- Designed for Complementary Use with the BD246 Series
- 80 W at $25^{\circ} \mathrm{C}$ Case Temperature
- 10 A Continuous Collector Current
- 15 A Peak Collector Current
- Customer-Specified Selections Available

Pin 2 is in electrical contact with the mounting base.
MDTRAAA
absolute maximum ratings at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)

RATING		SYMBOL	VALUE	UNIT
Collector-emitter voltage ($\mathrm{R}_{\mathrm{BE}}=100 \Omega$)	BD245 BD245A BD245B BD245C	$V_{\text {CER }}$	$\begin{gathered} 55 \\ 70 \\ 90 \\ 115 \end{gathered}$	V
Collector-emitter voltage ($\mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}$)	BD245 BD245A BD245B BD245C	$\mathrm{V}_{\text {CEO }}$	$\begin{gathered} \hline 45 \\ 60 \\ 80 \\ 100 \end{gathered}$	V
Emitter-base voltage		$\mathrm{V}_{\text {EBO }}$	5	V
Continuous collector current		I_{C}	10	A
Peak collector current (see Note 1)		$\mathrm{I}_{\text {CM }}$	15	A
Continuous base current		I_{B}	3	A
Continuous device dissipation at (or below) $25^{\circ} \mathrm{C}$ case temperature (see Note 2)		$\mathrm{P}_{\text {tot }}$	80	W
Continuous device dissipation at (or below) $25^{\circ} \mathrm{C}$ free air temperature (see Note 3)		$\mathrm{P}_{\text {tot }}$	3	W
Unclamped inductive load energy (see Note 4)		${ }^{1 / 2 \mathrm{LI}_{\mathrm{C}}{ }^{2}}$	62.5	mJ
Operating junction temperature range		T_{j}	-65 to +150	${ }^{\circ} \mathrm{C}$
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead temperature 3.2 mm from case for 10 seconds		T	250	${ }^{\circ} \mathrm{C}$

NOTES: 1. This value applies for $t_{p} \leq 0.3 \mathrm{~ms}$, duty cycle $\leq 10 \%$.
2. Derate linearly to $150^{\circ} \mathrm{C}$ case temperature at the rate of $0.64 \mathrm{~W} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly to $150^{\circ} \mathrm{C}$ free air temperature at the rate of $24 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. This rating is based on the capability of the transistor to operate safely in a circuit of: $L=20 \mathrm{mH}, \mathrm{I}_{\mathrm{B}(\mathrm{on})}=0.4 \mathrm{~A}, \mathrm{R}_{\mathrm{BE}}=100 \Omega$, $\mathrm{V}_{\mathrm{BE} \text { (off) }}=0, \mathrm{R}_{\mathrm{S}}=0.1 \Omega, \mathrm{~V}_{\mathrm{CC}}=20 \mathrm{~V}$.
electrical characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {(BR)CEO }}$	Collector-emitter breakdown voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA} \\ & (\text { see Note } 5) \end{aligned}$		BD245 BD245A BD245B BD245C	$\begin{gathered} \hline 45 \\ 60 \\ 80 \\ 100 \end{gathered}$			V
$I_{\text {ces }}$	Collector-emitter cut-off current	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=55 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=70 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=90 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=115 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{\mathrm{BE}}=0 \\ & \mathrm{~V}_{\mathrm{BE}}=0 \\ & \mathrm{~V}_{\mathrm{BE}}=0 \\ & \mathrm{~V}_{\mathrm{BE}}=0 \end{aligned}$	$\begin{aligned} & \text { BD245 } \\ & \text { BD245A } \\ & \text { BD245B } \\ & \text { BD245C } \end{aligned}$			$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	mA
$\mathrm{I}_{\text {ceo }}$	Collector cut-off current	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=60 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{B}}=0 \end{aligned}$	$\begin{aligned} & \hline \text { BD245/245A } \\ & \text { BD245B/245C } \end{aligned}$			$\begin{aligned} & \hline 0.7 \\ & 0.7 \end{aligned}$	mA
$l_{\text {ebo }}$	Emitter cut-off current	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{C}}=0$				1	mA
$\mathrm{h}_{\text {FE }}$	Forward current transfer ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{C}}=3 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A} \end{aligned}$	(see Notes 5 and 6)	$\begin{gathered} 40 \\ 20 \\ 4 \end{gathered}$			
$\mathrm{V}_{\text {CE(sat) }}$	Collector-emitter saturation voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=0.3 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=2.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & I_{C}=3 \mathrm{~A} \\ & I_{C}=10 \mathrm{~A} \end{aligned}$	(see Notes 5 and 6)			$\begin{aligned} & 1 \\ & 4 \end{aligned}$	V
$V_{B E}$	Base-emitter voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & I_{C}=3 \mathrm{~A} \\ & I_{C}=10 \mathrm{~A} \end{aligned}$	(see Notes 5 and 6)			$\begin{gathered} \hline 1.6 \\ 3 \end{gathered}$	V
$\mathrm{hf}_{\text {fe }}$	Small signal forward current transfer ratio	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}$	$\mathrm{f}=1 \mathrm{kHz}$	20			
$\left\|\mathrm{h}_{\text {fe }}\right\|$	Small signal forward current transfer ratio	$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}$	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}$	$\mathrm{f}=1 \mathrm{MHz}$	3			

NOTES: 5. These parameters must be measured using pulse techniques, $t_{p}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
6. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

thermal characteristics

	PARAMETER	MIN	TYP	MAX
UNIT				
$\mathrm{R}_{\theta \text { JC }}$	Junction to case thermal resistance			1.56
$\mathrm{R}_{\text {өJA }}$	Junction to free air thermal resistance			42
${ }^{\circ} \mathrm{C} / \mathrm{W}$				

resistive-load-switching characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$			MIN	TYP	MAX	UNIT
$\mathrm{t}_{\text {on }}$	Turn-on time	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}$	$\mathrm{I}_{\mathrm{B} \text { (on) }}=0.1 \mathrm{~A}$	$\mathrm{l}_{\mathrm{B} \text { (off) }}=-0.1 \mathrm{~A}$		0.3		$\mu \mathrm{s}$
$\mathrm{t}_{\text {off }}$	Turn-off time	$\mathrm{V}_{\mathrm{BE} \text { (off) }}=-3.7 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=20 \Omega$	$\mathrm{t}_{\mathrm{p}}=20 \mu \mathrm{~s}, \mathrm{dc} \leq 2 \%$		1		$\mu \mathrm{s}$

\dagger Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

TYPICAL CHARACTERISTICS

Figure 1.

COLLECTOR-EMITTER SATURATION VOLTAGE vS
BASE CURRENT

Figure 2.

Figure 3.

MAXIMUM SAFE OPERATING REGIONS

Figure 4.

THERMAL INFORMATION

Figure 5.

MECHANICAL DATA

SOT-93

3-pin plastic flange-mount package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

NOTE A: The centre pin is in electrical contact with the mounting tab.

PRODUCT INFORMATION

