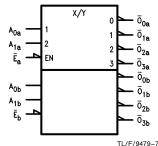


54F/74F139 Dual 1-of-4 Decoder/Demultiplexer

General Description

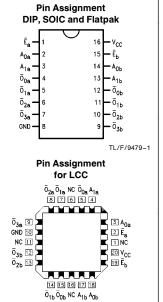
The 'F139 is a high-speed, dual 1-of-4 decoder/demultiplexer. The device has two independent decoders, each accepting two inputs and providing four mutually exclusive active LOW outputs. Each decoder has an active LOW Enable input which can be used as a data input for a 4-output demultiplexer. Each half of the 'F139 can be used as a function generator providing all four minterms of two variables.

Features


- Multifunction capability
- Two completely independent 1-of-4 decoders
- Active LOW mutually exclusive outputs
- Guaranteed 4000V minimum ESD protection

Commercial	Military	Package Number	Package Description		
74F139PC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line		
	54F139DM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line		
74F139SC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC		
74F139SJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ		
	54F139FM (Note 2)	W16A	16-Lead Cerpack		
	54F139LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C		

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.


Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols E A₀ A₁ DECODER a O₀ O₁ O₂ O₃ O O₁ O₂ O₃ TL/F/9479-3 IEEE/IEC X/Y A_{0a} 1 DECODER b O₀ O₁ O₂ O₃ O₀ O₁ O₂ O₃ TL/F/9479-4

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Connection Diagrams

TL/F/9479-2

Unit Loading/Fan Out

		54F/74F			
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
$ \begin{array}{c} A_0, A_1 \\ \overline{E} \\ \overline{O}_0 - \overline{O}_3 \end{array} $	Address Inputs Enable Inputs (Active LOW) Outputs (Active LOW)	1.0/1.0 1.0/1.0 50/33.3	20 μA/ - 0.6 mA 20 μA/ - 0.6 mA - 1 mA/20 mA		

Functional Description

The 'F139 is a high-speed dual 1-of-4 decoder/demultiplexer. The device has two independent decoders, each of which accepts two binary weighted inputs (A_0-A_1) and provides four mutually exclusive active LOW Outputs $(\overline{O}_0-\overline{O}_3)$. Each decoder has an active LOW enable (\overline{E}). When \overline{E} is HIGH all outputs are forced HIGH. The enable can be used

as the data input for a 4-output demultiplexer application. Each half of the 'F139 generates all four minterms of two variables. These four minterms are useful in some applications, replacing multiple gate functions as shown in *Figure 1*, and thereby reducing the number of packages required in a logic network.

Truth Table

	Inputs		Outputs					
Ē	A ₀ A ₁		Ō ₀	\overline{O}_1	\overline{O}_2	\overline{O}_3		
Н	х	Х	Н	Н	Н	Н		
L	L	L	L	Н	Н	Н		
L	Н	L	Н	L	Н	Н		
L	L	Н	Н	Н	L	Н		
L	Н	Н	Н	Н	Н	L		

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

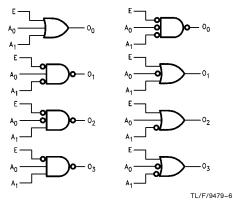
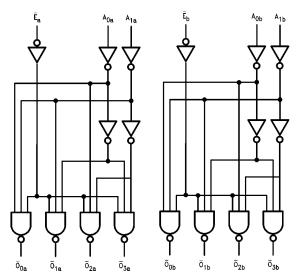



FIGURE 1. Gate Functions (each half)

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \mbox{Storage Temperature} & -65^{\circ}\mbox{C to} + 150^{\circ}\mbox{C} \\ \mbox{Ambient Temperature under Bias} & -55^{\circ}\mbox{C to} + 125^{\circ}\mbox{C} \\ \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to} + 175^{\circ}\mbox{C} \\ \mbox{Plastic} & -55^{\circ}\mbox{C to} + 150^{\circ}\mbox{C} \\ \end{array}$

V_{CC} Pin Potential to

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{lll} \text{Standard Output} & -0.5 \text{V to V}_{CC} \\ \text{TRI-STATE} \tiny{\$} \text{ Output} & -0.5 \text{V to } +5.5 \text{V} \end{array}$

Current Applied to Output in LOW State (Max) twice the rated I_{OL} (mA) ESD Last Passing Voltage (Min) 4000V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

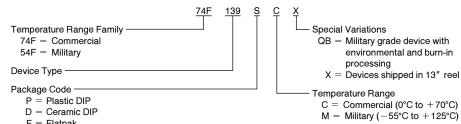
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

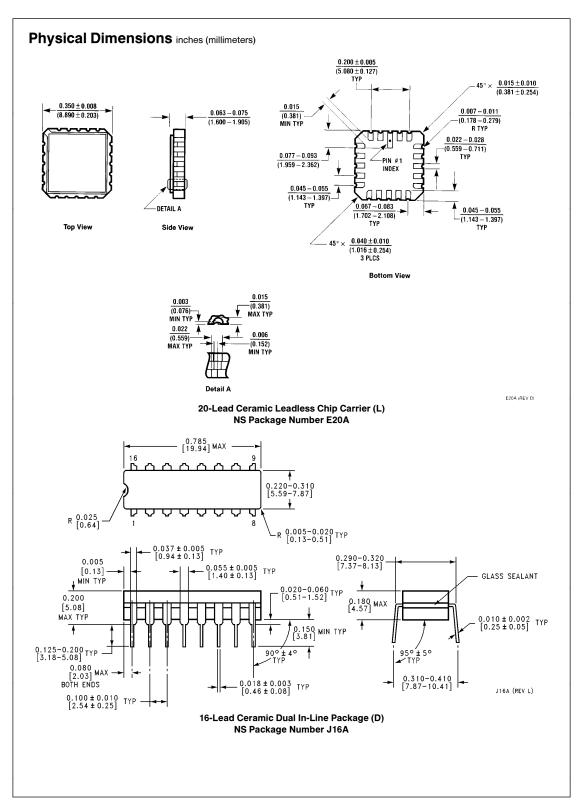
Supply Voltage

Military + 4.5V to + 5.5V Commercial + 4.5V to + 5.5V

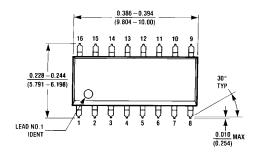

DC Electrical Characteristics

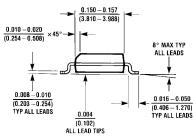
Symbol	Parameter		54F/74F			Units	vcc	Conditions	
Symbol			Min	Тур	Max	Onits	VCC	Conditions	
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V_{IL}	Input LOW Voltage	Input LOW Voltage			0.8	V		Recognized as a LOW Signal	
V_{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	V	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 20 \text{ mA}$	
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V	
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	V _{OUT} = V _{CC}	
V_{ID}	Input Leakage Test	74F	4.75			٧	0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V	
Ios	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V	
Icc	Power Supply Curren		13	20	mA	Max			

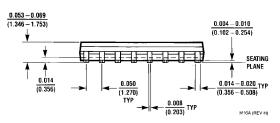
AC Electrical Characteristics

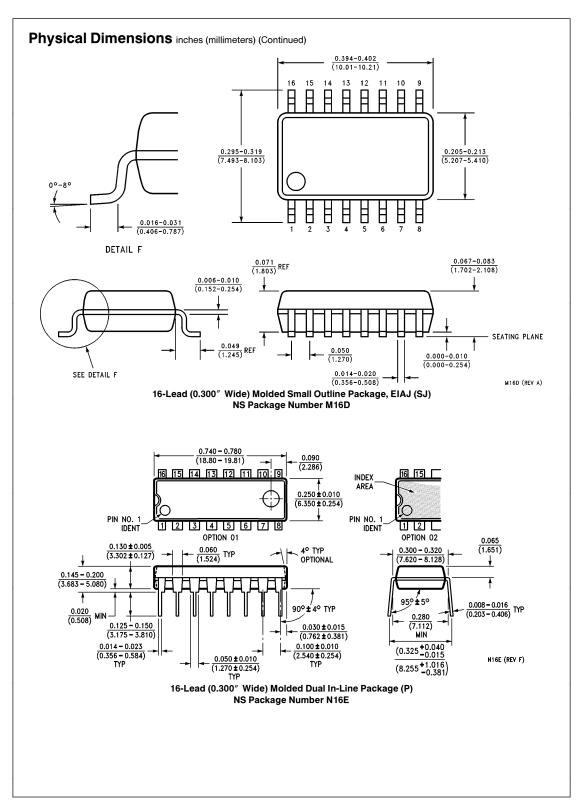

	Parameter	$74F$ $T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			54F T _A , V _{CC} = Mil C _L = 50 pF		74F T _A , V _{CC} = Com C _L = 50 pF		Units
Symbol									
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay A_0 or A_1 to \overline{O}_n	3.5 4.0	5.3 6.1	7.5 8.0	2.5 3.5	12.0 9.5	3.0 4.0	8.5 9.0	ns
t _{PLH}	Propagation Delay \overline{E}_1 to \overline{O}_n	3.5 3.0	5.4 4.7	7.0 6.5	3.0 2.5	9.0 8.0	3.5 3.0	8.0 7.5	ns

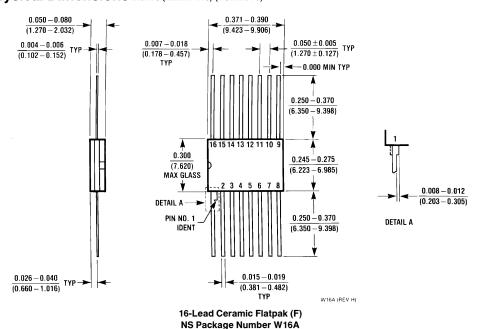
Ordering Information




F = Flatpak


L = Leadless Chip Carrier (LCC)
S = Small Outline SOIC JEDEC
SJ = Small Outline SOIC EIAJ


Physical Dimensions inches (millimeters) (Continued)



16-Lead (0.150" Wide) Molded Small Outline Integrated Circuit (S) NS Package Number M16A

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1 National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghili, Melbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998