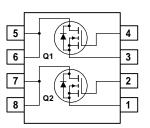
# FDS9926A

-AIRCHILD

## Dual N-Channel 2.5V Specified PowerTrench<sup>®</sup> MOSFET

## **General Description**


These N-Channel 2.5V specified MOSFETs use Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications with a wide range of gate drive voltage (2.5V - 10V).

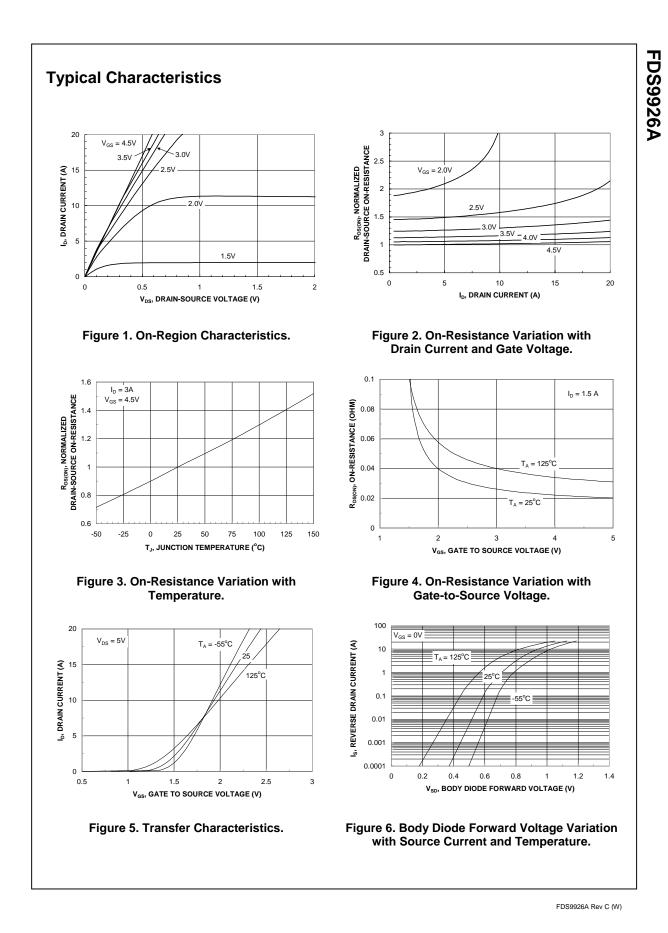
## Applications

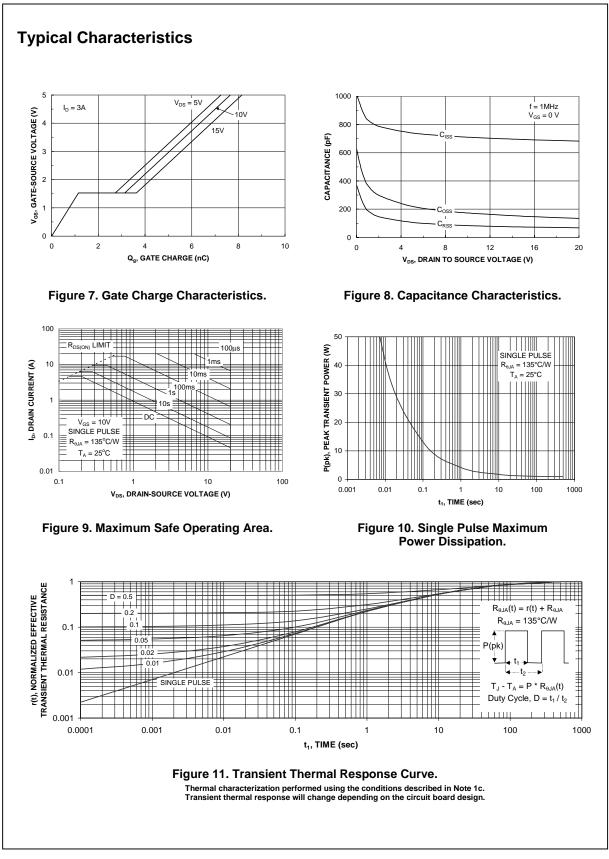
- Battery protection
- Load switch
- Power management



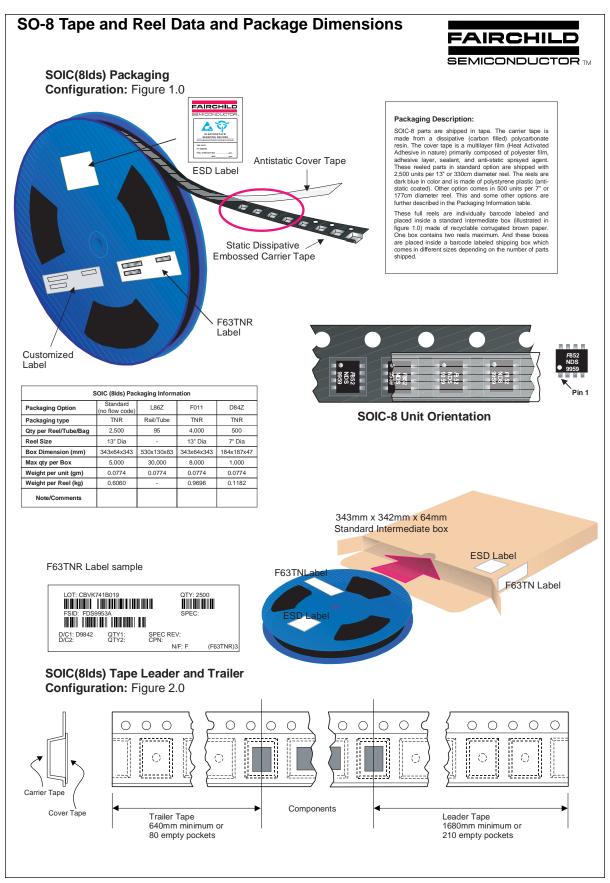
- 6.5 A, 20 V.  $R_{DS(ON)} = 0.030 \ \Omega \ @ V_{GS} = 4.5 \ V$  $R_{DS(ON)} = 0.043 \ \Omega \ @ V_{GS} = 2.5 \ V.$
- Optimized for use in battery protection circuits
- +  $\pm 10 V_{GSS}$  allows for wide operating voltage range
- Low gate charge



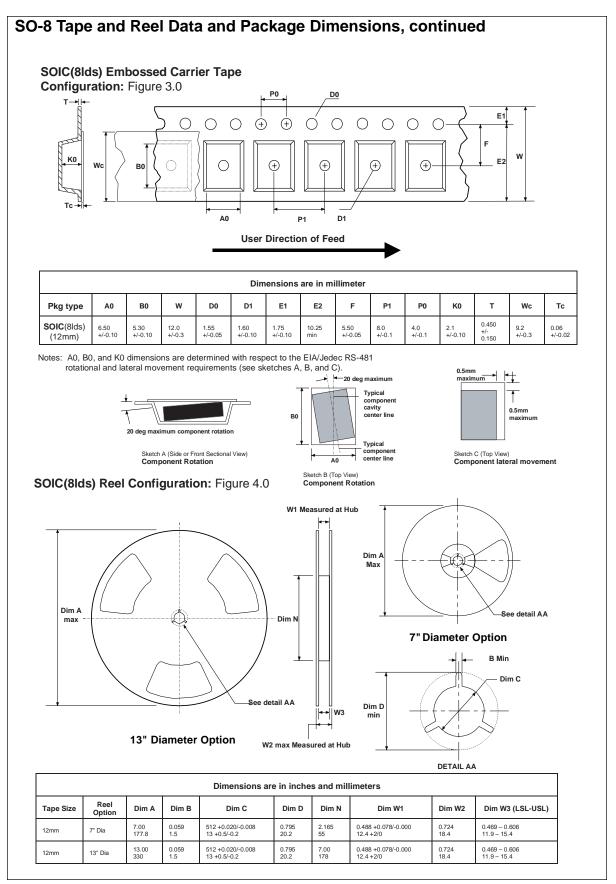

## Absolute Maximum Ratings T<sub>A</sub>=25°C unless otherwise noted

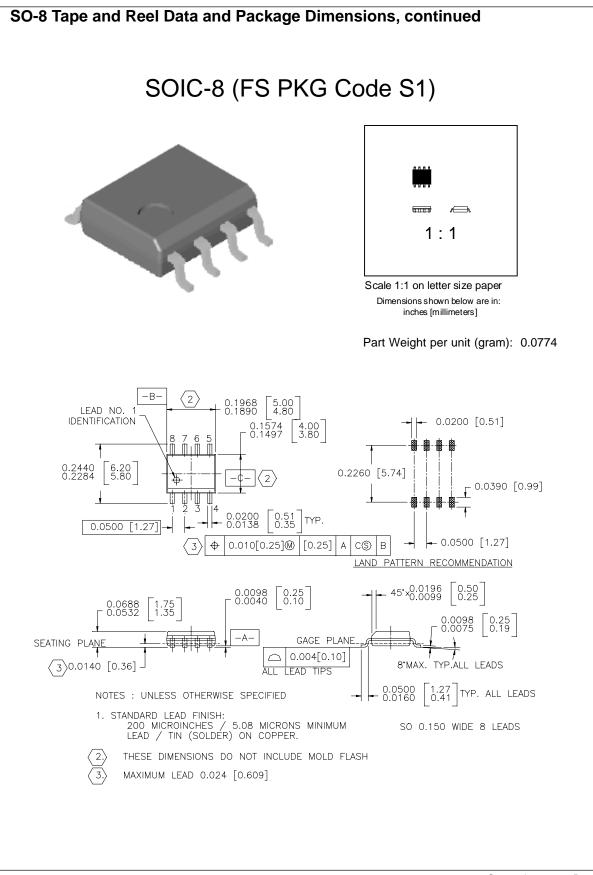

| Symbol                            |                                                   | Parameter                   | Ratings     | Units       |            |
|-----------------------------------|---------------------------------------------------|-----------------------------|-------------|-------------|------------|
| V <sub>DSS</sub>                  | Drain-Sourc                                       | e Voltage                   |             | 20          | V          |
| V <sub>GSS</sub>                  | Gate-Source Voltage                               |                             |             | ±10         | V          |
| I <sub>D</sub>                    | Drain Current – Continuous (Note 1a)              |                             | (Note 1a)   | 6.5         | A          |
|                                   |                                                   | – Pulsed                    |             | 20          |            |
| P <sub>D</sub>                    | Power Dissipation for Dual Operation              |                             |             | 2           | W          |
|                                   | Power Dissi                                       | pation for Single Operatior | n (Note 1a) | 1.6         |            |
|                                   |                                                   |                             | (Note 1b)   | 1           |            |
|                                   |                                                   |                             | (Note 1c)   | 0.9         |            |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Junction Temperature Range  |                             |             | -55 to +150 | °C         |
| Therma                            | I Charact                                         | eristics                    |             |             |            |
| R <sub>θJA</sub>                  | Thermal Resistance, Junction-to-Ambient (Note 1a) |                             |             | 78          | °C/W       |
| R <sub>θJC</sub>                  | Thermal Resistance, Junction-to-Case (Note 1)     |                             |             | 40          | °C/W       |
| Packag                            | e Marking                                         | g and Ordering l            | nformation  |             |            |
| Device Marking                    |                                                   | Device                      | Reel Size   | Tape width  | Quantity   |
| FDS9926A                          |                                                   | FDS9926A                    | 13"         | 12mm        | 2500 units |

©1999 Fairchild Semiconductor Corporation


FDS9926A

| $\begin{array}{l} V_{GS} = 0 \ V, \ I_{D} = 250 \ \mu A \\ I_{D} = 250 \ \mu A, \ Referenced \ to \ 25^{\circ}C \\ V_{DS} = 16 \ V,  V_{GS} = 0 \ V \\ V_{GS} = 8 \ V,  V_{DS} = 0 \ V \\ V_{GS} = -8 \ V  V_{DS} = 0 \ V \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5                                                                                                                                                                                                                                                                                         | 14                                                                                                                                                                                                                              | 1<br>100<br>-100<br>1.5                                 | V<br>mV/°C<br>μA<br>nA<br>NA                           |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--|--|
| $\begin{split} I_{D} &= 250 \; \mu\text{A},  \text{Referenced to } 25^{\circ}\text{C} \\ V_{DS} &= 16 \; \text{V},  V_{GS} &= 0 \; \text{V} \\ V_{GS} &= 8 \; \text{V},  V_{DS} &= 0 \; \text{V} \\ V_{GS} &= -8 \; \text{V}  V_{DS} &= 0 \; \text{V} \\ \end{split} \\ \end{split} \\ \begin{split} V_{DS} &= V_{GS}, \; I_{D} &= 250 \; \mu\text{A} \\ I_{D} &= 250 \; \mu\text{A}, \; \text{Referenced to } 25^{\circ}\text{C} \\ V_{GS} &= 4.5 \; \text{V},  I_{D} &= 6.5 \; \text{A} \\ V_{GS} &= 2.5 \; \text{V},  I_{D} &= 5.4 \; \text{A} \\ V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{S} &= 6.5 \; \text{A}, \; V_{S} &= 6.5 \; \text{A}, \; V_{S$ |                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                               | 100<br>-100                                             | mV/°C<br>μA<br>nA<br>nA                                |  |  |
| $\begin{split} I_{D} &= 250 \; \mu\text{A},  \text{Referenced to } 25^{\circ}\text{C} \\ V_{DS} &= 16 \; \text{V},  V_{GS} &= 0 \; \text{V} \\ V_{GS} &= 8 \; \text{V},  V_{DS} &= 0 \; \text{V} \\ V_{GS} &= -8 \; \text{V}  V_{DS} &= 0 \; \text{V} \\ \end{split} \\ \end{split} \\ \begin{split} V_{DS} &= V_{GS}, \; I_{D} &= 250 \; \mu\text{A} \\ I_{D} &= 250 \; \mu\text{A}, \; \text{Referenced to } 25^{\circ}\text{C} \\ V_{GS} &= 4.5 \; \text{V},  I_{D} &= 6.5 \; \text{A} \\ V_{GS} &= 2.5 \; \text{V},  I_{D} &= 5.4 \; \text{A} \\ V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{D} &= 6.5 \; \text{A}, \; V_{GS} &= 4.5 \; \text{V}, \; I_{S} &= 6.5 \; \text{A}, \; V_{S} &= 6.5 \; \text{A}, \; V_{S$ | 0.5                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                               | 100<br>-100                                             | μA<br>nA<br>nA                                         |  |  |
| $\begin{split} V_{DS} &= 16 \ V, \qquad V_{GS} = 0 \ V \\ V_{GS} &= 8 \ V, \qquad V_{DS} = 0 \ V \\ V_{GS} &= -8 \ V \qquad V_{DS} = 0 \ V \\ \end{split} \\ \end{split} \\ \begin{array}{l} V_{DS} &= -8 \ V \qquad V_{DS} = 0 \ V \\ \end{array} \\ \hline V_{DS} &= 250 \ \mu A, \ Referenced \ to \ 25^{\circ}C \\ \hline V_{GS} &= 4.5 \ V,  I_D = 6.5 \ A \\ V_{GS} &= 2.5 \ V,  I_D = 5.4 \ A \\ V_{GS} &= 4.5 \ V, \ I_D = 6.5A, \ T_J = 125^{\circ}C \\ \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                               | 100<br>-100                                             | μA<br>nA<br>nA                                         |  |  |
| $\begin{split} V_{GS} &= 8 \ V, \qquad V_{DS} = 0 \ V \\ V_{GS} &= -8 \ V \qquad V_{DS} = 0 \ V \\ \end{split} \\ \hline V_{DS} &= V_{GS}, \ I_D = 250 \ \mu A \\ I_D &= 250 \ \mu A, \ Referenced \ to \ 25^\circ C \\ \hline V_{GS} &= 4.5 \ V, \qquad I_D = 6.5 \ A \\ V_{GS} &= 2.5 \ V, \qquad I_D = 5.4 \ A \\ V_{GS} &= 4.5 \ V, \ I_D = 6.5A, \ T_J = 125^\circ C \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                 | 100<br>-100                                             | nA<br>nA                                               |  |  |
| $\begin{split} V_{GS} &= -8 \ V & V_{DS} = 0 \ V \\ \hline V_{DS} &= V_{GS}, \ I_D = 250 \ \mu A \\ \hline I_D &= 250 \ \mu A, \ Referenced \ to \ 25^\circ C \\ \hline V_{GS} &= 4.5 \ V,  I_D = 6.5 \ A \\ \hline V_{GS} &= 2.5 \ V,  I_D = 5.4 \ A \\ \hline V_{GS} &= 4.5 \ V, \ I_D = 6.5A, \ T_J = 125^\circ C \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                 | -100                                                    | nA                                                     |  |  |
| $\begin{split} V_{DS} &= V_{GS}, \ I_D = 250 \ \mu A \\ I_D &= 250 \ \mu A, \ Referenced \ to \ 25^\circ C \\ V_{GS} &= 4.5 \ V,  I_D = 6.5 \ A \\ V_{GS} &= 2.5 \ V,  I_D = 5.4 \ A \\ V_{GS} &= 4.5 \ V, \ I_D = 6.5A, \ T_J = 125^\circ C \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                 | I                                                       |                                                        |  |  |
| $\begin{split} I_D &= 250 \; \mu\text{A}, \; \text{Referenced to} \; 25^\circ\text{C} \\ V_{GS} &= 4.5 \; \text{V},  I_D &= 6.5 \; \text{A} \\ V_{GS} &= 2.5 \; \text{V},  I_D &= 5.4 \; \text{A} \\ V_{GS} &= 4.5 \; \text{V}, \; I_D &= 6.5 \text{A}, \; T_J &= 125^\circ\text{C} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                 | 1.5                                                     | V                                                      |  |  |
| $\begin{split} I_D &= 250 \; \mu\text{A}, \; \text{Referenced to} \; 25^\circ\text{C} \\ V_{GS} &= 4.5 \; \text{V},  I_D &= 6.5 \; \text{A} \\ V_{GS} &= 2.5 \; \text{V},  I_D &= 5.4 \; \text{A} \\ V_{GS} &= 4.5 \; \text{V}, \; I_D &= 6.5 \text{A}, \; T_J &= 125^\circ\text{C} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                 | 1.5                                                     | V                                                      |  |  |
| $ \begin{array}{l} V_{GS} = 4.5 \ V, & I_D = 6.5 \ A \\ V_{GS} = 2.5 \ V, & I_D = 5.4 \ A \\ V_{GS} = 4.5 \ V, \ I_D = 6.5A, \ T_J = 125^\circ C \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                             | -3                                                                                                                                                                                                                              |                                                         |                                                        |  |  |
| $V_{GS} = 2.5 V$ , $I_D = 5.4 A$<br>$V_{GS} = 4.5 V$ , $I_D = 6.5 A$ , $T_J = 125^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                 |                                                         | mV/°C                                                  |  |  |
| $V_{GS}$ = 4.5 V, I <sub>D</sub> =6.5A, T <sub>J</sub> =125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                             | 0.025<br>0.036                                                                                                                                                                                                                  | 0.030<br>0.043                                          | Ω                                                      |  |  |
| $V_{cc} = 45 V$ $V_{bc} = 5 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                             | 0.035                                                                                                                                                                                                                           | 0.050                                                   |                                                        |  |  |
| $v_{GS} = 4.0 v_{1}$ , $v_{DS} = 0 v_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                 |                                                         | А                                                      |  |  |
| $V_{DS} = 5 V$ , $I_D = 3 A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                              |                                                         | S                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                 | •                                                       |                                                        |  |  |
| y' = 10y' = y' = 0y'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                             | 700                                                                                                                                                                                                                             |                                                         | pF                                                     |  |  |
| f = 1.0  MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                 |                                                         | pF                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                               |                                                         | pF                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                             | 00                                                                                                                                                                                                                              |                                                         | Pi                                                     |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                               |                                                         |                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                               | -                                                       | ns                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                              |                                                         | ns                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                             | 18                                                                                                                                                                                                                              | 29                                                      | ns                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                               | 10                                                      | ns                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                               | 10                                                      | nC                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                             | 1.2                                                                                                                                                                                                                             |                                                         | nC                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                             | 1.9                                                                                                                                                                                                                             |                                                         | nC                                                     |  |  |
| and Maximum Ratings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                 |                                                         |                                                        |  |  |
| Maximum Continuous Drain–Source Diode Forward Current 1.3 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                 |                                                         |                                                        |  |  |
| $V_{GS} = 0 V$ , $I_S = 1.3 A$ (Note 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                             | 0.65                                                                                                                                                                                                                            | 1.2                                                     | V                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                 |                                                         |                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $V_{DD} = 10 \text{ V}, \qquad I_D = 1 \text{ A}, \\ V_{GS} = 4.5 \text{ V}, \qquad R_{GEN} = 6 \Omega$ $V_{DS} = 10 \text{ V}, \qquad I_D = 3\text{ A}, \\ V_{GS} = 4.5 \text{ V}$ and Maximum Ratings Diode Forward Current $V_{GS} = 0 \text{ V},  I_S = 1.3 \text{ A}  (\text{Note 2})$ | $f = 1.0 \text{ MHz}$ $V_{DD} = 10 \text{ V},  I_D = 1 \text{ A},$ $V_{GS} = 4.5 \text{ V},  R_{GEN} = 6 \Omega$ $V_{DS} = 10 \text{ V},  I_D = 3\text{ A},$ $V_{GS} = 4.5 \text{ V}$ and Maximum Ratings Diode Forward Current | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |  |  |




FDS9926A



July 1999, Rev. B





### TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx<sup>TM</sup> CoolFET<sup>TM</sup> CROSSVOLT<sup>TM</sup> E<sup>2</sup>CMOS<sup>TM</sup> FACT<sup>TM</sup> FACT Quiet Series<sup>TM</sup> FAST<sup>®</sup> FAST<sup>®</sup> FASTr<sup>TM</sup> GTO<sup>TM</sup> HiSeC<sup>TM</sup> ISOPLANAR™ MICROWIRE™ POP™ PowerTrench® QFET™ QS™ Quiet Series™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ UHC™ VCX™

### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### **PRODUCT STATUS DEFINITIONS**

**Definition of Terms** 

| Datasheet Identification | Product Status            | Definition                                                                                                                                                                                                                        |  |
|--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Advance Information      | Formative or<br>In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                                                |  |
| Preliminary              | First Production          | This datasheet contains preliminary data, and<br>supplementary data will be published at a later date.<br>Fairchild Semiconductor reserves the right to make<br>changes at any time without notice in order to improve<br>design. |  |
| No Identification Needed | Full Production           | This datasheet contains final specifications. Fairchild<br>Semiconductor reserves the right to make changes at<br>any time without notice in order to improve design.                                                             |  |
| Obsolete                 | Not In Production         | This datasheet contains specifications on a product<br>that has been discontinued by Fairchild semiconducto<br>The datasheet is printed for reference information on                                                              |  |