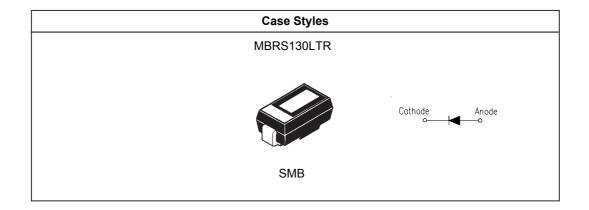
International **TOR** Rectifier

SCHOTTKY RECTIFIER

MBRS130LTR

1 Amp


Major Ratings and Characteristics

Characteristics	MBRS130LTR	Units
I _{F(AV)} Rectangular waveform	1.0	А
V _{RRM}	30	V
I _{FSM} @t _p =5µs sine	230	А
V _F @1.0Apk, T _J =125°C	0.30	V
T _J range	- 55 to 125	°C

Description/ Features

The MBRS130LTR surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

MBRS130LTR

Bulletin PD-20588 rev. E 07/04

International **10** Rectifier

Voltage Ratings

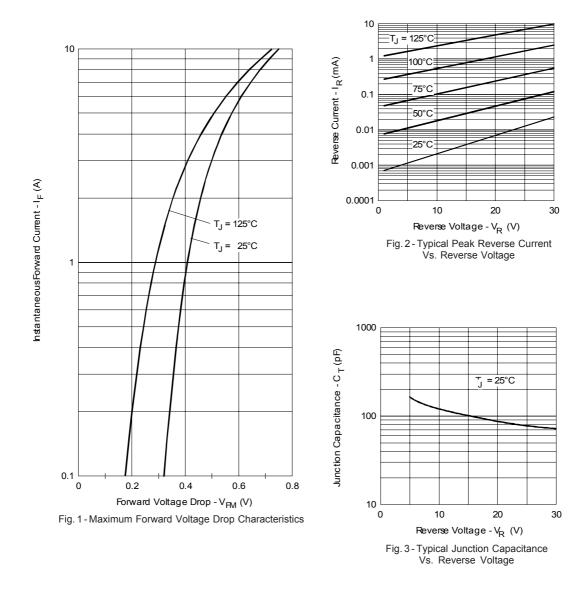
Part number	MBRS130LTR
V _R Max. DC Reverse Voltage (V)	20
V _{RWM} Max. Working Peak Reverse Voltage (V)	30

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	1.0	A	50% duty cycle @ T_L = 106 °C, rectangular wave form	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	230	A	5µs Sine or 3µs Rect. pulse	Following any rated load condition and
	Surge Current	40		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non-Repetitive Avalanche Energy	3.0	mJ	$T_{J} = 25 \text{ °C}, I_{AS} = 1A, L = 6mH$	
I _{AR}	Repetitive Avalanche Current	1.0	A	Current decaying linearly to zer Frequency limited by T_J max. V	ro in 1 µsec ′a = 1.5 x Vr typical

Electrical Specifications

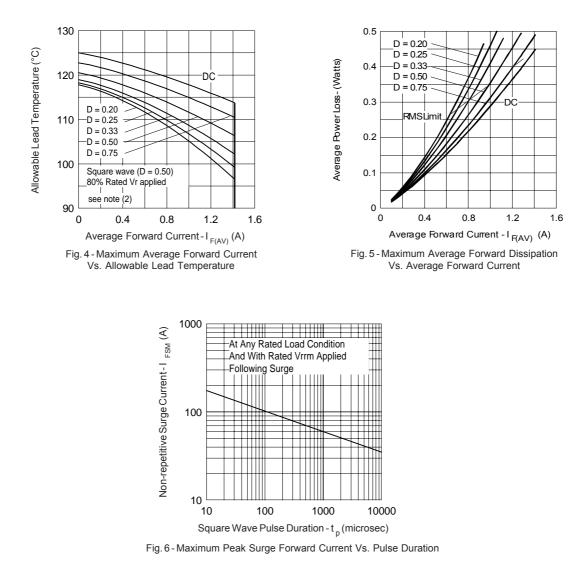
	Parameters	Value	Units		Conditions
V _{FM}	Max. Forward Voltage Drop (1)	0.420	V	@ 1A	T,= 25 °C
		0.470	V	@ 2A	1 _J = 25 C
		0.300	V	@ 1A	T ₁ = 125 °C
		0.370	V	@ 2A	1, 120 0
		1	mA	T _J = 25 °C	
I _{RM} Max. R	lax. Reverse Leakage Current (1)	10	mA	T _J = 100 °C	V_R = rated V_R
		20	mA	T _J = 125 °C	
CT	Max. Junction Capacitance	200	pF	$V_R = 5V_{DC}$ (test signal range 100KHz to 1Mhz) 25°C	
Ls	Typical Series Inductance	2.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs		
	(Rated V _R)				


(1) Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions
TJ	Max. Junction Temperature Range(*)	- 55 to 125	°C	
T _{stg}	Max. Storage Temperature Range	- 55 to 150	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	25	°C/W	DC operation (See Fig. 4)
R _{thJA}	Max. Thermal Resistance Junction to Ambient	80	°C/W	DC operation
wt	Approximate Weight	0.10(0.003)	g(oz.)	
	Case Style	SMB		Similar to DO-214AA
	Device Marking	IR13L	-	

 $\binom{*}{dTj} \ \frac{dPtot}{dTj} < \frac{1}{Rth(j\text{-}a)} \ thermal \ runaway \ condition \ for \ a \ diode \ on \ its \ own \ heatsink$


(**) Mounted 1 inch square PCB

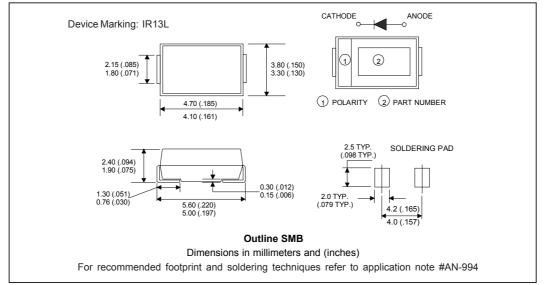
MBRS130LTR

Bulletin PD-20588 rev. E 07/04

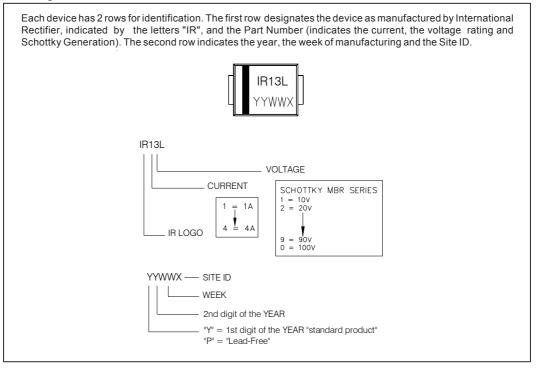
International


```
(2) Formula used: T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC};

Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D) (see Fig. 6);


Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1 - D); I_R @ V_{R1} = 80\% rated V_R
```

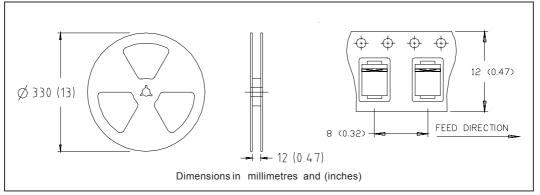
International


MBRS130LTR

Bulletin PD-20588 rev. E 07/04

Outline Table

Marking & Identification



www.irf.com

MBRS130LTR

Bulletin PD-20588 rev. E 07/04

Tape & Reel Information

Ordering Information Table

Device Code	MBR S 1 30 L TR -			
	1 2 3 4 5 6 7			
	 Schottky MBR Series S = SMB 			
	 3 - Current Rating (1 = 1 A) 4 - Voltage Rating (30 = 30V) 			
	5 - L = Low Forward Voltage			
	 6 • none = Box (1000 pieces) • TR = Tape & Reel (3000 pieces) 			
	7 • none = Standard Production			
	• PbF = Lead-Free			

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 07/04

www.irf.com