specific temperature coefficient. Refer to the manufacturer's datasheet to determine the range of Rdson values over operating temperature or see the Component Selection section (equation 12) for a calculation of maximum Rdson. This will prevent Rdson variations from prematurely setting off the current limit comparator as the operating temperature increases.
To ensure accurate current sensing, special attention in board layout is required. The KSx and RSNSx pins require separate traces to form a Kelvin connection to the corresponding current sense nodes.

INPUT UNDER VOLTAGE LOCKOUT (UVLO)

The input under-voltage lock out threshold, which is sensed via the VLIN5 internal LDO output, is 4.0 V (typical). Below this threshold, both HDRVx and LDRVx will be turned off and the internal 480Ω MOSFETs will be turned on to discharge the output capacitors through the SWx pins. During UVLO, the ON/SS pins will sink 5 mA to discharge the soft start capacitors and turn off both channels. As the input voltage increases again above 4.0V, UVLO will be de-activated, and the device will restart again from soft start phase. If the
voltage at VLIN5 remains below 4.5V, but above the 4.0 V UVLO threshold, the device cannot be guaranteed to operate within specification.
If the input voltage is between 4.0 V and 5.2 V , the VLIN5 pin will not regulate, but will follow approximately 200 mV below the input voltage.

DUAL-PHASE PARALLEL OPERATION

In applications with high output current demand, the two switching channels can be configured to operate as a two180° out of phase converter to provide a single output voltage with current sharing between the two switching channels. This approach greatly reduces the stress and heat on the output stage components while lowering input ripple current. The sum of inductor ripple current is also reduced which results in lowering output ripple voltage. Figure 2 shows an example of a typical two-phase circuit. Because precision current sense is the primary design criteria to ensure accurate current sharing between the two channels, both channels must use external sense resistors for current sensing. To minimize the error between the error amplifiers of the two channels, tie the feedback pins FB1 and FB2 together and connect to a single voltage divider for output voltage sensing. Also, tie the COMP1 and COMP2 together and connect to the compensation network. ON/SS1 and ON/SS2 must be tied together to enable and disable both channels simultaneously.

Component Selection

OUTPUT VOLTAGE SETTING

The output voltage for each channel is set by the ratio of a voltage divider as shown in Figure 8. The resistor values can be determined by the following equation:

$$
\begin{equation*}
R_{1}=\frac{R_{2}}{\left(\frac{V_{\mathrm{nom}}}{V_{\mathrm{fb}}}-1\right)} \tag{1}
\end{equation*}
$$

Where $\mathrm{Vfb}=1.238 \mathrm{~V}$. Although increasing the value of R 1 and R2 will increase efficiency, this will also decrease accuracy. Therefore, a maximum value is recommended for R2 in order to keep the output within . 3% of Vnom. This maximum R2 value should be calculated first with the following equation:

$$
\begin{equation*}
\mathrm{R}_{2 \max }=\frac{.3 \% \cdot \mathrm{~V}_{\mathrm{nom}}}{200 \mathrm{nA}} \tag{2}
\end{equation*}
$$

Where 200 nA is the maximum current drawn by FBx pin.

FIGURE 8. Output Voltage Setting
Example: Vnom=5V, Vfb=1.238V, Ifbmax=200nA.

Component Selection (Continued)

$$
\begin{equation*}
R_{2 \max }=\frac{.003 \cdot 5 \mathrm{~V}}{200 \mathrm{nA}}=75 \mathrm{k} \Omega \tag{3}
\end{equation*}
$$

Choose 60K

$$
\begin{equation*}
R_{1}=\frac{60 \mathrm{k}}{\left(\frac{5 \mathrm{~V}}{1.238 \mathrm{~V}}-1\right)}=19.75 \mathrm{k} \Omega \cong 20 \mathrm{k} \Omega \tag{4}
\end{equation*}
$$

The output voltage is limited by the maximum duty cycle as well as the minimum on time. Figure 9 shows the limits for input and output voltages. The recommended maximum output voltage is approximately 1 V less than the nominal input voltage. At 30 V input, the minimum output is approximately 2.3 V and the maximum is approximately 27 V .

For input voltages below 5.5V, VLIN5 must be connected to Vin through a small resistor (approximately 4.7 ohm). This will ensure that VLIN5 does not fall below the UVLO threshold.

FIGURE 9. Available Output Voltage Range

Output Capacitor Selection

In applications that exhibit large and fast load current swings, the slew rate of such a load current transient may be beyond the response speed of the regulator. Therefore, to meet voltage transient requirements during worst-case load transients, special consideration should be given to output capacitor selection. The total combined ESR of the output capacitors must be lower than a certain value, while the total capacitance must be greater than a certain value. Also, in applications where the specification of output voltage regulation is tight and ripple voltage must be low, starting from the required output voltage ripple will often result in fewer design iterations.

ALLOWED TRANSIENT VOLTAGE EXCURSION

The allowed output voltage excursion during a load transient ($\Delta \mathrm{Vc} _\mathrm{s}$) is:

$$
\Delta V_{c_{-} s}=(\delta \%-\varepsilon \%) \cdot V_{\text {nom }}-\frac{1}{2} V_{\text {rip }}
$$

Where $\pm \delta \%$ is the output voltage regulation window and $\pm \epsilon \%$ is the output voltage initial accuracy.
Example: Vnom $=5 \mathrm{~V}, \delta \%=7 \%, \epsilon \%=3.4 \%$, Vrip $=40 \mathrm{mV}$ peak to peak.

$$
\begin{aligned}
& \Delta V_{c_{-} s}=(7 \%-3.4 \%) \times 5 \mathrm{~V}-\frac{40 \mathrm{mV}}{2} \\
& =160 \mathrm{mV}
\end{aligned}
$$

Since the ripple voltage is included in the calculation of $\Delta \mathrm{Vc}$ _s, the inductor ripple current should not be included in the worst-case load current excursion. That is, the worstcase load current excursion should be simply maximum load current change specification, $\Delta \mathrm{lc}$ _s.

MAXIMUM ESR CALCULATION

Unless the rise and fall times of a load transient are slower than the response speed of the control loop, if the total combined ESR (Re) is too high, the load transient requirement will not be met, no matter how large the capacitance. The maximum allowed total combined ESR is:

$$
\mathrm{R}_{\mathrm{e}_{-} \max }=\frac{\Delta \mathrm{V}_{\mathrm{c}_{-} \mathrm{s}}}{\Delta \mathrm{I}_{\mathrm{c}_{-} \mathrm{s}}}
$$

Example: $\Delta \mathrm{Vc} _$s $=160 \mathrm{mV}$, $\Delta \mathrm{lc} _\mathrm{s}=3 \mathrm{~A}$. Then Re_max $=$ $53.3 \mathrm{~m} \Omega$.
Maximum ESR criterion can be used when the associated capacitance is high enough, otherwise more capacitors than the number determined by this criterion should be used in parallel.

MINIMUM CAPACITANCE CALCULATION

In a switch mode power supply, the minimum output capacitance is typically dictated by the load transient requirement. If there is not enough capacitance, the output voltage excursion will exceed the maximum allowed value even if the maximum ESR requirement is met. The worst-case load transient is an unloading transient that happens when the input voltage is the highest and when the present switching cycle has just finished. The corresponding minimum capacitance is calculated as follows:

$$
C_{\min }=\frac{L \cdot\left[\Delta \mathrm{~V}_{\mathrm{c}_{-} \mathrm{s}}-\sqrt{\left(\Delta \mathrm{V}_{\mathrm{c}_{-} \mathrm{s}}\right)^{2}-\left(\Delta \mathrm{I}_{\mathrm{c}_{-} \mathrm{s}} \cdot \mathrm{R}_{\mathrm{e}}\right)^{2}}\right]}{\mathrm{V}_{\mathrm{nom}} \cdot \mathrm{R}_{\mathrm{e}}^{2}}
$$

Notice it is already assumed the total ESR, Re, is no greater than Re_max, otherwise the term under the square root will be a negative value. Also, it is assumed that L has already been selected, therefore the minimum L value should be calculated before Cmin and after Re (see Inductor Selection below). Example: $\mathrm{Re}=20 \mathrm{~m} \Omega$, $\mathrm{Vnom}=5 \mathrm{~V}, \Delta \mathrm{Vc} _\mathrm{s}=160 \mathrm{mV}$, $\Delta \mathrm{lc} _\mathrm{s}=3 \mathrm{~A}, \mathrm{~L}=8 \mu \mathrm{H}$

$$
\begin{aligned}
& \mathrm{C}_{\min }=\frac{8 \mu \mathrm{H} \cdot\left[160 \mathrm{mV}-\sqrt{(160 \mathrm{mV})^{2}-(3 \mathrm{~A} \times 20 \mathrm{~m} \Omega)^{2}}\right]}{5 \times(20 \mathrm{~m} \Omega)^{2}} \\
& =47 \mu \mathrm{~F} .
\end{aligned}
$$

Generally speaking, Cmin decreases with decreasing Re, $\Delta \mathrm{lc}$ _s, and L , but with increasing Vnom and $\Delta \mathrm{Vc}$ _s.

Inductor Selection

The size of the output inductor can be determined from the desired output ripple voltage，Vrip，and the impedance of the output capacitors at the switching frequency．The equation to determine the minimum inductance value is as follows：

$$
L_{\text {min }}=\frac{V_{\text {in }}-V_{\text {nom }}}{f \cdot V_{\text {in }}} \cdot \frac{V_{\text {nom }} \cdot R_{e}}{V_{\text {rip }}}
$$

In the above equation，$R e$ is used in place of the impedance of the output capacitors．This is because in most cases，the impedance of the output capacitors at the switching fre－ quency is very close to Re．In the case of ceramic capaci－ tors，replace Re with the true impedance．
Example：Vin（max）$=30 \mathrm{~V}$ ，Vnom $=5.0 \mathrm{~V}$ ，Vrip $=40 \mathrm{mV}$ ，Re $=20 \mathrm{~m} \Omega, \mathrm{f}=300 \mathrm{kHz}$

$$
\begin{aligned}
& \mathrm{L}_{\min }=\frac{30 \mathrm{~V}-5.0 \mathrm{~V}}{300 \mathrm{kHz} \cdot 30 \mathrm{~V}} \cdot \frac{5.0 \mathrm{~V} \cdot 20 \mathrm{~m} \Omega}{40 \mathrm{mV}} \\
& \mathrm{~L}_{\min }=7 \mu \mathrm{H}
\end{aligned}
$$

$\operatorname{Lmin}=7 \mu \mathrm{H}$
The actual selection process usually involves several itera－ tions of all of the above steps，from ripple voltage selection， to capacitor selection，to inductance calculations．Both the highest and the lowest input and output voltages and load transient requirements should be considered．If an induc－ tance value larger than Lmin is selected，make sure that the Cmin requirement is not violated．
Priority should be given to parameters that are not flexible or more costly．For example，if there are very few types of capacitors to choose from，it may be a good idea to adjust the inductance value so that a requirement of 3.2 capacitors can be reduced to 3 capacitors．
Since inductor ripple current is often the criterion for select－ ing an output inductor，it is a good idea to double－check this value．The equation is：

$$
I_{\text {rip }}=\frac{\left(V_{i n}-V_{n o m}\right)}{f \cdot L} \cdot D
$$

Where D is the duty cycle，defined by $\mathrm{V}_{\text {nom }} / \mathrm{V}_{\text {in }}$ ．
Also important is the ripple content，which is defined by Irip ／Inom．Generally speaking，a ripple content of less than 50\％ is ok．Larger ripple content will cause too much loss in the inductor．
Example：Vin $=12 \mathrm{~V}, \mathrm{Vnom}=5.0 \mathrm{~V}, \mathrm{f}=300 \mathrm{kHz}, \mathrm{L}=8 \mu \mathrm{H}$

$$
I_{\text {rip }}=\frac{12 \mathrm{~V}-5.0 \mathrm{~V}}{300 \mathrm{kHz} \cdot 8 \mu \mathrm{H}} \cdot \frac{5.0 \mathrm{~V}}{12 \mathrm{~V}}=1.22 \mathrm{~A}
$$

Given a maximum load current of 3 A ，the ripple content is $1.2 \mathrm{~A} / 3 \mathrm{~A}=40 \%$ ．
When choosing the inductor，the saturation current should be higher than the maximum peak inductor current and the RMS current rating should be higher than the maximum load current．

Input Capacitor Selection

The fact that the two switching channels of the LM2642 are 180° out of phase will reduce the RMS value of the ripple
current seen by the input capacitors．This will help extend input capacitor life span and result in a more efficient sys－ tem．Input capacitors must be selected that can handle both the maximum ripple RMS current at highest ambient tem－ perature as well as the maximum input voltage．In applica－ tions in which output voltages are less than half of the input voltage，the corresponding duty cycles will be less than 50% ． This means there will be no overlap between the two chan－ nels＇input current pulses．The equation for calculating the maximum total input ripple RMS current for duty cycles under 50% is：
$l_{i r r m}=\sqrt{I_{1}^{2} D_{1}\left(1-D_{1}\right)+\left.\right|_{2} ^{2} D_{2}\left(1-D_{2}\right)-\left.2 I_{1}\right|_{2} D_{1} D_{2}}$
where I 1 is maximum load current of Channel $1, \mathrm{I} 2$ is the maximum load current of Channel 2，D1 is the duty cycle of Channel 1，and D2 is the duty cycle of Channel 2.
Example：Imax＿1＝3．6A，Imax＿2＝3．6A，D1＝0．42，and D2 $=0.275$

$$
\begin{aligned}
& \mathrm{I}_{\text {irrm }}=\left[(3.6 \mathrm{~A})^{2} \cdot 0.42 \cdot(1-0.42)+\right. \\
& \left.(3.6 \mathrm{~A})^{2} \cdot 0.275 \cdot(1-0.275)-\right]^{.5} \\
& 2 \cdot 3.6 \mathrm{~A} \cdot 3.6 \mathrm{~A} \cdot 0.42 \cdot 0.275 \\
& =1.66 \mathrm{~A} .
\end{aligned}
$$

Choose input capacitors that can handle 1．66A ripple RMS current at highest ambient temperature．In applications where output voltages are greater than half the input voltage， the corresponding duty cycles will be greater than 50% ，and there will be overlapping input current pulses．Input ripple current will be highest under these circumstances．The input RMS current in this case is given by：

$$
I_{\text {irrm }}=\left[\begin{array}{l}
{\left[I_{1}\left(1-D_{1}\right)+I_{2}\left(1-D_{2}\right)\right]^{2}\left(D_{1}+D_{2}-1\right)} \\
+\left[I_{1}\left(1-D_{1}\right)-I_{2}\left(D_{2}\right)\right]^{2}\left(1-D_{2}\right)+ \\
{\left[I_{2}\left(1-D_{2}\right)-I_{1}\left(D_{1}\right)\right]^{2}\left(1-D_{1}\right)}
\end{array}\right]^{.5}
$$

Where，again，I1 and I2 are the maximum load currents of channel 1 and 2，and D1 and D2 are the duty cycles．This equation should be used when both duty cycles are ex－ pected to be higher than 50% ．
Input capacitors must meet the minimum requirements of voltage and ripple current capacity．The size of the capacitor should then be selected based on hold up time require－ ments．Bench testing for individual applications is still the best way to determine a reliable input capacitor value．The input capacitor should always be placed as close as possible to the current sense resistor or the drain of the top FET．

MOSFET Selection

BOTTOM FET SELECTION

During normal operation，the bottom FET is switching on and off at almost zero voltage．Therefore，only conduction losses are present in the bottom FET．The most important param－ eter when selecting the bottom FET is the on resistance （Rdson）．The lower the on resistance，the lower the power loss．The bottom FET power loss peaks at maximum input voltage and load current．The equation for the maximum allowed on resistance at room temperature for a given FET package，is：

MOSFET Selection
(Continued)

$$
\begin{array}{r}
R_{d s o n_{-} \max }=\frac{1}{I_{\max }^{2} \cdot\left(1-\frac{V_{n o m}}{V_{i n_{-} \max }}\right)} \mathrm{x} \\
\frac{T_{j-\max }-T_{a_{-} \max }}{\left[1+T C \cdot\left(T_{j _\max }-25^{\circ} \mathrm{C} / \mathrm{W}\right)\right] \cdot R_{\theta j a}}
\end{array}
$$

where Tj_max is the maximum allowed junction temperature in the FET, Ta_max is the maximum ambient temperature, $\mathrm{R}_{\mathrm{\theta ja}}$ is the junction-to-ambient thermal resistance of the FET, and TC is the temperature coefficient of the on resistance which is typically in the range of $10,000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
If the calculated Rdson_max is smaller than the lowest value available, multiple FETs can be used in parallel. This effectively reduces the Imax term in the above equation, thus reducing Rdson. When using two FETs in parallel, multiply the calculated Rdson_max by 4 to obtain the Rdson_max for each FET. In the case of three FETs, multiply by 9.

$$
\begin{aligned}
& R_{d s_{-} \max }=\frac{1}{(3.6 \mathrm{~A})^{2} \cdot\left(1-\frac{5 \mathrm{~V}}{30 \mathrm{~V}}\right)} \mathrm{x} \\
& \frac{100^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}}{\left[1+0.01 /{ }^{\circ} \mathrm{C} \cdot\left(100^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)\right] \cdot 60^{\circ} \mathrm{C} / \mathrm{W}} \\
& =35.3 \mathrm{~m} \Omega
\end{aligned}
$$

If the selected FET has an Rds value higher than 35.3Ω, then two FETs with an Rdson less than $141 \mathrm{~m} \Omega(4 \times 35.3 \mathrm{~m} \Omega)$ can be used in parallel. In this case, the temperature rise on each FET will not go to Tj_max because each FET is now dissipating only half of the total power.

TOP FET SELECTION

The top FET has two types of losses: switching loss and conduction loss. The switching losses mainly consist of crossover loss and bottom diode reverse recovery loss. Since it is rather difficult to estimate the switching loss, a general starting point is to allot 60% of the top FET thermal capacity to switching losses. The best way to precisely determine switching losses is through bench testing. The equation for calculating the on resistance of the top FET is thus:

$$
\begin{aligned}
& R_{d s_{-} \max }=\frac{V_{i_{n}-\min } \cdot .4}{I_{\max }^{2} \cdot V_{n_{0 m}}} x \\
& \frac{T_{j_{-} \max }-T_{a_{-} \max }}{\left[1+T C \cdot\left(T_{j_{-} \max }-25^{\circ} \mathrm{C} / \mathrm{W}\right)\right] \cdot R_{\theta j a}}
\end{aligned}
$$

Example: Tj_max $=100^{\circ} \mathrm{C}, \mathrm{Ta} _$max $=60^{\circ} \mathrm{C}$, Rqja $=60^{\circ} \mathrm{C} / \mathrm{W}$, Vin_min $=5.5 \mathrm{~V}$, Vnom $=5 \mathrm{~V}$, and lload_max $=3.6 \mathrm{~A}$.

$$
\begin{aligned}
& R_{d s_{-} \max }=\frac{5.5 \mathrm{~V} \times .4}{(3.6 \mathrm{~A})^{2} \times 5 \mathrm{~V}} \times \\
& \frac{100^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}}{\left[1+0.01 /{ }^{\circ} \mathrm{C} \cdot\left(100^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)\right] \cdot 60^{\circ} \mathrm{C} / \mathrm{W}} \\
& =13 \mathrm{~m} \Omega
\end{aligned}
$$

When using FETs in parallel, the same guidelines apply to the top FET as apply to the bottom FET.

Loop Compensation

The general purpose of loop compensation is to meet static and dynamic performance requirements while maintaining stability. Loop gain is what is usually checked to determine small-signal performance. Loop gain is equal to the product of control-output transfer function and the output-control transfer function (the compensation network transfer function). Generally speaking it is a good idea to have a loop gain slope that is -20 dB /decade from a very low frequency to well beyond the crossover frequency. The crossover frequency should not exceed one-fifth of the switching frequency, i.e. 60 kHz in the case of LM2642. The higher the bandwidth is, the faster the load transient response speed will potentially be. However, if the duty cycle saturates during a load transient, further increasing the small signal bandwidth will not help. Since the control-output transfer function usually has very limited low frequency gain, it is a good idea to place a pole in the compensation at zero frequency, so that the low frequency gain will be relatively large. A large DC gain means high DC regulation accuracy (i.e. DC voltage changes little with load or line variations). The rest of the compensation scheme depends highly on the shape of the control-output plot.

FIGURE 10. Control-Output Transfer Function
As shown in Figure 10, the control-output transfer function consists of one pole (fp), one zero (fz), and a double pole at fn (half the switching frequency). The following can be done to create a -20 dB /decade roll-off of the loop gain: Place the first pole at 0 Hz , the first zero at $\mathrm{f} p$, the second pole at fz , and the second zero at fn . The resulting output-control transfer function is shown in Figure 11.

FIGURE 11．Output－Control Transfer Function
The control－output corner frequencies，and thus the desired compensation corner frequencies，can be determined ap－ proximately by the following equations：

$$
\begin{gathered}
f_{z}=\frac{1}{2 \pi R_{e} C_{0}} \\
f_{p}=\frac{1}{2 \pi R_{o} C_{o}}+\frac{.5}{2 \pi L f C_{o}}
\end{gathered}
$$

Since $f p$ is determined by the output network，it will shift with loading（Ro）and duty cycle．First determine the range of frequencies（fpmin／max）of the pole across the expected load range，then place the first compensation zero within that range．
Example： $\mathrm{R}_{\mathrm{e}}=20 \mathrm{~m} \Omega, \mathrm{C}_{\mathrm{o}}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{omax}}=5 \mathrm{~V} / 100 \mathrm{~mA}=$ $50 \Omega, \mathrm{R}_{\text {omin }}=5 \mathrm{~V} / 3 \mathrm{~A}=1.7 \Omega$ ：

$$
\begin{gathered}
\mathrm{f}_{\mathrm{z}}=\frac{1}{2 \pi \cdot 20 \mathrm{~m} \Omega \cdot 100 \mu \mathrm{~F}}=80 \mathrm{kHz} \\
\mathrm{f}_{\mathrm{p} \min }=\frac{1}{2 \pi \cdot 50 \Omega \cdot 100 \mu \mathrm{~F}}+ \\
\frac{.5}{2 \pi \cdot 300 \mathrm{k} \cdot 8 \mu \cdot 100 \mu \mathrm{~F}}=363 \mathrm{~Hz} \\
\mathrm{fp} \mathrm{max}=\frac{1}{2 \pi \cdot 1.7 \Omega \cdot 100 \mu \mathrm{~F}}+ \\
\frac{.5}{2 \pi \cdot 300 \mathrm{k} \cdot 8 \mu \cdot 100 \mu \mathrm{~F}}=1.27 \mathrm{kHz}
\end{gathered}
$$

Once the fp range is determined， $\mathrm{R}_{\mathrm{c} 1}$ should be calculated using：

$$
R_{c 1}=\frac{B}{g m}\left(\frac{R_{1}+R_{2}}{R_{1}}\right)
$$

Where B is the desired gain in V / V at $f p$（ $f z 1$ ），gm is the transconductance of the error amplifier，and R1 and R2 are the feedback resistors．A gain value around $10 \mathrm{~dB}(3.3 \mathrm{v} / \mathrm{v})$ is generally a good starting point．
Example： $\mathrm{B}=3.3 \mathrm{v} / \mathrm{v}, \mathrm{gm}=650 \mathrm{~m}, \mathrm{R} 1=20 \mathrm{~K} \Omega, \mathrm{R} 2=60.4 \mathrm{~K} \Omega$ ：

$$
\mathrm{R}_{\mathrm{c} 1}=\frac{3.3}{650 \mu}\left(\frac{20 \mathrm{k}+60.4 \mathrm{k}}{20 \mathrm{k}}\right)=20.4 \mathrm{k} \Omega \cong 20 \mathrm{k} \Omega
$$

Bandwidth will vary proportional to the value of Rc1．Next， Cc1 can be determined with the following equation：

$$
C_{c 1}=\frac{1}{2 \pi \cdot f_{p} \cdot R_{c 1}}
$$

Example： $\mathrm{fpmin}=363 \mathrm{~Hz}, \mathrm{Rc} 1=20 \mathrm{~K} \Omega$ ：

$$
C_{c 1}=\frac{1}{2 \pi \cdot 363 \mathrm{~Hz} \cdot 20 \mathrm{k} \Omega} \cong 22 \mathrm{nF}
$$

The value of $\mathrm{C}_{\mathrm{c} 1}$ should be within the range determined by Fpmin／max．A higher value will generally provide a more stable loop，but too high a value will slow the transient response time．
The compensation network（Figure 12）will also introduce a low frequency pole which will be close to 0 Hz ．
A second pole should also be placed at fz．This pole can be created with a single capacitor Cc2 and a shorted Rc2（see Figure 12）．The minimum value for this capacitor can be calculated by：

$$
C_{c 2 \min }=\frac{1}{2 \pi \cdot f_{z} \cdot R_{c 1}}
$$

Cc2 may not be necessary，however it does create a more stable control loop．This is especially important with high load currents and in current sharing mode．
Example： $\mathrm{fz}=80 \mathrm{kHz}, \mathrm{Rc} 1=20 \mathrm{~K} \Omega$ ：

$$
C_{c 2 \min }=\frac{1}{2 \pi \cdot 80 \mathrm{kHz} \cdot 20 \mathrm{k} \Omega} \cong 100 \mathrm{pF}
$$

A second zero can also be added with a resistor in series with Cc2．If used，this zero should be placed at fn ，where the control to output gain rolls off at $-40 \mathrm{~dB} / \mathrm{dec}$ ．Generally，fn will be well below the OdB level and thus will have little effect on stability．Rc2 can be calculated with the following equation：

$$
R_{c 2}=\frac{1}{2 \pi \cdot f_{n} \cdot C_{c 2}}
$$

FIGURE 12．Compensation Network

Physical Dimensions inches (millimeters)
unless otherwise noted

DIMENSIONS ARE IN MILLIMETERS

DETAIL A
TYPICAL MTC28 (Rev C)
28-Lead TSSOP Package Order Number LM2642MTC NS Package Number MTC28

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Americas Customer	National Semiconductor	National Semiconductor	National Semiconductor
	Europe Customer Support Center	Asia Pacific Customer	Japan Customer Support Center
Support Center	Fax: +49 (0) 180-530 8586	Support Center	Fax: 81-3-5639-7507
Email: new.feedback@nsc.com	Email: europe.support@nsc.com	Email: ap.support@nsc.com	Email: jpn.feedback@nsc.com
Tel: 1-800-272-9959	Deutsch Tel: +49 (0) 6995086208		Tel: 81-3-5639-7560
	English Tel: +44 (0) 8702402171		
www.national.com	Français Tel: +33 (0) 141918790		

