Simple Switcher (3A Step-
 Down Voltage Regulator)

Description

The MIK2576 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving 3 A load with excellent line and load regulation. These devices are available in fixed output voltages of 3.3 V , $5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and an adjustable output versions. Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator. The MIK2576 series offers a high-efficiency replacement for popular three-terminal linear regulators. It substantially reduces the size of the heat sink, and in some cases no heat sink is required. A standard series of inductors optimized for use with the MIK2576 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies. Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10 \%$ on the oscillator frequency. External shutdown is included, featuring $50 \mu \mathrm{~A}$ (typical) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.
Note: The MIK2576HV is not produced yet.

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and adjustable output versions
- Adjustable version output voltage range
- $\quad 1.23 \mathrm{~V}$ to $37 \mathrm{~V}(57 \mathrm{~V}$ for HV version $) \pm 4 \%$ max over line and load conditions
- Guaranteed 3A output current
- Wide input voltage range, 40 V up to 60 V for HV version
- Requires only 4 external components
- $\quad 52 \mathrm{kHz}$ fixed frequency oscillator
- TTL shutdown capability, low power standby mode
- High efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to negative converter (Buck-Boost)

> Typical application Figure 1.(Fixed Output Voltage Versions)

Replacement of
LM2576 Series

Block Diagram

$3.3 \mathrm{~V}, \mathrm{R} 2=1.7 \mathrm{~K}$
$5 \mathrm{~V}, \mathrm{R} 2=3.1 \mathrm{~K}$
$12 \mathrm{~V}, \mathrm{R} 2=8.84 \mathrm{~K}$
$15 \mathrm{~V}, \mathrm{R} 2=11.3 \mathrm{~K}$
For ADJ, Version
$\mathrm{R} 1=$ Open, $\mathrm{R} 2=0 \Omega$

Ordering information

Temperature Range	Output Voltage, V					Package Type
	3.3	5.0	12	15	ADJ	
$\begin{gathered} -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \\ \leq 125^{\circ} \mathrm{C} \end{gathered}$	MIK2576HVS-3.3	MIK2576HVS-5.0	MIK2576HVS-12	MIK2576HVS-15	MIK2576HVS-ADJ	TO-263
	MIK2576S-3.3	MIK2576S-5.0	MIK2576S-12	MIK2576S-15	MIK2576S-ADJ	
	MIK2576HVT-3.3	MIK2576HVT-5.0	MIK2576HVT-12	MIK2576HVT-15	MIK2576HVT-ADJ	TO-220
	MIK2576T-3.3	MIK2576T-5.0	MIK2576T-12	MIK2576T-15	MIK2576T-ADJ	

Simple Switcher (3A StepDown Voltage Regulator)

Absolute Maximum Ratings
(Note 1)

Parameter	Maximum	Units
Maximum Supply Voltage		
MIK2576	45	V
MIK2576HV	63	
ON/OFF Pin Input Voltage	$-0.3 \mathrm{~V} \leq \mathrm{V} \leq+\mathrm{V}_{\mathrm{IN}}$	-1
Output Voltage to Ground (Steady State)	Internally Limited	V
Power Dissipation	-65 to +150	W
Storage Temperature Range	150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	2	${ }^{\circ} \mathrm{C}$
Minimum ESD Rating (C= 100pF, $\mathrm{R}=1.5 \mathrm{k} \Omega$)	260	kV
Lead Temperature (Soldering, 10 Seconds)	${ }^{\circ} \mathrm{C}$	

Operating Ratings

Parameter	Value	Units
Temperature Range	$-40 \leq \mathrm{T}_{J} \leq+125$	${ }^{\circ} \mathrm{C}$
MIK2576/ MIK2576HV		
Supply Voltage		
	MIK2576	60

Electrical Characteristics MIK2576-3.3, MIK2576HV-3.3

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{gathered} \text { MIK2576-3.3 } \\ \text { MIK2576HV-3.3 } \\ \hline \end{gathered}$		Units (Limits)
			Typ	Limit (Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}=0.5 \mathrm{~A}$ Circuit of Figure 2	3.3	$\begin{aligned} & 3.234 \\ & 3.366 \end{aligned}$	V $V(\operatorname{Min})$ $V(\operatorname{Max})$
Vout	Output Voltage MIK2576	$6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3 \mathrm{~A}$ Circuit of Figure 2	3.3	$\begin{aligned} & 3.168 / 3.135 \\ & 3.432 / 3.465 \end{aligned}$	
Vout	Output Voltage MIK2576HV	$6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}$ Circuit of Figure 2	3.3	$\begin{aligned} & 3.168 / 3.135 \\ & 3.450 / 3.482 \end{aligned}$	
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	75		\%

Electrical Characteristics MIK2576-5.0, MIK2576HV-5.0
Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { MIK2576-5.0 } \\ & \text { MIK2576HV-5.0 } \end{aligned}$		$\begin{aligned} & \text { Units } \\ & \text { (Limits) } \end{aligned}$
			Typ	Limit (Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
$V_{\text {OUt }}$	Output Voltage	$\mathrm{V}_{\mathbb{I N}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}$ Circuit of Figure 2	5.0	$\begin{aligned} & 4.900 \\ & 5.100 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\mathrm{Min}) \\ \mathrm{V}(\mathrm{Max}) \end{gathered}$
$\mathrm{V}_{\text {OUt }}$	Output Voltage MIK2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{N}} \leq 40 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	5.0	$\begin{aligned} & 4.800 / 4.750 \\ & 5.200 / 5.250 \end{aligned}$	$\begin{gathered} V \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$
Vout	Output Voltage MIK2576HV	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{N}} \leq 60 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	5.0	$\begin{aligned} & 4.800 / 4.750 \\ & 5.225 / 5.275 \end{aligned}$	$\begin{gathered} V \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	77		\%

Simple Switcher (3A Step-
 Down Voltage Regulator)

Electrical Characteristics MIK2576-12, MIK2576HV-12

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{gathered} \text { MIK2576-12 } \\ \text { MIK2576HV-12 } \end{gathered}$		Units (Limits)
			Typ	Limit(Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
Vout	Output Voltage	$\mathrm{V}_{\text {IN }}=25 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}$ Circuit of Figure 2	12	$\begin{aligned} & 11.76 \\ & 12.24 \end{aligned}$	$\begin{gathered} V \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$
$V_{\text {OUt }}$	Output Voltage MIK2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3 \mathrm{~A}, \\ & 15 \mathrm{~V} \leq \mathrm{V}_{\text {II }} \leq 40 \mathrm{~V} \\ & \text { Circuit of Figure 2 } \end{aligned}$	12	$\begin{aligned} & 11.52 / 11.40 \\ & 12.48 / 12.60 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\operatorname{Min}) \\ \mathrm{V}(\mathrm{Max}) \end{gathered}$
Vout	Output Voltage MIK2576HV	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3 \mathrm{~A}, \\ & 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} \\ & \text { Circuit of Figure } \end{aligned}$	12	$\begin{aligned} & 11.52 / 11.40 \\ & 12.54 / 12.66 \end{aligned}$	$\begin{aligned} & V \\ & V(\text { Min }) \\ & \text { V(Max) } \end{aligned}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	88		\%

Electrical Characteristics MIK2576-15, MIK2576HV-15
Specifications with standard type face are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{gathered} \text { MIK2576-15 } \\ \text { MIK2576HV-15 } \\ \hline \end{gathered}$		Units(Limits)
			Typ	Limit (Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
$V_{\text {OUt }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=25, \mathrm{I}_{\mathrm{LDAD}}=0.5 \mathrm{~A}$ Circuit of Figure 2	15	$\begin{aligned} & 14.70 \\ & 15.30 \end{aligned}$	$\begin{gathered} V \\ V(\operatorname{Min}) \\ V(\operatorname{Max}) \end{gathered}$
$V_{\text {OUt }}$	Output Voltage MIK2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \\ & 18 \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \\ & \hline \end{aligned}$	15	$\begin{aligned} & 14.40 / 14.25 \\ & 15.60 / 15.75 \\ & \hline \end{aligned}$	$\begin{gathered} V \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$
Vout	Output Voltage MIK2576HV	$\begin{array}{\|l} 0.5 \mathrm{~A} \leq \mathrm{I} \text { LOAD } \leq 3 \mathrm{~A}, \\ 18 \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} \\ \text { Circuit of Figure } 2 \\ \hline \end{array}$	15	$\begin{aligned} & 14.40 / 14.25 \\ & 15.68 / 15.83 \\ & \hline \end{aligned}$	$\begin{gathered} V \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=18 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	88		\%

Electrical Characteristics MIK2576-ADJ, MIK2576HV-ADJ

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{gathered} \text { MIK2576-ADJ } \\ \text { MIK2576HV-ADJ } \end{gathered}$		$\begin{gathered} \text { Units } \\ \text { (Limits) } \end{gathered}$
			Typ	Limit(Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
$V_{\text {OUt }}$	Feedback Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}, \\ & \mathrm{~V}_{\text {Out }}=5 \mathrm{~V} \\ & \text { Circuit of Figure } \end{aligned}$	1.230	$\begin{aligned} & 1.217 \\ & 1.243 \end{aligned}$	$\begin{aligned} & V \\ & V(\text { Min }) \\ & \text { V(Max) } \end{aligned}$
$\mathrm{V}_{\text {OUt }}$	Feedback Voltage MIK2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, 8 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}} \leq 40 \mathrm{~V} \\ & \mathrm{~V}_{\text {OuT }}=5 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	1.230	$\begin{aligned} & 1.193 / 1.180 \\ & 1.267 / 1.280 \end{aligned}$	$\begin{gathered} V \\ V(\operatorname{Min}) \\ V(\text { Max }) \end{gathered}$
$V_{\text {OUt }}$	Feedback Voltage MIK2576HV	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, 8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 60 \mathrm{~V}, \\ & \mathrm{~V}_{\text {out }}=5 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	1.230	$\begin{aligned} & 1.193 / 1.180 \\ & 1.273 / 1.286 \end{aligned}$	$\begin{aligned} & V \\ & \text { V(Min) } \\ & \text { V(Max) } \end{aligned}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	77		\%

Simple Switcher (3A Step-
 Down Voltage Regulator)

All Output Voltage Versions

Electrical Characteristics

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathbb{I N}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and Adjustable version, $\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}$ for the 12 V version, and $\mathrm{V}_{\mathrm{IN}}=30 \mathrm{~V}$ for the 15 V version, , $I_{\text {LOAD }}=500 \mathrm{~mA}$.

Symbol	Parameter	Conditions	$\begin{gathered} \text { MIK2576-XX } \\ \text { MIK2576HV-XX } \\ \hline \end{gathered}$		$\begin{gathered} \text { Units } \\ \text { (Limits) } \end{gathered}$
			Typ	Limit (Note 2)	
DEVICE PARAMETERS					
I_{b}	Feedback Bias Current	$\mathrm{V}_{\text {Out }}=5 \mathrm{~V}$ ((Adjustable Version Only)	50	100/500	nA
f_{0}	Oscillator Frequency	(Note 8)	52	$\begin{aligned} & 47 / 42 \\ & 58 / 63 \end{aligned}$	$\begin{gathered} \mathrm{kHz} \\ \mathrm{kHz}(\mathrm{Min}) \\ \mathrm{kHz}(\mathrm{Max}) \end{gathered}$
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	$\mathrm{I}_{\text {out }}=3 \mathrm{~A}($ Note 4)	1.4	1.8/2.0	$\begin{gathered} V \\ \mathrm{~V}(\mathrm{Max}) \\ \hline \end{gathered}$
DC	Max Duty Cycle (ON)	(Note 5)	98	93	$\begin{gathered} \% \\ \%(\text { Min }) \end{gathered}$
ICL	Current Limit	(Notes 4, 8)	5.8	$\begin{aligned} & 4.2 / 3.5 \\ & 6.9 / 7.5 \end{aligned}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~A}(\mathrm{Min}) \\ \mathrm{A}(\mathrm{Max}) \end{gathered}$
I_{L}	Output Leakage Current	(Notes 6, 7): Output $=0 \mathrm{~V}$ Output $=-1 \mathrm{~V}$ Output $=-1 \mathrm{~V}$	7.5	$\begin{gathered} 2 \\ 30 \end{gathered}$	$\begin{gathered} \mathrm{mA}(\mathrm{Max}) \\ \mathrm{mA} \\ \mathrm{~mA}(\mathrm{Max}) \\ \hline \end{gathered}$
I_{0}	Quiescent Current	(Note 6)	5	10	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\mathrm{Max}) \end{gathered}$
$\mathrm{I}_{\text {StBy }}$	Standby Quiescent Current		50	200	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\mathrm{Max}) \\ \hline \end{gathered}$

$\overline{\text { ON/OFF CONTROL }}$					
V_{H}	$\overline{O N} / O F F$ Pin Logic Input Level	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	1.4	2.2/2.4	V (Min)
$\mathrm{V}_{\text {IL }}$		$\mathrm{V}_{\text {OUT }}=$ Nominal Output Voltage	1.2	1.0/0.8	V(Max)
I_{H}	$\overline{\text { ON/OFF Pin Input }}$ Current	$\overline{\text { ON/OFF Pin }}=5 \mathrm{~V}$ (OFF)	12	30	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\mathrm{Max}) \\ \hline \end{gathered}$
IL		$\overline{\text { ON }} /$ OFF Pin $=0 V(\mathrm{ON})$	0	10	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\mathrm{Max}) \\ \hline \end{gathered}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face).
Note 3: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the MIK2576/MIK2576HV is used as shown in the Figure 2 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.
Note 4: Output pin sourcing current. No diode, inductor or capacitor connected to output.
Note 5: Feedback pin removed from output and connected to 0 V .
Note 6: Feedback pin removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5 V , versions, and +25 V for the 12 V and 15 V versions, to force the output transistor OFF.
Note 7: $\mathrm{V}_{\text {IN }}=40 \mathrm{~V}$ (60 V for high voltage version).
Note 8: The oscillator frequency reduces to approximately 11 kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This self protections feature lowers the average power dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%.

Simple Switcher (3A Step-
 Down Voltage Regulator)

Typical Performance Characteristics (Circuit of Figure 2)

Normalized Output Voltage

Standby
Quiescent Current

SWITCH CURRENT (A)

Line Regulation

Quiescent Current

Efficiency

INPUT VOLTAGE (V)

Dropout Voltage

Oscilator Frequency

JUNCTION TEMPERATURE (${ }^{\circ} \mathrm{C}$)

Feedback Voltage
vs Duty Cycle

Switching Waveforms

Feedback Pin Current

Load Transient Response

$\mathrm{V}_{\text {OUT }}=15 \mathrm{~V}$
A: Output Pin Voltage, 50V/div
B: Output Pin Current, 2A/div
C: Inductor Current, 2A/div
D: Output Ripple Voltage, $50 \mathrm{mV} / \mathrm{div}$,
AC-Coupled
Horizontal Time Base: $\mathbf{5 \mu} \mathbf{~ s} / \mathrm{div}$

Test Circuit and Layout Guidelines

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance generate voltage transients which can cause problems. For minimal inductance and ground loops, the length of the leads indicated by heavy lines should be kept as short as possible.
Single-point grounding (as indicated) or ground plane construction should be used for best results. When using the Adjustable version, physically locate the programming resistors near the regulator, to keep the sensitive feedback wiring short.

Fixed Output Voltage Versions (Figure 2a)

$\mathrm{C}_{\mathrm{IN}}-100 \mu \mathrm{~F}, 75 \mathrm{~V}$, Aluminum Electrolytic
$\mathrm{C}_{\text {out }}-1000 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic
D1 - Schottky, MBR360
$\mathrm{L}_{1}-100 \mu \mathrm{H}$, Pulse Eng. PE-92108
$R_{1}-2 k, 0.1 \%$
$\mathrm{R}_{2}-6.12 \mathrm{k}, 0.1 \%$
Adjustable Output Voltage Version (Figure 2b)

$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {REF }}\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)$
$R_{2}=R_{1}\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}-1\right)$
where $\mathrm{V}_{\mathrm{REF}}=1.23 \mathrm{~V}, \mathrm{R} 1$ between 1 k and 5 k

Pad location MIK2576

Chip Size $3.95 \times 2.65 \mathrm{~mm}$

Pad Location Coordinates (the center of pads)

\mathbf{N}	Pad size ($\mu \mathrm{m})$	Coordinates $(\mu \mathrm{m})$	
		X	Y
1	190×190	220.5	1640
1	190×190	1244	1900
2	190×500	985.5	619.5
3	190×190	1893.5	2399
3	190×190	2935	2403
3	190×190	3716.5	603.5
4	190×190	3716.5	254
5	190×190	3716.5	2399

