
1.0A SURFACE MOUNT SCHOTTKY BARRIER RECTIFIER

Features

- Guard Ring Die Construction for Transient Protection
- Very Low Leakage Current
- Low Forward Voltage Drop
- Lead Free By Design/RoHS Compliant (Note 3)
- "Green Device" (Note 4)

Mechanical Data

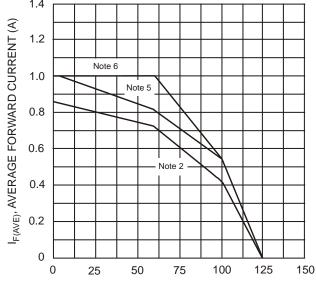
- Case: SOD-123
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminals: Finish Matte Tin Finish annealed over Alloy 42 leadframe. Solderable per MIL-STD-202, Method 208
- Polarity: Cathode Band
- Marking: Date Code & Type Code, See Page 3
- Type Code: LO
- Ordering Information: See Page 3
- · Weight: 0.01 grams (approximate)

SOD-123								
Dim	Min	Max						
Α	3.55	3.85						
В	2.55 2.85							
С	1.40	1.70						
D	_	1.35						
E	0.45	0.65						
_	0.55 Typical							
G	0.25 —							
Н	0.11 Typical							
J	— 0.10							
	0°	8°						
All Dimensions in mm								

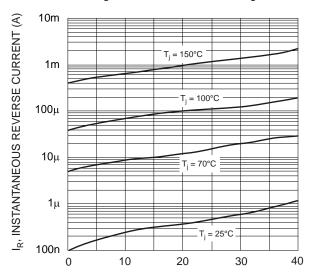
Maximum Ratings @ T_A = 25°C unless otherwise specified

Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	40	V
RMS Reverse Voltage	V _{R(RMS)}	28	V
Average Forward Current (See Figure 1)	I _{F(AV)}	1.0	Α
Non-Repetitive Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load	I _{FSM}	6.6	А
Repetitive Peak Reverse Current t _p = 2µs square wave, f = 1KHz	I _{RRM}	0.5	А
Non-Repetitive Peak Reverse Current $t_{\rm p} = 100 \mu s$ square wave	I _{RSM}	1.0	А
Power Dissipation (Note 2) (Note 5)	P _d	350 410	mW
Typical Thermal Resistance Junction to Ambient (Note 2) (Note 5)	R JA	360 305	°C/W
Operating Temperature Range	Tj	-65 to +125	°C
Storage Temperature Range	T _{STG}	-65 to +125	°C


Electrical Characteristics @ T_A = 25°C unless otherwise specified

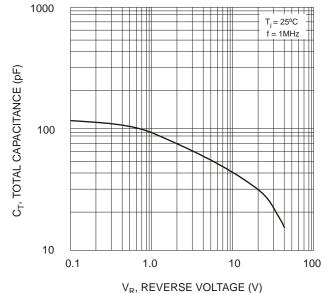
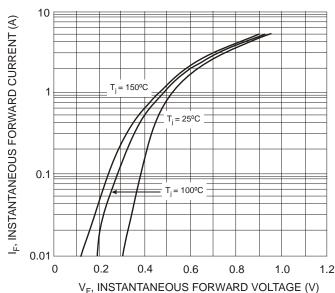
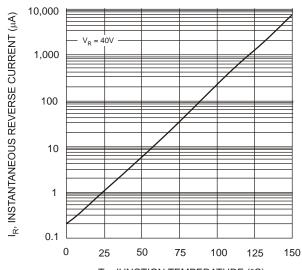
Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Reverse Breakdown Voltage (Note 1)	$V_{(BR)R}$	40			V	$I_R = 40\mu A$
Forward Voltage	V _F		0.48	0.55 0.51	V	I _F = 1A, T _J = 25°C I _F = 1A, T _J = 100°C
Leakage Current (Note 1)	I _R		0.2	10 40 5		V _R = 5V, T _J = 25°C V _R = 40V, T _J = 25°C V _R = 40V, T _A = 100°C

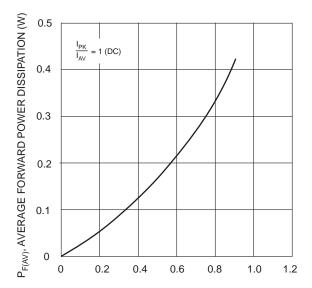

Notes:

- 1. Short duration pulse test used to minimize self-heating effect.
- 2. Part mounted on FR-4 board with recommended pad layout, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.
- 3. No purposefully added lead.
- 4. Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.
- 5. Part mounted on polymide board with pad sizes 0.24" x 0.16".
- 6. Part mounting such that R $_{JA} = 175$ °C/W.

T_A, AMBIENT TEMPERATURE (°C) Fig. 1 Forward Current Derating

V_R, INSTANTANEOUS REVERSE VOLTAGE (V) Fig. 3 Typical Reverse Current vs. Reverse Voltage


Fig. 5 Typical Total Capacitance vs. Reverse Voltage

V_F, INSTANTANEOUS FORWARD VOLTAGE (V) Fig. 2 Typical Forward Characteristics

T_J, JUNCTION TEMPERATURE (°C) Fig. 4 Typical Reverse Current vs. Junction Temperature

I_{F(AVE)}, AVERAGE FORWARD CURRENT (A) Fig. 6 Forward Power Derating

Ordering Information (Note 7)

Device	Packaging	Shipping
B140HW-7	SOD-123	3000/Tape & Reel

Notes: 7. For Packaging Details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

LO = Product Type Marking Code YM = Date Code Marking Y = Year (ex: S = 2005) M = Month (ex: 9 = September)

Date Code Key

Year	2005	2006	2007	2008	2009
Code	S	Т	U	V	W

Month	Jan	Feb	March	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	Ν	D

IMPORTANT NOTICE

Diodes, Inc. and its subsidiaries reserve the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. Diodes, Inc. does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

The products located on our website at www.diodes.com are not recommended for use in life support systems where a failure or malfunction of the component may directly threaten life or cause injury without the expressed written approval of Diodes Incorporated.