
BDX33, BDX33A, BDX33B, BDX33C, BDX33D NPN SILICON POWER DARLINGTONS

BOURNS®

- Designed for Complementary Use with BDX34, BDX34A, BDX34B, BDX34C and BDX34D
- 70 W at 25°C Case Temperature
- 10 A Continuous Collector Current
- Minimum h_{FE} of 750 at 3V, 3 A

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	BDX33		45	
	BDX33A		60	
Collector-base voltage (I _E = 0)	BDX33B	V _{CBO}	80	V
	BDX33C		100	
	BDX33D		120	
	BDX33		45	
	BDX33A		60	
Collector-emitter voltage $(I_B = 0)$	BDX33B	V _{CEO}	80	V
	BDX33C		100	
	BDX33D		120	
Emitter-base voltage	V _{EBO}	5	V	
Continuous collector current	Ι _C	10	A	
Continuous base current	I _B	0.3	A	
Continuous device dissipation at (or below) 25°C case temperature (see Note 1)			70	W
Continuous device dissipation at (or below) 25°C free air temperature (see Nor	P _{tot}	2	W	
Operating free air temperature range	Т _Ј	-65 to +150	°C	
Storage temperature range	T _{stg}	-65 to +150	°C	
Operating free-air temperature range	T _A	-65 to +150	°C	

NOTES: 1. Derate linearly to 150°C case temperature at the rate of 0.56 W/°C.

2. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.

BDX33, BDX33A, BDX33B, BDX33C, BDX33D NPN SILICON POWER DARLINGTONS

electrical characteristics at 25°C case temperature (unless otherwise noted)

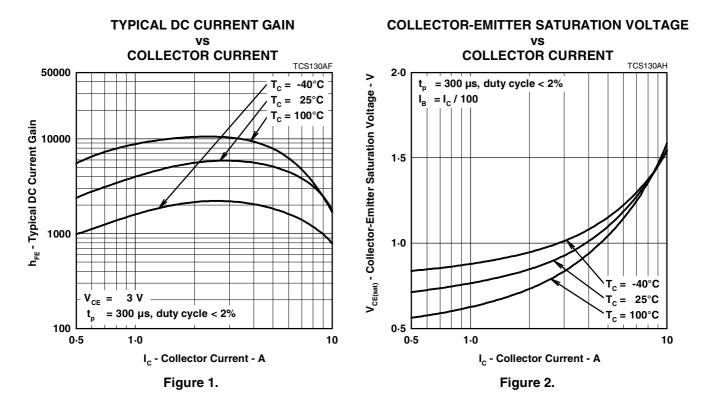
	PARAMETER	TEST CONDITIONS				MIN	ТҮР	MAX	UNIT
					BDX33	45			
	Collector-emitter breakdown voltage	I _C = 100 mA I _B =			BDX33A	60			
V _{(BR)CEO}			I _B = 0	(see Note 3)	BDX33B	80			V
()					BDX33C	100			
					BDX33D	120			
		V _{CE} = 30 V	I _B = 0		BDX33			0.5	mA
		V _{CE} = 30 V	I _B = 0		BDX33A			0.5	
		$V_{CE} = 40 V$	I _B = 0		BDX33B			0.5	
		$V_{CE} = 50 V$	$I_{B} = 0$		BDX33C			0.5	
	Collector-emitter	$V_{CE} = 60 V$	$I_{B} = 0$		BDX33D			0.5	
I _{CEO}	cut-off current	V _{CE} = 30 V	I _B = 0	T _C = 100°C	BDX33			10	
		V _{CE} = 30 V	I _B = 0	T _C = 100°C	BDX33A			10	
		$V_{CE} = 40 V$	I _B = 0	T _C = 100°C	BDX33B			10	
		$V_{CE} = 50 V$	I _B = 0	T _C = 100°C	BDX33C			10	
		$V_{CE} = 60 V$	I _B = 0	$T_{\rm C} = 100^{\circ}{\rm C}$	BDX33D			10	
		$V_{CB} = 45 V$	$I_E = 0$		BDX33			1	
	Collector cut-off current	$V_{CB} = 60 V$	I _E = 0		BDX33A			1	mA
		$V_{CB} = 80 V$	$I_E = 0$		BDX33B			1	
		$V_{CB} = 100 V$	$I_E = 0$		BDX33C			1	
I _{CBO}		$V_{CB} = 120 V$	I _E = 0		BDX33D			1	
		$V_{CB} = 45 V$	I _E = 0	$T_{\rm C} = 100^{\circ}{\rm C}$	BDX33			5	
		$V_{CB} = 60 V$	I _E = 0	$T_{\rm C} = 100^{\circ}{\rm C}$	BDX33A			5	
		$V_{CB} = 80 V$	I _E = 0	$T_{\rm C} = 100^{\circ}{\rm C}$	BDX33B			5	
		$V_{CB} = 100 V$	I _E = 0	$T_{\rm C} = 100^{\circ}{\rm C}$	BDX33C			5	
		$V_{CB} = 120 V$	I _E = 0	$T_{\rm C} = 100^{\circ}{\rm C}$	BDX33D			5	
I _{EBO}	Emitter cut-off	V _{EB} = 5 V	$I_{\rm C} = 0$					10	mA
	current	V _{CE} = 3 V	I _C = 4 A		BDX33	750			
	Forward current transfer ratio	-	•		BDX33A	750			
h		$V_{CE} = 3 V$	$I_{\rm C} = 4 {\rm A}$	(and Natao 2 and 1)					
h _{FE}		$V_{CE} = 3 V$	I _C = 3 A	(see Notes 3 and 4)	BDX33B	750			
		$V_{CE} = 3 V$	I _C = 3 A		BDX33C	750			
		$V_{CE} = 3 V$	$I_{\rm C} = 3$ A		BDX33D	750		0.5	
	Base-emitter voltage	V _{CE} = 3 V	$I_{\rm C} = 4$ A		BDX33			2.5	
		$V_{CE} = 3 V$	$I_{\rm C} = 4$ A		BDX33A			2.5	
V _{BE(on)}		$V_{CE} = 3 V$	I _C = 3 A	(see Notes 3 and 4)	BDX33B			2.5	V
		-	I _C = 3 A		BDX33C			2.5	
		V _{CE} = 3 V	I _C = 3 A		BDX33D			2.5	
	Collector-emitter saturation voltage	I _B = 8 mA	$I_{\rm C} = 4$ A		BDX33			2.5	
		I _B = 8 mA	$I_{\rm C} = 4$ A		BDX33A			2.5	
V _{CE(sat)}		$I_B = 6 \text{ mA}$	I _C = 3 A	(see Notes 3 and 4)	BDX33B			2.5	V
		I _B = 6 mA	I _C = 3 A		BDX33C			2.5	
		I _B = 6 mA	I _C = 3 A		BDX33D			2.5	
V_{EC}	Parallel diode forward voltage	I _E = 8 A	I _B = 0					4	V

NOTES: 3. These parameters must be measured using pulse techniques, t_p = 300 $\mu s,$ duty cycle $\leq 2\%.$

4. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

BDX33, BDX33A, BDX33B, BDX33C, BDX33D NPN SILICON POWER DARLINGTONS

BOURNS®


thermal characteristics

PARAMETER			ТҮР	MAX	UNIT
R _{θJC}	Junction to case thermal resistance			1.78	°C/W
R _{θJA}	Junction to free air thermal resistance			62.5	°C/W

resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS [†]			MIN	ТҮР	MAX	UNIT
t _{on}	Turn-on time	I _C = 3 A	I _{B(on)} = 12 mA	I _{B(off)} = -12 mA		1		μs
t _{off}	Turn-off time	$V_{BE(off)} = -3.5 V$	$R_L = 10 \ \Omega$	t_p = 20 μ s, dc \leq 2%		5		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

TYPICAL CHARACTERISTICS

BASE-EMITTER SATURATION VOLTAGE vs **COLLECTOR CURRENT** TCS130AJ 3.0 -40°C = $V_{BE(sat)}$ - Base-Emitter Saturation Voltage - V тс $\mathbf{T}_{\mathbf{c}}$ 25°C = 100°C 2.5 2.0 1.5 1.0 $= I_c / 100$ I_B = 300 µs, duty cycle < 2% 0.5 0.5 1.0 10 I_c - Collector Current - A

PRODUCT INFORMATION

AUGUST 1993 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

THERMAL INFORMATION

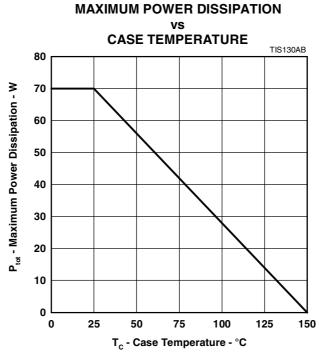
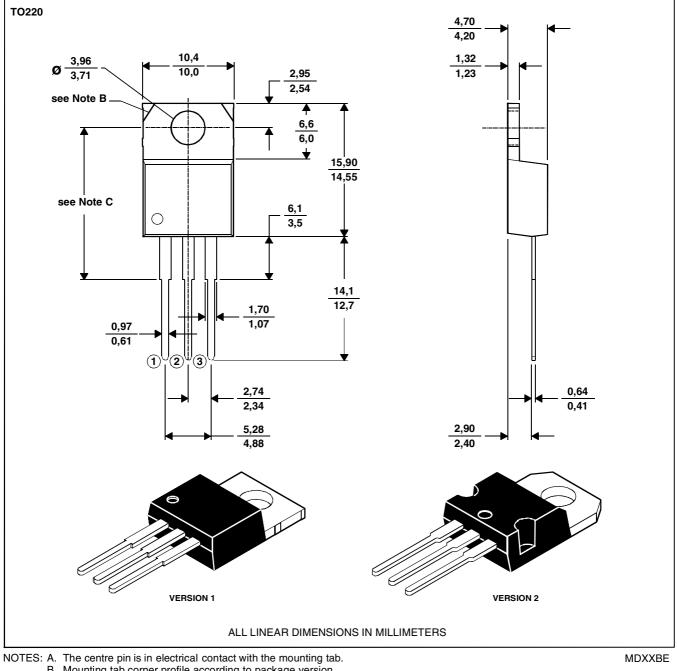


Figure 4.



MECHANICAL DATA

TO-220

3-pin plastic flange-mount package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

B. Mounting tab corner profile according to package version.

C. Typical fixing hole centre stand off height according to package version. Version 1, 18.0 mm. Version 2, 17.6 mm.