October 2003 Revised April 2005

FIN3385 • FIN3383 • FIN3384 • FIN3386 Low Voltage 28-Bit Flat Panel Display Link Serializers/Deserializers

General Description

FAIRCHILD

SEMICONDUCTOR

The FIN3385 and FIN3383 transform 28 bit wide parallel LVTTL (Low Voltage TTL) data into 4 serial LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data stream over a separate LVDS link. Every cycle of transmit clock 28 bits of input LVTTL data are sampled and transmitted.

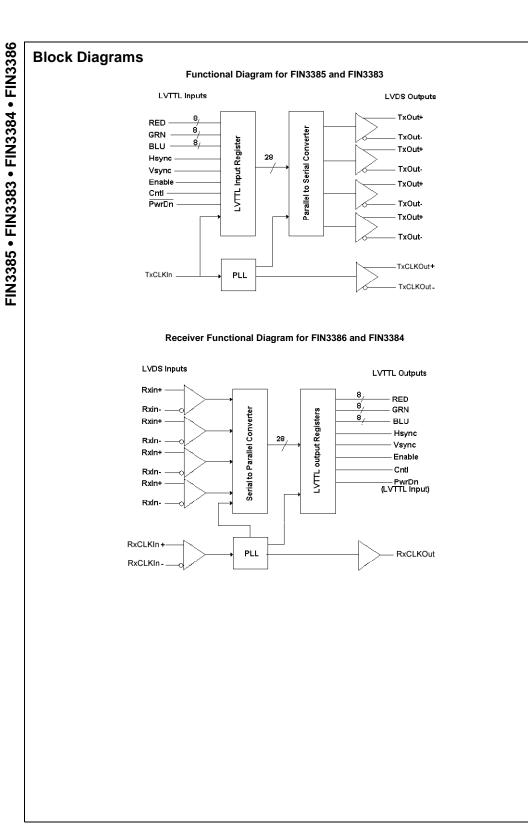
The FIN3386 and FIN3384 receive and convert the 4/3 serial LVDS data streams back into 28/21 bits of LVTTL data. Refer to Table 1 for a matrix summary of the Serializers and Deserializers available. For the FIN3385, at a transmit clock frequency of 85MHz, 28 bits of LVTTL data are transmitted at a rate of 595Mbps per LVDS channel.

These chipsets are an ideal solution to solve EMI and cable size problems associated with wide and high-speed TTL interfaces.

Features

- Low power consumption
- 20 MHz to 85 MHz shift clock support
- ±1V common-mode range around 1.2V
- Narrow bus reduces cable size and cost
- High throughput (up to 2.38 Gbps throughput)
- Internal PLL with no external component
- Compatible with TIA/EIA-644 specification
- Devices are offered 56-lead TSSOP packages

Ordo	rina	Code:
Orde	ring	Code:


Order Number	Package Number	Package Description	-
FIN3383MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide	
FIN3384MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide	
FIN3385MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide	
FIN3386MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide	
Devices also available	in Tape and Reel. Specify	by appending suffix letter "X" to the ordering code.	- ·

ses also available in Tape and Reel. Specify by appending sum letter X to the ordering code.

TABLE 1. Display Panel Link Serializers/Deserializers Chip Matrix

Part	CLK Frequency	LVTTL IN	LVDS OUT	LVDS IN	LVTTL OUT	Package
FIN3385	85	28	4			56 TSSOP
FIN3383	66	28	4			56 TSSOP
FIN3386	85			4	28	56 TSSOP
FIN3384	66			4	28	56 TSSOP

© 2005 Fairchild Semiconductor Corporation DS500864

TRANSMITTERS

Pin Descriptions

Pin Names	I/O Type	Number of Pins	Description of Signals			
TxIn	I	28/21	LVTTL Level Input			
TxCLKIn			LVTTL Level Clock Input The rising edge is for data strobe.			
TxOut+	0	4/3	Positive LVDS Differential Data Output			
TxOut-	0	4/3	Negative LVDS Differential Data Output			
TxCLKOut+	0	1	Positive LVDS Differential Clock Output			
TxCLKOut- O 1		1	Negative LVDS Differential Clock Output			
R_FB	FB I 1		Rising Edge Clock (HIGH), Falling Edge Clock (LOW)			
PwrDn	PwrDn I 1		LVTTL Level Power-Down Input Assertion (LOW) puts the outputs in High Impedance state.			
PLL V _{CC}	I	1	Power Supply Pin for PLL			
PLL GND	I	2	Ground Pins for PLL			
LVDS V _{CC}	I	1	Power Supply Pin for LVDS Output			
LVDS GND I 3		3	Ground Pins for LVDS Output			
V _{CC} I 3		3	Power Supply Pins for LVTTL Input			
GND	I	5	Ground pins for LVTTL Input			
NC			No Connect			

Connection Diagram

FIN3383 and FIN3385 (28:4 Transmitter) Pin Assignment for TSSOP

Pin As	Pin Assignment for TSSOP						
v _{cc} –	1	56	— TxIn4				
TxIn5 —	2	55	TxIn3				
Txin6 —	3	54	TxIn2				
TxIn7 —	4	5 3	- GND				
GND —	5	52	— TxIn 1				
Txin8 —	6	51	— TxIn0				
Txin9 🗕	7	50	TxIn27				
Txin10 —	8	49	- LVDS GND				
v _{cc} –	9	48	TxOut 0-				
Txin 11 🗕	10	47	TxOut 0+				
Txin 12 🗕	11	46	TxOut 1-				
Txin 13 🗕	12	45	TxOut 1+				
GND 🗕	13	44	LVDS VCC				
Txin 14 🗕	14	43	LVDS GND				
Txin 15 🗕	15	42	TxOut 2-				
Txin16 🗕	16	41	TxOut 2+				
R_FB -	17	40	- TxCLKOut-				
Txin 17 🗕	18	39	- TxCLKOut+				
Txin 18 🗕	19	38	— TxOut3-				
Txin 19 🗕	20	37	TxOut 3+				
GND -	21	36	LVDS GND				
TxIn20 —	22	35	PLL GND				
Txin21 —	23	34	- PLL V _{CC}				
TxIn22 —	24	33	PLL GND				
Txin23 —	25	32	- PwrDn				
v _{cc} –	26	31	- TxCLKIn				
TxIn24 —	27	30	TxIn26				
TxIn25 —	28	29	GND				
			I				

Truth Table

	Inputs	Outputs				
Txin	Txin TxCLKin		TxOut±	TxCLKOut±		
Active	Active	ve H	L/H	L/H		
Active	L/H/Z	Н	L/H	X (Note 2)		
F	Active	Н	L	L/H		
F	F F		L	X (Note 2)		
Х	Х	L	Z	Z		

H = HIGH Logic Level L = LOW Logic Level X = Don't Care Z = High Impedance F = Floating

Note 1: The outputs of the transmitter or receiver will remain in a High Impedance state until $\rm V_{\rm CC}$ reaches 2V.

Note 2: TxCLKOut± will settle at a free running frequency when the part is powered up, PwrDn is HIGH and the TxCLKIn is a steady logic level (L/H/Z).

RECEIVERS

Pin Descriptions

Pin Names	I/O Type	Number of Pins	Description of Signals
RxIn	I	4/3	Negative LVDS Differential Data Input
RxIn+	I	4/3	Positive LVDS Differential Data Input
RxCLKIn-	I	1	Negative LVDS Differential Clock Input
RxCLKIn+	I	1	Positive LVDS Differential Clock Input
RxOut	0	28/21	LVTTL Level Data Output Goes HIGH for PwrDn LOW
RxCLKOut	0	1	LVTTL Clock Output
PwrDn	I	1	LVTTL Level Input Refer to Transmitter and Receiver Power-Up and Power-Down Operation Truth Table
PLL V _{CC}	I	1	Power Supply Pin for PLL
PLL GND	I	2	Ground Pins for PLL
LVDS V_{CC}	I	1	Power Supply Pin for LVDS Input
LVDS GND	I	3	Ground Pins for LVDS Input
V _{CC}	I	4	Power Supply for LVTTL Output
GND	I	5	Ground Pin for LVTTL Output
NC			No Connect

Connection Diagram

FIN3386 and FIN3384 (4:28 Receiver) Pin Assignment for TSSOP

Pin	Pin Assignment for TSSOP							
		\bigcirc						
RxOut22		1	56	- v _{cc}				
RxOut23	-	2	55	RxOut21				
RxOut24	-	3	54	- RxOut20				
GND	-	4	5 3	- RxOut19				
RxOut25	-	5	52	- GND				
RxOut26	-	6	51	- RxOut 18				
RxOut27	-	7	50	RxOut17				
LVDS GND	-	8	49	RxOut 16				
RxIn0-	-	9	48	– v _{cc}				
RxIn 0+	-	10	47	- RxOut15				
RxIn 1-	-	11	46	- RxOut14				
RxIn1+	-	12	45	- RxOut13				
LVDS V _{CC}	-	13	44	- GND				
LVDS GND	_	14	43	- RxOut12				
RxIn 2-	-	15	42	- RxOut 11				
RxIn2+	_	16	41	- RxOut10				
RxCLK In-	-	17	40	- v _{cc}				
RxCLK In+	-	18	39	RxOut9				
RxIn 3-	-	19	38	RxOut 8				
RxIn 3+	-	20	37	RxOut 7				
LVDS GND	-	21	36	- GND				
PLL GND	-	22	35	RxOut 6				
PLL V _{CC}	-	23	34	RxOut 5				
PLL GND	-	24	33	RxOut 4				
PwrDn	_	25	32	 RxOut 3 				
RxCLK	_	26	31	- Vcc				
RxOut0	-	27	30	RxOut2				
GND	-	28	29	RxOut1				

Transmitter and Receiver Power-Up/Power-Down Operation Truth Table

The outputs of the transmitter remain in the High-Impedance state until the power supply reaches 2V. The following table shows the operation of the transmitter during power-up and power-down and operation of the PwrDn pin.

Transmitter			PwrDn	Normal			
	V _{CC}	<2V	>2V	>2V	>2V	>2V	>2V
	TxIn	Х	Х	Active	Active		
	TxOut	Z	Z	Active	Х		
	TxCLKIn	Х	Х	Active	H/L/Z		
	TxCLKOut±	Z	Z	Active	(Note 3)		
	PwrDn	L	L	Н	Н	Н	Н
Receiver			PwrDn				
	RxIn±	Х	Х	Active	Active	(Note 4)	(Note 4)
	RxOut	Z	L	L/H	Р	Н	Р
	RxCLKIn±	Х	Х	Active	(Note 4)	Active	(Note 4)
	RxCLKOut	Z	(Note 5)	Active	(Note 5)	(Note 5)	(Note 5)
	PwrDn	L	L	Н	н	Н	н
	V _{CC}	<2V	<2V	<2V	<2V	<2V	<2V

H = HIGH Logic Level L = LOW Logic Level P = Last Valid State

X = Don't Care Z = High-Impedance

Note 3: If the transmitter is powered up and PwrDn is inactive HIGH and the clock input goes to any state LOW, HIGH, or Z then the internal PLL will go to a known low frequency and stay until the clock starts normal operation again.

Note 4: If the input is terminated and un-driven (Z) or shorted or open. (fail safe condition)

Note 5: For PwrDn or fail safe condition the RxCLKOut pin will go LOW for Panel Link devices and HIGH for Channel Link devices.

Note 6: Shorted here means (\pm inputs are shorted to each other, or \pm inputs are shorted to each other and Ground or V_{CC}, or either \pm inputs are shorted to Ground or V_{CC}) with no other Current/Voltage sources (noise) applied. If the V_{ID} is still in the valid range (greater than 100mV) and VCM is in the valid range (0V to 2.4V) then the input signal is still recognized and the part will respond normally.

Absolute Maximum Ratings(Note 7)

Power Supply Voltage (V _{CC})	-0.3V to +4.6V
TTL/CMOS Input/Output Voltage	-0.5V to +4.6V
LVDS Input/Output Voltage	-0.3V to +4.6V
LVDS Output Short Circuit Current (I _{OSD})	Continuous
Storage Temperature Range (T _{STG})	-65°C to +150°C
Maximum Junction Temperature (T _J)	150°C
Lead Temperature (T _L)	
(Soldering, 4 seconds)	260°C
ESD Rating (HBM, 1.5 kΩ, 100 pF)	
I/O to GND	>10.0 kV
All Pins	>6.5 kV
ESD Rating (MM, 0Ω, 200 pF)	>400V

Recommended Operating Conditions

Supply Voltage (V _{CC})	3.0V to 3.6V
Operating Temperature (T _A)(Note 7)	-10°C to +70°C
Maximum Supply Noise Voltage	
(V _{CCNPP})	100 mV _{P-P} (Note 8)

Note 7: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 8: 100mV V_{CC} noise should be tested for frequency at least up to 2 MHz. All the specification below should be met under such a noise.

Transmitter DC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified. (Note 9)

Symbol	Parameter	Test Conditie	ons	Min	Тур	Max	Units
Transmitte	er LVTTL Input Characteristics	•					·
V _{IH}	Input High Voltage			2.0		V _{CC}	V
VIL	Input Low Voltage			GND		0.8	V
V _{IK}	Input Clamp Voltage	I _{IK} = -18 mA			-0.79	-1.5	V
I _{IN}	Input Current	$V_{IN} = 0.4V$ to $4.6V$			1.8	10.0	μA
		$V_{IN} = GND$		-10.0	0		μΑ
Transmitte	er LVDS Output Characteristics (Note 10)	•					
V _{OD}	Output Differential Voltage			250	TBD	450	mV
ΔV_{OD}	V _{OD} Magnitude Change from Differential LOW-to-HIGH	R ₁ = 100 Ω, See Figu	uro 1			35.0	mV
V _{OS}	Offset Voltage			1.125	1.25	1.375	V
ΔV_{OS}	Offset Magnitude Change from Differential LOW-to-HIGH						mV
I _{OS}	Short Circuit Output Current	$V_{OUT} = 0V$			-3.5	-5.0	mA
I _{OZ}	Disabled Output Leakage Current	$DO = 0V$ to 4.6V, $\overline{PwrDn} = 0V$			±1.0	±10.0	μA
Transmitte	er Supply Current	•					
ICCWT	28:4 Transmitter Power Supply Current		32.5 MHz		31.0	49.5	
	for Worst Case Pattern (With Load)	$R_L = 100 \ \Omega$,	40.0 MHz		32.0	55.0	mA
	(Note 11)	See Figure 3	66.0 MHz		37.0	60.5	mA
			85.0 MHz		42.0	66.0	
ICCPDT	Powered Down Supply Current	PwrDn = 0.8V			10.0	55.0	μA
I _{CCGT}	28:4 Transmitter Supply Current		32.5 MHz		29.0	41.8	
	for 16 Grayscale (Note 11)	See Figure 21	40.0 MHz		30.0	44.0	mA
		(Note 12)	65.0 MHz		35.0	49.5	IIIA
			85.0 MHz		39.0	55.0	

Note 9: All Typical values are at T_A = 25 °C and with V_{CC} = 3.3V.

Note 10: Positive current values refer to the current flowing into device and negative values means current flowing out of pins. Voltage are referenced to ground unless otherwise specified (except ΔV_{OD} and V_{OD}).

Note 11: The power supply current for both transmitter and receiver can be different with the number of active I/O channels.

Note 12: The 16-grayscale test pattern tests device power consumption for a "typical" LCD display pattern. The test pattern approximates signal switching needed to produce groups of 16 vertical strips across the display.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
t _{TCP}	Transmit Clock Period		11.76	T	50.0	ns
t _{тсн}	Transmit Clock (TxCLKIn) HIGH Time	See Figure 5	0.35	0.5	0.65	Т
t _{TCL}	Transmit Clock Low Time		0.35	0.5	0.65	Т
t _{CLKT}	TxCLKIn Transition Time (Rising and Failing)	(10% to 90%) See Figure 6	1.0		6.0	ns
t _{JIT}	TxCLKIn Cycle-to-Cycle Jitter				3.0	ns
t _{XIT}	TxIn Transition Time		1.5		6.0	ns
LVDS Tran	smitter Timing Characteristics					
t _{TLH}	Differential Output Rise Time (20% to 80%)	Soo Figuro 4		0.75	1.5	ns
t _{THL}	Differential Output Fall Time (80% to 20%)	See Figure 4		0.75	1.5	ns
t _{STC}	TxIn Setup to TxCLNIn	See Figure 5 (f = 85 MHz)	2.5			ns
t _{HTC}	TxIn Holds to TCLKIn		0			ns
t _{TPDD}	Transmitter Power-Down Delay	See Figure 12, (Note 13)	İ		100	ns
t _{TCCD}	Transmitter Clock Input to Clock Output Delay	$(T_A = 25^{\circ}C \text{ and with } V_{CC} = 3.3V)$			5.5	ns
	Transmitter Clock Input to Clock Output Delay	See Figure 9	2.8		6.8	
Transmitte	r Output Data Jitter (f = 40 MHz) (Note 14)	•				
t _{TPPB0}	Transmitter Output Pulse Position of Bit 0		-0.25	0	0.25	ns
t _{TPPB1}	Transmitter Output Pulse Position of Bit 1	See Figure 16	a-0.25	а	a+0.25	ns
t _{TPPB2}	Transmitter Output Pulse Position of Bit 2	$a = \frac{1}{f \times 7}$	2a-0.25	2a	2a+0.25	ns
t _{TPPB3}	Transmitter Output Pulse Position of Bit 3	f x 7	3a-0.25	3a	3a+0.25	ns
t _{TPPB4}	Transmitter Output Pulse Position of Bit 4		4a-0.25	4a	4a+0.25	ns
t _{TPPB5}	Transmitter Output Pulse Position of Bit 5		5a-0.25	5a	5a+0.25	ns
t _{TPPB6}	Transmitter Output Pulse Position of Bit 6		6a-0.25	6a	6a+0.25	ns
Transmitte	r Output Data Jitter (f = 65 MHz) (Note 14)					
t _{TPPB0}	Transmitter Output Pulse Position of Bit 0		-0.2	0	0.2	ns
t _{TPPB1}	Transmitter Output Pulse Position of Bit 1	See Figure 16	a-0.2	а	a+0.2	ns
t _{TPPB2}	Transmitter Output Pulse Position of Bit 2	$a = \frac{1}{f \times 7}$	2a-0.2	2a	2a+0.2	ns
t _{TPPB3}	Transmitter Output Pulse Position of Bit 3	f x 7	3a-0.2	3a	3a+0.2	ns
t _{TPPB4}	Transmitter Output Pulse Position of Bit 4		4a-0.2	4a	4a+0.2	ns
t _{TPPB5}	Transmitter Output Pulse Position of Bit 5		5a-0.2	5a	5a+0.2	ns
t _{TPPB6}	Transmitter Output Pulse Position of Bit 6		6a-0.2	6a	6a+0.2	ns
Transmitte	r Output Data Jitter (f = 85 MHz) (Note 14)					
t _{TPPB0}	Transmitter Output Pulse Position of Bit 0		-0.2	0	0.2	ns
t _{TPPB1}	Transmitter Output Pulse Position of Bit 1	See Figure 16 $a = \frac{1}{f \times 7}$	a-0.2	а	a+0.2	ns
t _{TPPB2}	Transmitter Output Pulse Position of Bit 2		2a-0.2	2a	2a+0.2	ns
t _{TPPB3}	Transmitter Output Pulse Position of Bit 3	fx7	3a-0.2	3a	3a+0.2	ns
t _{TPPB4}	Transmitter Output Pulse Position of Bit 4		4a-0.2	4a	4a+0.2	ns
t _{TPPB5}	Transmitter Output Pulse Position of Bit 5		5a-0.2	5a	5a+0.2	ns
t _{TPPB6}	Transmitter Output Pulse Position of Bit 6		6a-0.2	6a	6a+0.2	ns
t _{JCC}	FIN3385 Transmitter Clock Out Jitter	f = 40 MHz		350	370	
	(Cycle-to-Cycle)	f = 65 MHz		210	230	ps
	See Figure 20	f = 85 MHz		110	150	
t _{TPLLS}	Transmitter Phase Lock Loop Set Time (Note 15)	See Figure 22, (Note 14)			10.0	ms

Note 13: Outputs of all transmitters stay in 3-STATE until power reaches 2V. Both clock and data output begins to toggle 10ms after V_{CC} reaches 3V and Power-Down pin is above 1.5V.

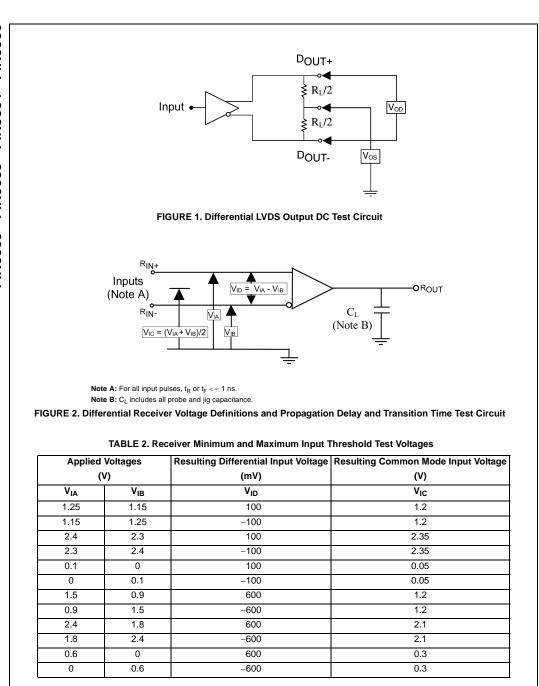
Note 14: This output data pulse position works for TTL inputs except the LVDS output bit mapping difference (see Figure 14). Figure 16 shows the skew between the first data bit and clock output. Also 2-bit cycle delay is guaranteed when the MSB is output from transmitter.

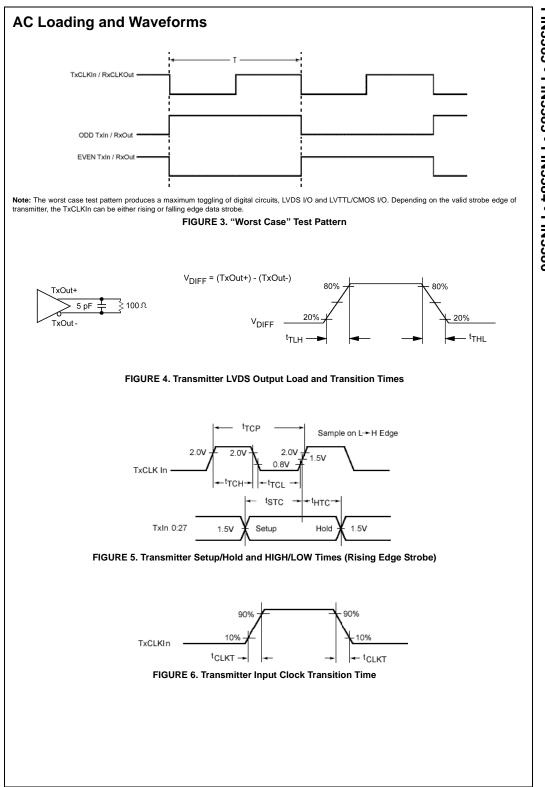
Note 15: This jitter specification is based on the assumption that PLL has a ref clock with cycle-to-cycle input jitter less than 2ns.

Symbol	Parameter	Test Conditions		Min	Тур	Max	U
LVTTL/CM	IOS DC Characteristics						
VIH	Input High Voltage			2.0		V _{CC}	
VIL	Input Low Voltage			GND		0.8	
V _{OH}	Output High Voltage	I _{OH} = -0.4 mA		2.7	3.3		
V _{OL}	Output Low Voltage	I _{OL} = 2mA			0.06	0.3	
V _{IK}	Input Clamp Voltage	I _{IK} = -18 mA			-0.79	-1.5	
I _{IN}	Input Current	$V_{IN} = 0V$ to 4.6V		-10.0		10.0	ļ
I _{OFF}	Input/Output Power Off Leakage Current	V _{CC} = 0V, All LVTTL Inputs/Outpu	ts 0V to 4.6V			±10.0	
I _{OS}	Output Short Circuit Current	V _{OUT} = 0V			-60.0	-120	r
	LVDS Input Characteristics						
V _{TH}	Differential Input Threshold HIGH	Figure 2, Table 2				100	r
V _{TL}	Differential Input Threshold LOW	Figure 2, Table 2		-100			r
VICM	Input Common Mode Range	Figure 2, Table 2		0.05		2.35	
IIN	Input Current	$V_{IN} = 2.4V, V_{CC} = 3.6V$	or 0V			±10.0	
		V _{IN} = 0V, V _{CC} = 3.6V or				±10.0	
Receiver	Supply Current						
ICCWR	4:28 Receiver Power Supply Current		32.5 MHz			70.0	
	for Worst Case Pattern (With Load)	C _L = 8 pF,	40.0 MHz			75.0	Ι,
	(Note 17)	See Figure 3	66.0 MHz			114	
			85.0 MHz			135	
ICCWR	3:21 Receiver Power Supply Current		32.5 MHz		49.0	60.0	
	for Worst Case Pattern (With Load)	C _L = 8 pF,	40.0 MHz		53.0	65.0	mA
	(Note 17)	See Figure 3	66.0 MHz		78.0	100	1
			85.0 MHz		90.0	115	
ICCPDT	Powered Down Supply Current	PwrDn = 0.8V (RxOut s	stays LOW)		NA	55.0	
t _{RCOP}	Receiver Clock Output (RxCLKOut) Period			11.76	Т	50.0	
t _{RCOL}	RxCLKOut LOW Time	See Figure 8		4.0	5.0	6.0	
t _{RCOH}	RxCLKOut HIGH Time	(f = 85MHz)		4.5	5.0	6.5	
t _{RSRC}	RxOut Valid Prior to RxCLKOut	(Rising Edge Strobe)		3.5			
t _{RHRC}	RxOut Valid After RxCLKOut			3.5			
t _{ROLH}	Output Rise Time (20% to 80%)	C _L = 8 pF,	C _L = 8 pF,		2.0	3.5	
t _{ROHL}	Output Fall Time (80% to 20%)	See Figure 4			1.8	3.5	
t _{RCCD}	Receiver Clock Input to Clock Output Delay	See Figure 20, (Note 1) $T_A = 25^{\circ}C$ and $V_{CC} = 3$	-	3.5	5.0	7.5	
t _{RPDD}	Receiver Power-Down Delay	See Figure 13				1.0	
t _{RSPB0}	Receiver Input Strobe Position of Bit 0			0.49	0.84	1.19	
t _{RSPB1}	Receiver Input Strobe Position of Bit 1			2.17	2.52	2.87	
t _{RSPB2}	Receiver Input Strobe Position of Bit 2			3.85	4.20	4.55	
t _{RSPB3}	Receiver Input Strobe Position of Bit 3	See Figure 17 (f = 85M	Hz)	5.53	5.88	6.23	
t _{RSPB4}	Receiver Input Strobe Position of Bit 4			7.21	7.56	7.91	
t _{RSPB5}	Receiver Input Strobe Position of Bit 5			8.89	9.24	9.59	
t _{RSPB6}	Receiver Input Strobe Position of Bit 6			10.57	10.92	11.27	
t _{RSKM}	RxIN Skew Margin	See Figure 17, (Note 19)		290			
t _{RPLLS}	Receiver Phase Lock Loop Set Time	See Figure 11				10.0	1

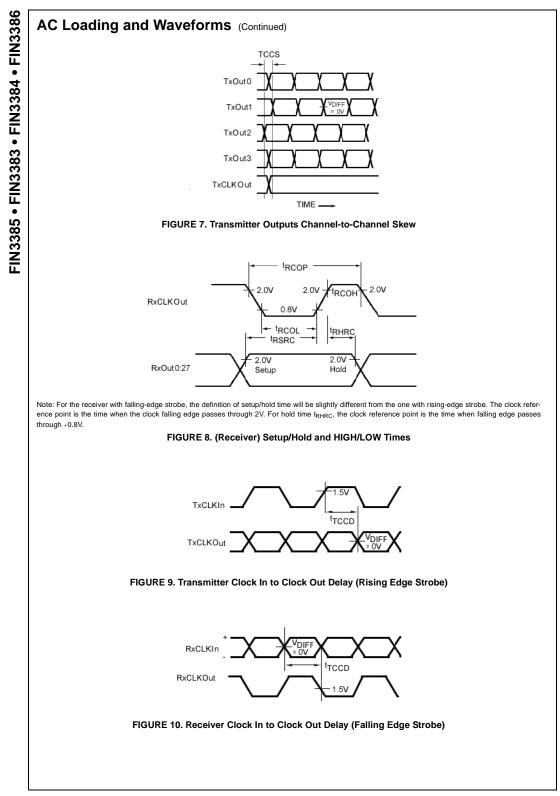
Note 18: Total channel latency from Sewrializer to deserializer is (T + t_{TCCD}). There is the clock period.

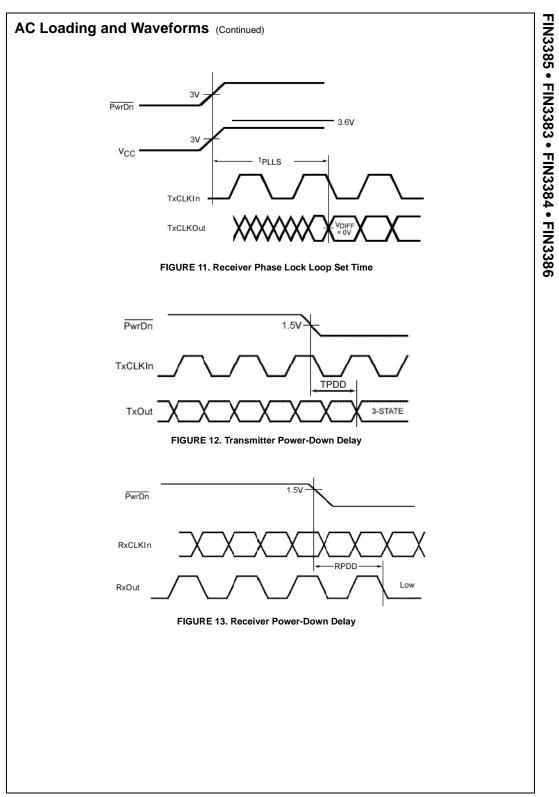
Note 19: Receiver skew margin is defined as the valid sampling window after considering potential setup/hold time and minimum/maximum bit position.

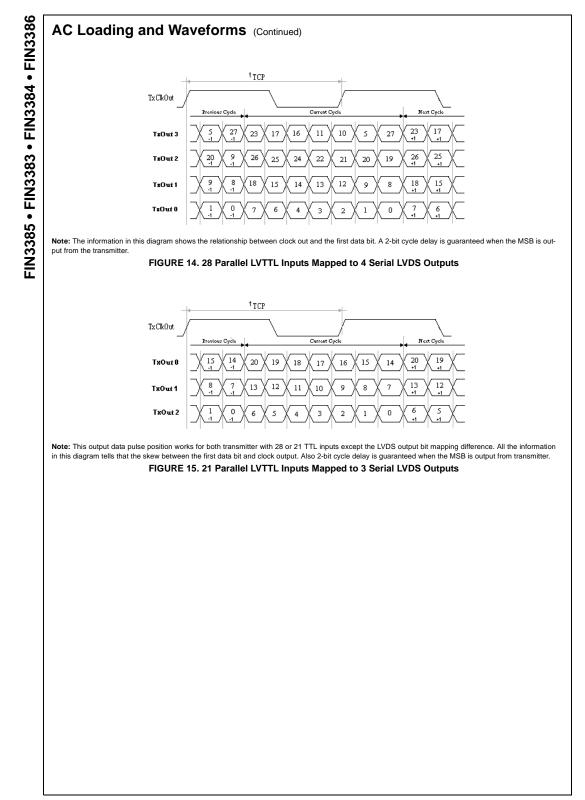

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
t _{RCOP}	Receiver Clock Output (RxCLKOut) Period	See Figure 8	15.0	Т	50.0	ns
t _{RCOL}	RxCLKOut LOW Time		10.0	11.0		ns
t _{RCOH}	RxCLKOut HIGH Time	See Figure 8	10.0	12.2		ns
t _{RSRC}	RxOut Valid Prior to RxCLKOut	(Rising Edge Strobe)	6.5	11.6		ns
t _{RHRC}	RxOut Valid After RxCLKOut	(f = 40 MHz)	6.0	11.6		ns
t _{RCOL}	RxCLKOut LOW Time		5.0	6.3	9.0	ns
t _{RCOH}	RxCLKOut HIGH Time	See Figure 8, (Note 20)	5.0	7.6	9.0	ns
t _{RSRC}	RxOut Valid Prior to RxCLKOut	(Rising Edge Strobe)	4.5	7.3		ns
t _{RHRC}	RxOut Valid After RxCLKOut	(f = 66 MHz)	4.0	6.3		ns
t _{ROLH}	Output Rise Time (20% to 80%)	C _L = 8 pF, (Note 20)		2.0	5.0	ns
t _{ROHL}	Output Fall Time (80% to 20%)	See Figure 8		1.8	5.0	ns
t _{RCCD}	Receiver Clock Input to Clock Output Delay	See Figure 10, (Note 21)	3.5 5.0		7.5	ns
		$T_A=25^\circ C$ and $V_{CC}=3.3 V$	5.5	5.0	7.5	113
t _{RPDD}	Receiver Power-Down Delay	See Figure 13			1.0	μS
t _{RSPB0}	Receiver Input Strobe Position of Bit 0	See Figure 17 (f = 40 MHz)	1.0	1.4	2.15	ns
t _{RSPB1}	Receiver Input Strobe Position of Bit 1		4.5	5.0	5.8	ns
t _{RSPB2}	Receiver Input Strobe Position of Bit 2		8.1	8.5	9.15	ns
t _{RSPB3}	Receiver Input Strobe Position of Bit 3		11.6	11.9	12.6	ns
t _{RSPB4}	Receiver Input Strobe Position of Bit 4		15.1	15.6	16.3	ns
t _{RSPB5}	Receiver Input Strobe Position of Bit 5		18.8	19.2	19.9	ns
t _{RSPB6}	Receiver Input Strobe Position of Bit 6		22.5	22.9	23.6	ns
t _{RSPB0}	Receiver Input Strobe Position of Bit 0		0.7	1.1	1.4	ns
t _{RSPB1}	Receiver Input Strobe Position of Bit 1	See Figure 17 (f = 65 MHz)	2.9	3.3	3.6	ns
t _{RSPB2}	Receiver Input Strobe Position of Bit2		5.1	5.5	5.8	ns
t _{RSPB3}	Receiver Input Strobe Position of Bit 3		7.3	7.7	8.0	ns
t _{RSPB4}	Receiver Input Strobe Position of Bit 4		9.5	9.9	10.2	ns
t _{RSPB5}	Receiver Input Strobe Position of Bit 5		11.7	12.1	12.4	ns
t _{RSPB6}	Receiver Input Strobe Position of Bit 6		13.9	14.3	14.6	ns
t _{RSKM}	RxIn Skew Margin	f = 40 MHz	490		1	ns
	See Figure 17, (Note 22)	f = 66 MHz	400			ps
t _{RPLLS}	Receiver Phase Lock Loop Set Time	See Figure 11			10.0	ms

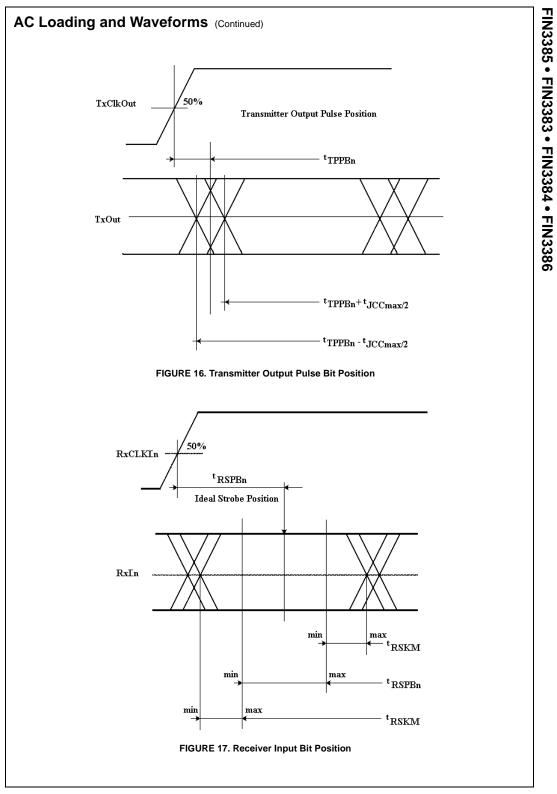

Note 20: For the receiver with falling-edge strobe, the definition of setup/hold time will be slightly different from the one with rising-edge strobe. The clock ref-erence point is the time when the clock falling edge passes through 2V. For hold time t_{RHRC}, the clock reference point is the time when falling edge passes through +0.8V.

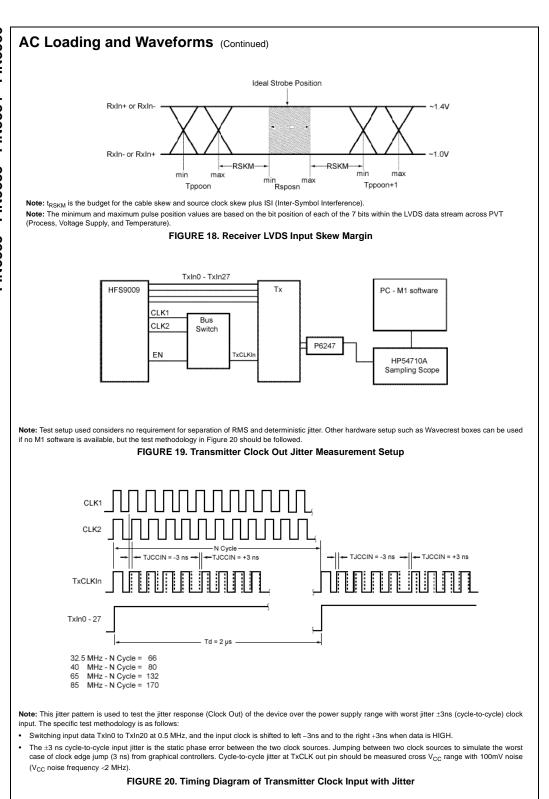
Note 21: Total channel latency from Sewrializer to deserializer is $(T + t_{TCCD}) + (2^{*}T + t_{RCCD})$. There is the clock period.


Note 22: Receiver skew margin is defined as the valid sampling window after considering potential setup/hold time and minimum/maximum bit position.


FIN3385 • FIN3383 • FIN3384 • FIN3386






FIN3385 • FIN3383 • FIN3384 • FIN3386

