

EL5150, EL5151, EL5250, EL5251, EL5451

PRELIMINARY

Data Sheet

February 26, 2004

```
FN7384.1
```

200MHz Amplifiers

The EL5150, EL5151, EL5250, EL5251, and EL5451 are 200MHz bandwidth -3dB voltage mode

feedback amplifiers with DC accuracy of 0.01%, 1mV offsets and 10kV/V open loop gains. These amplifiers are ideally suited for applications ranging from precision measurement instrumentation to high speed video and monitor applications. Capable of operating with as little as 1.4mA of current from a single supply ranging from 5V to 12V dual supplies ranging from $\pm 2.5V$ to $\pm 5.0V$, these amplifiers are also well suited for handheld, portable and battery-powered equipment.

Single amplifiers are offered in SOT-23 packages and duals in a 10-pin MSOP package for applications where board space is critical. Quad amplifiers are available in a 14-pin SO package. Additionally, singles and duals are available in the industry-standard 8-pin SO package. All parts operate over the industrial temperature range of -40°C to +85°C.

PART NUMBER	PACKAGE	TAPE & REEL	PKG. DWG. #
EL5150IS	8-Pin SO	-	MDP0027
EL5150IS-T7	8-Pin SO	7"	MDP0027
EL5150IS-T13	8-Pin SO	13"	MDP0027
EL5150IW-T7	6-Pin SOT-23	7" (3K pcs)	MDP0038
EL5150IW-T7A	6-Pin SOT-23	7" (250 pcs)	MDP0038
EL5151IW-T7	5-Pin SOT-23	7" (3K pcs)	MDP0038
EL5151IW-T7A	5-Pin SOT-23	7" (250 pcs)	MDP0038
EL5250IY	10-Pin MSOP	-	MDP0043
EL5250IY-T7	10-Pin MSOP	7"	MDP0043
EL5250IY-T13	10-Pin MSOP	13"	MDP0043
EL5251IS	8-Pin SO	-	MDP0027
EL5251IS-T7	8-Pin SO	7"	MDP0027
EL5251IS-T13	8-Pin SO	13"	MDP0027
EL5251IY	8-Pin MSOP	-	MDP0043
EL5251IY-T7	8-Pin MSOP	7"	MDP0043
EL5251IY-T13	8-Pin MSOP	13"	MDP0043
EL5451IS	14-Pin SO	-	MDP0027
EL5451IS-T7	14-Pin SO	7"	MDP0027
EL5451IS-T13	14-Pin SO	13"	MDP0027

Ordering Information

Features

- 200MHz -3dB bandwidth
- 110V/µs slew rate
- Very high open loop gains 50kV/V
- Low supply current = 1.4mA
- Single supplies from 5V to 12V
- Dual supplies from ±2.5V to ±5V
- Fast disable on the EL5150 and EL5250
- Low cost

Applications

- Imaging
- Instrumentation
- Video
- · Communications devices

EL5150

EL5251 (8-PIN MSOP) TOP VIEW

2

EL5151 (5-PIN SOT-23) TOP VIEW

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Supply Voltage between V _S and GND12V	Junction Te
Maximum Continuous Output Current	Storage Ter
Pin VoltagesGND -0.5V to V _S +0.5V	Ambient Op
Power Dissipation See Curves	Current into

unction Temperature	40°C to +125°C
torage Temperature	65°C to +150°C
mbient Operating Temperature	40°C to +85°C
urrent into I _N +, I _N -, CE	5mA

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_J = T_C = T_A$

$\label{eq:expectations} Electrical Specifications \quad V_{S}\text{+}=\text{+}5\text{V}, \ V_{S}\text{-}=\pm5\text{V}, \ \mathsf{R}_{L}=150\Omega, \ \mathsf{T}_{A}=25^{\circ}\text{C}, \ \text{unless otherwise specified}.$

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT	
BW	-3dB Bandwidth	$A_{V} = +1, R_{L} = 500\Omega$		200		MHz	
		$A_{V} = +2, R_{L} = 150\Omega$		36		MHz	
GBWP	Gain Bandwidth Product	A _V = 500		86		MHz	
BW1	0.1dB Bandwidth	$A_{V} = +1, R_{L} = 500\Omega$		10		MHz	
SR	Slew Rate	$V_{O} = \pm 2.5 V, A_{V} = +2$	50	67		V/µs	
		$V_{O} = \pm 3.0$ V, $A_{V} = 1$, $R_{L} = 500\Omega$		100		V/µs	
t _S	0.1% Settling Time	$V_{OUT} = -1V$ to $+1V$, $A_V = -2$		80		ns	
dG	Differential Gain Error (Note 1)	$A_{V} = +2, R_{L} = 150\Omega$		0.1		%	
dP	Differential Phase Error (Note 1)	$A_{V} = +2, R_{L} = 150\Omega$		1.17		o	
V _N	Input Referred Voltage Noise			12		nV/√Hz	
I _N	Input Referred Current Noise			1.6		pA/√Hz	
DC PERFORMA	NCE						
V _{OS}	Offset Voltage		-1	0.5	1	mV	
T _C V _{OS}	Input Offset Voltage Temperature Coefficient	Measured from T _{MIN} to T _{MAX}		-2		µV/°C	
A _{VOL}	Open Loop Gain		15	56		kV/V	
INPUT CHARAC	TERISTICS		I		1		
CMIR	Common Mode Input Range	Guaranteed by CMRR test	TBD		TBD	V	
CMRR	Common Mode Rejection Ratio		85	100		dB	
IB	Input Bias Current		-100	20	+100	mA	
I _{OS}	Input Offset Current		-30	6	30	nA	
R _{IN}	Input Resistance		80	170		MΩ	
C _{IN}	Input Capacitance			1		pF	
OUTPUT CHAR	ACTERISTICS						
V _{OUT}	Output Voltage Swing Low	$R_L = 150\Omega$ to GND	±2.5	±2.8		V	
		$R_L = 500\Omega$ to GND	±3.1	±3.4		V	
IOUT	Output Current	$R_L = 10\Omega$ to GND	±40	±70		mA	
ENABLE (SELE	CTED PACKAGES ONLY)						
t _{EN}	Enable Time			170		ns	
t _{DIS}	Disable Time			1.25		μs	
I _{IHCE}	CE Pin Input High Current	$\overline{CE} = V_S +$		0	-1	μA	

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
I _{ILCE}	CE Pin Input Low Current	CE = V _S -	5	13	25	μA
VIHCE	CE Input High Voltage for Power-down		V _S + -1			V
V _{ILCE}	CE Input Low Voltage for Power-down				V _S + -3	V
SUPPLY						
ISON	Supply Current - Enabled (per amplifier)	No load, V _{IN} = 0V, CE = +5V	1.12	1.35	1.6	mA
ISOFF	Supply Current - Disabled	No load, V _{IN} = 0V	5	13	25	μA
PSRR	Power Supply Rejection Ratio	DC, $V_S = \pm 3.0V$ to $\pm 6.0V$	80	110		dB

Electrical Specifications	V_{S} + = +5V, V_{S} - = ±5V, R_{L} = 150 Ω , T_{A} = 25°C, unless otherwise specified.	(Continued)
---------------------------	--	-------------

NOTE:

1. Standard NTSC test, AC signal amplitude = $286mV_{P-P}$, f = 3.58MHz, V_{OUT} is swept from 0.8V to 3.4V, R_L is DC coupled

Typical Performance Curves

FIGURE 1. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

4 intersil