

Connection Diagram

OEAB $_{1}-1$	56	- OEEA
$\mathrm{CPAB}_{1}-2$	55	- СРРа
$\mathrm{SAB}_{1}-3$	54	- SBA ${ }_{1}$
GND - 4	53	-GND
$A_{0}-5$	52	-8_{0}
$\mathrm{A}_{1}-6$	51	- B_{1}
$\mathrm{V}_{\mathrm{CC}}-7$	50	- v_{cc}
$\mathrm{A}_{2}-8$	49	- B_{2}
$\mathrm{A}_{3}-9$	48	$-\mathrm{B}_{3}$
$\mathrm{A}_{4}-10$	47	$-B_{4}$
GND - 11	46	- GND
$\mathrm{A}_{5}-12$	45	- B_{5}
$A_{6}-13$	44	$-\mathrm{B}_{6}$
$\mathrm{A}_{7}-14$	43	- B_{7}
$\mathrm{A}_{8}-15$	42	- B_{8}
$\mathrm{A}_{9}-15$	41	- Bg_{9}
$\mathrm{A}_{10}-17$	40	B_{10}
GND - 18	39	-6ND
$\mathrm{A}_{11}-{ }^{19}$	38	$-\theta_{11}$
A_{12} - 20	37	$-\mathrm{E}_{12}$
$4_{13}-21$	36	-8_{13}
$\mathrm{V}_{\mathrm{CC}}-22$	35	$-v_{\text {cc }}$
4_{44} - ${ }^{33}$	34	- B_{14}
$\mathrm{A}_{5}-24$	33	$-\mathrm{E}_{15}$
CND - 25	32	-GND
$\mathrm{SAB}_{2}-26$	31	- SBA_{2}
$\mathrm{CPAB}_{2}-{ }^{27}$	30	- CPPA
$\mathrm{OEAB}_{2}-28$	29	- $\overline{0 . E A}$

Truth Table
(Note 2)

Inputs						Inputs/Outputs		Operating Mode
OEAB	$\overline{O E B A}_{1}$	CPAB_{1}	CPBA_{1}	SAB_{1}	SBA 1	A_{0} thru A_{7}	B_{0} thru B_{7}	
L	H	H or L	H or L	X	X	Input	Input	Isolation
L	H	\sim	\sim	X	X			Store A and B Data
X	H	\sim	H or L	X	X	Input	Not Specified	Store A, Hold B
H	H	\sim	\sim	X	X	Input	Output	Store A in Both Registers
L	X	H or L	\sim	X	X	Not Specified	Input	Hold A, Store B
L	L	\sim	\sim	X	X	Output	Input	Store B in Both Registers
L	L	X	X	X	L	Output	Input	Real-Time B Data to A Bus
L	L	X	H or L	X	H			Store B Data to A Bus
H	H	X	X	L	X	Input	Output	Real-Time A Data to B Bus
H	H	H or L	X	H	X			Stored A Data to B Bus
H	L	H or L	H or L	H	H	Output	Output	Stored A Data to B Bus and Stored B Data to A Bus

H = HIGH Voltage Leve
L = LOW Voltage Level
X = Immaterial
$\sim=$ LOW-to-HIGH Clock Transition
Note 2: The data output functions may be enabled or disabled by various signals at OEAB or $\overline{O E B A}$ inputs. Data input functions are always enabled, i.e data at the bus pins will be stored on every LOW-to-HIGH transition on the clock inputs. This also applies to data I/O (A and B: 8-15) and \#2 control pins.

Functional Description

In the transceiver mode, data present at the HIGH impedance port may be stored in either the A or B register or both.
The select $\left(\mathrm{SAB}_{\mathrm{n}}, \mathrm{SBA}_{\mathrm{n}}\right)$ controls can multiplex stored and real-time.

The examples below demonstrate the four fundamental bus-management functions that can be performed with the 74LCX16652

Real-Time
Transfer Bus B to Bus A

Transfer Storage Data to A or B

$\mathrm{OEAB}_{1} \overline{\mathrm{OEBA}}_{1} \mathrm{CPAB}_{1} \mathrm{CPBA}_{1} \mathrm{SAB}_{1} \mathrm{SBA}_{1}$
H L HorL HorL H H

Data on the A or B data bus, or both can be stored in the internal D flip-flop by LOW-to-HIGH transitions at the appropriate Clock Inputs $\left(\mathrm{CPAB}_{n}, \mathrm{CPBA}_{n}\right)$ regardless of the Select or Output Enable Inputs. When SAB and SBA are in the real time transfer mode, it is also possible to store data without using the internal D flip-flops by simultaneously enabling OEAB ${ }_{n}$ and $\overline{\mathrm{OEBA}}_{n}$. In this configuration each Output reinforces its Input. Thus when all other data sources to the two sets of bus lines are in a HIGH impedance state, each set of bus lines will remain at its last state.

Real-Time

$\mathrm{OEAB}_{1} \overline{\mathrm{OEBA}}_{1} \mathrm{CPAB}_{1} \mathrm{CPBA}_{1} \mathrm{SAB}_{1} \mathrm{SBA}_{1}$
$\begin{array}{llllll}H & H & X & X & L & X\end{array}$

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
${ }_{\text {ICC }}$	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	2.3-3.6		20	$\mu \mathrm{A}$
		$3.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$ (Note 6)	2.3-3.6		± 20	
$\Delta^{\text {U }}$ cc	Increase in $\mathrm{I}_{\text {cc }}$ per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.3-3.6		500	$\mu \mathrm{A}$

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=500 \Omega$						Units
		$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{gathered}$		
		Min	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	170						MHz
$\mathrm{t}_{\mathrm{PHL}}$ $\mathrm{t}_{\mathrm{PLH}}$	Propagation Delay Bus to Bus	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.2 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.8 \\ & 6.8 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PHL}}$ $t_{\text {PLH }}$	Propagation Delay Clock to Bus	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.4 \\ & 7.4 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PHL}}$ $t_{\text {PLH }}$	Propagation Delay Select to Bus	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 7.8 \\ & 7.8 \end{aligned}$	ns
$\begin{aligned} & \hline t_{\text {PZL }} \\ & t_{\text {PZH }} \end{aligned}$	Output Enable Time	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 9.1 \\ & 9.1 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 7.8 \\ & 7.8 \end{aligned}$	ns
$\mathrm{t}_{\text {S }}$	Setup Time	2.5		2.5		3.0		ns
t_{H}	Hold Time	1.5		1.5		2.0		ns
t_{W}	Pulse Width	3.0		3.0		3.5		ns
toshl tosLh	Output to Output Skew (Note 7)		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$					ns

Note 7: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OLLH}}$). Parameter guaranteed by design

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	v_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
				Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.6 \end{aligned}$	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline-0.8 \\ & -0.6 \end{aligned}$	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=$ Open, $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{/ \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$	20	pF

AC LOADING and WAVEFORMS Generic for LCX Family

FIGURE 1. AC Test Circuit (C_{L} includes probe and jig capacitance)

Test	Switch
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

Waveform for Inverting and Non-Inverting Functions

Propagation Delay. Pulse Width and $\mathrm{t}_{\mathrm{rec}}$ Waveforms

3-STATE Output High Enable and Disable Times for Logic

Setup Time, Hold Time and Recovery Time for Logic

FIGURE 2. Waveforms
(Input Characteristics; $\mathrm{f}=\mathbf{1 M H z}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=3 \mathrm{~ns}$)

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 7} \mathrm{V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$
V_{mi}	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{x}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DETAIL A
typical
MTDSE (REY B)
56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD56

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
[^0]
[^0]: Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

