LM2639

5-Bit Programmable, High Frequency Multi-phase PWM Controller

General Description

The LM2639 provides an attractive solution for power supplies of high power microprocessors (such as Pentium $\mathrm{II}^{\mathrm{TM}}$, $\mathrm{M} I^{\mathrm{TM}}, \mathrm{K} 6^{\mathrm{TM}}-2, \mathrm{~K} 6^{\mathrm{TM}}-3$, etc.) exhibiting ultra fast load transients. Compared to a conventional single-phase supply, an LM2639 based multi-phase supply distributes the thermal and electrical loading among components in multiple phases and greatly reduces the corresponding stress in each component. The LM2639 can be programmed to control either a 3 -phase converter or a 4-phase converter. Phase shift among the phases is 120° in the case of three phase and 90° with four-phase. Because the power channels are out of phase, there can be significant ripple cancellation for both the input and output current, resulting in reduced input and output capacitor size. Due to the nominal operating frequency of 2 MHz per phase, the size of the output inductors can be greatly reduced which results in a much faster load transient response and a dramatically shrunk output capacitor bank. Microprocessor power supplies with all surface mount components can be easily built.
The internal high speed transconductance amplifier guarantees good dynamic performance. The output drive voltages can be adjusted through a resistor divider to control switching loss in the external FETs.
The internal master clock frequency of up to 8 MHz is set by an external reference resistor. An external clock of 10 MHz can also be used to drive the chip to achieve frequency control and multi-chip operation.

The LM2639 also provides input under-voltage lock-out with hysteresis and input over-current protection.

Features

- Ultra fast load transient response
- Enables all surface-mount-design
- Selectable 2, 3, 4 phase operation
- Clock frequency from 40 kHz to 10 MHz
- Precision load current sharing
- 5-bit programmable from 3.5 V to 1.3 V
- VID code compatible to VRM 8.X specification
- Output voltage is 2.0 V for VID code 11111
- Selectable internal or external clock
- Digital 16 -step soft start
- Input under-voltage lock-out, over-current protection

Applications

- Servers and workstations
- High current, ultra-fast transient microprocessors

Pin Configuration

[^0]Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

$\mathrm{V}_{\mathrm{CC}} 5 \mathrm{~V}$	7 V
$\mathrm{~V}_{\mathrm{CC}} 12 \mathrm{~V}$	20 V
Junction Temperature	$125^{\circ} \mathrm{C}$
Power Dissipation (Note 2)	1.6 W

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Susceptibility (Note 8)	2 kV
Soldering Time, Temperature	$10 \mathrm{sec} ., 300^{\circ} \mathrm{C}$

Operating Ratings (Note 1)

V_{cc}
4.75 V to 5.25 V

Junction Temperature Range
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{V}_{\mathrm{Cc}} 5 \mathrm{~V}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}} 12 \mathrm{~V}=12 \mathrm{~V}$ unless otherwise specified. Typicals and limits appearing in plain type apply for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$. Limits appearing in boldface type apply over the entire operating temperature range.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
Vcc5V	$\mathrm{V}_{\mathrm{Cc}} 5 \mathrm{~V}$ Pin Voltage		4.5	5.0	5.5	V
Vcc12V	$\mathrm{V}_{\mathrm{cc}} 12 \mathrm{~V}$ Pin Voltage		10.0	12.0	18.0	V
$\mathrm{V}_{\text {DACOUT }}$	5-bit DAC Output Voltage	(Note 3)	N-1\%	N	N+1\%	V
			N-1.5\%	N	N+1.5\%	
$\mathrm{I}_{\mathrm{cc}} 12 \mathrm{~V}$	Quiescent $\mathrm{V}_{\mathrm{cc}} 12 \mathrm{~V}$ Current	Enable $=5 \mathrm{~V}$, VID $=00001$, DRV Outputs Floating		1.3	3	mA
$\mathrm{I}_{\mathrm{CC}} 5 \mathrm{~V}$	Operating $\mathrm{V}_{\mathrm{CC}} 5 \mathrm{~V}$ Current	$\mathrm{V}_{\text {OUT }}=2.00 \mathrm{~V}$		4.3	8	mA
$\mathrm{V}_{\text {REF }}$	Rref Pin Voltage			1.225		V
$\mathrm{V}_{\text {INL }}$	Vid0:4, Clksel, Divsel, and Enable Pins Logic Threshold	Logic Low (Note 4)		1.8	1.5	V
$\mathrm{V}_{\text {INH }}$		Logic High (Note 5)	3.5	2.8		V
$\mathrm{I}_{\text {INL }}$	Vid0:4 and Enable Pins Internal Pullup Current	The Corresponding Pin $=0 \mathrm{~V}$	60	100	140	$\mu \mathrm{A}$
	Clksel, Divsel Pins Internal Pullup Current		-10	0	10	
	Gate Driver Resistance When Sinking Current	$\mathrm{I}_{\text {SINK }}=50 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}} 12 \mathrm{~V}=14 \mathrm{~V}$		12		Ω
$\mathrm{V}_{\text {DRV }}$	DRV0:3 Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{DRV}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}} 12 \mathrm{~V}=14 \mathrm{~V}, \\ & \text { OutV }=12 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline \text { OutV - } \\ 0.3 \mathrm{~V} \end{gathered}$	OutV	$\begin{gathered} \hline \text { OutV + } \\ 0.3 \mathrm{~V} \end{gathered}$	V
$\mathrm{t}_{\text {fall }}$	DRV0:3 Fall Time	(Note 6)		7		ns
$\mathrm{I}_{\text {SRC }}$	DRV0:3 Source Current	$\begin{aligned} & \text { DRV0:3 }=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}} 12 \mathrm{~V}=14 \mathrm{~V}, \\ & \text { OutV }=5 \mathrm{~V} \end{aligned}$	40	60		mA
$\mathrm{I}_{\text {SINK }}$	DRV0:3 Sink Current	$\begin{aligned} & \text { DRV0:3 }=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} 12 \mathrm{~V}=14 \mathrm{~V}, \\ & \text { OutV }=5 \mathrm{~V} \end{aligned}$	90	160	250	mA
	$\mathrm{B}_{\text {gout }}$ Voltage	Current Limit Not Activated		4		V
		Current Limit Activated		0		
$\mathrm{I}_{\text {FB }}$	FB Pin Bias Current	$\mathrm{FB}=2 \mathrm{~V}$		30		nA
	$\mathrm{B}_{\text {gout }}$ Sink Current	$\mathrm{B}_{\text {gout }}=1 \mathrm{~V}$	1.0	2.4	5	mA
Fosc	Oscillator Frequency	$8.02 \mathrm{k} \Omega$ from Rref Pin to Ground	7.0	8.0	8.7	MHz
$\Delta_{\text {D }}$	DRV0:3 Duty Cycle Match	Duty Cycle = 50\%	-1		+1	\%
Δ_{ph}	DRV0:3 Phase Accuracy	$\begin{aligned} & \text { Duty Cycle }=50 \%, \mathrm{~F}_{\text {clock }}=8 \\ & \mathrm{MHz} \end{aligned}$	-1		+1	Deg
$\mathrm{T}_{\text {off }}$	PWM Off time	Divide by 4		22		\%
$\mathrm{T}_{\text {off }}$		Divide by 3		22		
OutV	Drive Voltage Range	$\begin{aligned} & \text { Output Freq. }=2 \mathrm{MHz}, \mathrm{~V}_{\mathrm{O}}= \\ & 2.00 \mathrm{~V} \end{aligned}$	0	12	Vcc12	V

Electrical Characteristics (Continued)

$\mathrm{V}_{\mathrm{CC}} 5 \mathrm{~V}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} 12 \mathrm{~V}=12 \mathrm{~V}$ unless otherwise specified. Typicals and limits appearing in plain type apply for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$. Limits appearing in boldface type apply over the entire operating temperature range.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {Occ_cm }}$	Over-current Comparator Common Mode Range		3		12	V
IB_OC+	OC+ Input Bias Current	$\begin{aligned} & \mathrm{V}_{1 \mathrm{~N}}=5 \mathrm{~V}, \mathrm{OC}+=5 \mathrm{~V}, \mathrm{OC}-= \\ & 4 \mathrm{~V} \end{aligned}$	100	145	200	$\mu \mathrm{A}$
IB_OC-	OC- Input Bias Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{OC}+=6 \mathrm{~V}, \mathrm{OC}-= \\ & 5 \mathrm{~V} \end{aligned}$	85	125	165	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OS_occ }}$	Over-current Comparator Input Offset Voltage	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$	2	16	42	mV
		$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$		21		
$\mathrm{D}_{\text {MAX }}$	Maximun Duty Cycle	$\mathrm{FB}=0 \mathrm{~V}$		78		\%
gm	Error Amplifier Transconductance			1.36		mmho
$\mathrm{V}_{\text {ramp }}$	Ramp Signal Peak-to-Peak Amplitude			2		V
$\mathrm{I}_{\text {comp }}$	COMP Pin Source Current		250	400	550	$\mu \mathrm{A}$
$\mathrm{I}_{\text {comp }}$	COMP Pin Sink Current		160	280	400	$\mu \mathrm{A}$
$\mathrm{V}_{\text {comp_hi }}$	COMP Pin High Clamp			2.9		V
$\mathrm{V}_{\text {comp_1o }}$	COMP Pin Low Clamp			0.19		V
$\mathrm{V}_{\mathrm{POR}}$	Power On Reset Trip Point	Vcc5V Pin Voltage Rising		4.0		V
		Vcc5V Pin Voltage Falling		3.6		
	Vcc12V Minimum Working Voltage	(Note 7)		3.8		V
t_{ss}	Soft Start Delay	$\mathrm{F}_{\text {OsC }}=8 \mathrm{MHz}$		1.6		ms

Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating ratings do not imply guaranteed performance limits.
Note 2: Maximum allowable power dissipation is a function of the maximum junction temperature, $T_{J M A X}$, the junction-to-ambient thermal resistance, θ_{JA}, and the ambient temperature, T_{A}. The maximum allowable power dissipation at any ambient temperature is calculated using: $P_{M A X}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$. The junction-to-ambient thermal resistance, θ_{JA}, for LM 2639 is $78^{\circ} \mathrm{C} / \mathrm{W}$. For a $\mathrm{T}_{\mathrm{JMAX}}$ of $150^{\circ} \mathrm{C}$ and T_{A} of $25^{\circ} \mathrm{C}$, the maximum allowable power dissipation is 1.6 W .
Note 3: The letter \boldsymbol{N} stands for the typical output voltages appearing in italic boldface type in Table 1.
Note 4: Max value of logic low means any voltage below this value is guaranteed to be taken as logic low whereas a voltage higher than this value is not guaranteed to be taken as a logic low.

Note 5: Min value of logic high means any voltage above this value is guaranteed to be taken as logic high whereas a voltage lower than this value is not guaranteed to be taken as a logic high.

Note 6: When driving bipolar FET drivers in the typical application circuit.
Note 7: When Vcc12V pin goes below this voltage, all DRV pins go to OV.
Note 8: ESD ratings for pins DRV0, DRV1, DRV2 and DRV3 is 1 kV . ESD rating for all other pins is 2 kV .

Electrical Characteristics (Continued)
TABLE 1. 5-Bit DAC Output Voltage Table

Symbol	Parameter	Conditions	Typical	Units
$\mathrm{V}_{\text {DACOUT }}$	5-Bit DAC Output Voltages for Different VID Codes	VID4:0 = 01111	1.30	V
		VID4:0 $=01110$	1.35	
		VID4:0 $=01101$	1.40	
		VID4:0 $=01100$	1.45	
		VID4:0 $=01011$	1.50	
		VID4:0 $=01010$	1.55	
		VID4:0 = 01001	1.60	
		VID4:0 $=01000$	1.65	
		VID4:0 $=00111$	1.70	
		VID4:0 $=00110$	1.75	
		VID4:0 $=00101$	1.80	
		VID4:0 $=00100$	1.85	
		VID4:0 $=00011$	1.90	
		VID4:0 $=00010$	1.95	
		VID4:0 = 00001	2.00	
		VID4:0 $=00000$	2.05	
		VID4:0 $=11111$	2.0	
		VID4:0 $=11110$	2.1	
		VID4:0 = 11101	2.2	
		VID4:0 $=11100$	2.3	
		VID4:0 $=11011$	2.4	
		VID4:0 = 11010	2.5	
		VID4:0 $=11001$	2.6	
		VID4:0 $=11000$	2.7	
		VID4:0 = 10111	2.8	
		VID4:0 = 10110	2.9	
		VID4:0 = 10101	3.0	
		VID4:0 $=10100$	3.1	
		VID4:0 $=10011$	3.2	
		VID4:0 = 10010	3.3	
		VID4:0 = 10001	3.4	
		VID4:0 = 10000	3.5	

Pin Description

Pin	Pin Name	
1	Vcc5V	Supply Voltage Input (5V nominal) Pin Function
2	Divsel	Selects Phase Mode. Logic low selects 4 phase. Logic high selects 3 phase. 2 phase operation is achieved by using 2 outputs in 4 phase mode.
3	Clksel	Clock Select: Logic high selects internal clock. Logic low selects external clock.
4	Extclk	External Clock Input. Output frequency = Clock Input / No. of Phases. Connect to Vcc5V to select internal clock.
5	Rref	Connects to external reference resistor. Sets the operating frequency of the internal clock and the ramp time for the PWM. Reference voltage at this pin is 1.26V.
6	Vid0	5-Bit DAC Input (LSB).
7	Vid1	5-Bit DAC Input.
8	Vid2	5-Bit DAC Input.
9	Vid3	5-Bit DAC Input.
10	Vid4	5-Bit DAC Input (MSB)
12	OC+	Over-current Comparator. Non-inverting input.
13	COMP	Over-current Comparator. Inverting input.
14	FB	Compensation Pin. This is the output of the internal transconductance amplifier. Compensation network should be connected between this pin and feedback ground FBG.
15	Bgout	Feedback Input. Normally Kelvin connected to supply output.
16	FBG	Current Limit Flag. Goes to logic low when current limit is activated. When over-current condition is removed, this pin is weakly pulled up to Vcc5V.
17	ENABLE	Feedback Ground. This pin should be connected to the ground at the supply output.
18	GND	Output Enable Pin. Tie to logic high to enable and logic low to disable.
19	DRV2	Power Ground Pin.
20	DRV0	Phase 2 Output.
21	Vcc12V	Phase 0 Output.
23	DRV1	SRV3
Oupply Voltage for FET Drivers DRV0:3.		
23	Phase 1 Output.	
	Phase 3 Output.	

Physical Dimensions inches (millimeters) unless otherwise noted

> 24-Lead Small Outline Package
> Order Number LM2639M
> NS Package Number M24B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
National Semiconductor
Corporation
Americas
Tel: $1-800-272-9959$
Fax: 1-800-737-7018
Email: support@nsc.com
www.national.com
```
National Semiconductor Europe
Fax: +49 (0) 180-530 8586 Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 6995086208
English Tel: +44 (0) 8702402171
Français Tel: +33 (0) 141918790
```

National Semiconductor

Asia Pacific Customer

Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: ap.support@nsc.com

National Semiconductor Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507
www.national.com

[^0]: $\mathrm{M} \mathrm{II}{ }^{T M}$ is a trademark of Cyrix Corporation a wholly owned subsidiary of National Semiconductor Corporation
 Pentium $\mathrm{II}^{\mathrm{TM}}$ is a trademark of Intel Corporation.
 K6 ${ }^{\text {TM }}$ is a trademark of Advanced Micro Devices, Inc

