
BOURNS®

BD240, BD240A, BD240B, BD240C PNP SILICON POWER TRANSISTORS

- Designed for Complementary Use with the BD241 Series
- 30 W at 25°C Case Temperature
- 2 A Continuous Collector Current
- 4 A Peak Collector Current
- Customer-Specified Selections Available

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING			VALUE	UNIT
	BD240		-55	
Collector-emitter voltage ($R_{BE} = 100 \Omega$)	BD240A	V	-70	v
$Collector-entitler voltage (R_{BE} = 100 \Omega)$	BD240B	V _{CER}	-90	v
	BD240C		-115	
Collector-emitter voltage (I _C = -30 mA)	BD240		-45	
	BD240A	V	-60	v
	BD240B	V _{CEO}	-80	v
	BD240C		-100	
Emitter-base voltage			-5	V
Continuous collector current			-2	А
Peak collector current (see Note 1)			-4	А
Continuous base current			-0.6	А
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)			30	W
Continuous device dissipation at (or below) 25°C free air temperature (see Note 3)			2	W
Unclamped inductive load energy (see Note 4)			32	mJ
Operating junction temperature range			-65 to +150	°C
Storage temperature range			-65 to +150	°C
Lead temperature 3.2 mm from case for 10 seconds			250	°C

NOTES: 1. This value applies for $t_p \leq 0.3$ ms, duty cycle $\leq 10\%.$

2. Derate linearly to 150°C case temperature at the rate of 0.24 W/°C.

3. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.

4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = -0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = -20 V.

PRODUCT INFORMATION

BD240, BD240A, BD240B, BD240C PNP SILICON POWER TRANSISTORS

electrical characteristics at 25°C case temperature

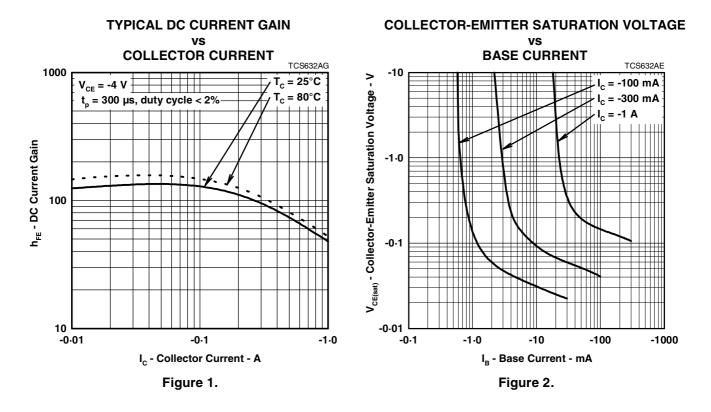
PARAMETER			TEST CONDITION	ONS	MIN			UNIT
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = -30 mA (see Note 5)	I _B = 0	BD240 BD240A BD240B	-45 -60 -80			V
		$V_{CF} = -55 V$	V _{BF} = 0	BD240C BD240	-100		-0.2	
I _{CES}	Collector-emitter cut-off current	V _{CE} = -70 V V _{CE} = -90 V	$V_{BE} = 0$ $V_{BE} = 0$	BD240A BD240B			-0.2 -0.2	mA
I _{CEO}	Collector cut-off current	$V_{CE} = -115 V$ $V_{CE} = -30 V$ $V_{CE} = -60 V$	$V_{BE} = 0$ $I_{B} = 0$ $I_{B} = 0$	BD240C BD240/240A BD240B/240C			-0.2 -0.3 -0.3	mA
I _{EBO}	Emitter cut-off current	V _{EB} = -5 V	$I_{\rm C} = 0$				-1	μA
h _{FE}	Forward current transfer ratio	$V_{CE} = -4 V$ $V_{CE} = -4 V$	$I_{\rm C} = -0.2 \text{ A}$ $I_{\rm C} = -1 \text{ A}$	(see Notes 5 and 6)	40 15			
V _{CE(sat)}	Collector-emitter saturation voltage	I _B = -0.2 A	I _C = -1 A	(see Notes 5 and 6)			-0.7	۷
V_{BE}	Base-emitter voltage	$V_{CE} = -4 V$	I _C = -1 A	(see Notes 5 and 6)			-1.3	V
h _{fe}	Small signal forward current transfer ratio	V _{CE} = -10 V	I _C = -0.2 A	f = 1 kHz	20			
h _{fe}	Small signal forward current transfer ratio	V _{CE} = -10 V	I _C = -0.2 A	f = 1 MHz	3			

NOTES: 5. These parameters must be measured using pulse techniques, $t_p = 300 \ \mu s$, duty cycle $\leq 2\%$.

6. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

thermal characteristics

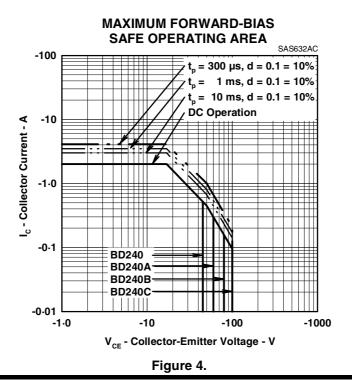
	PARAMETER			MAX	UNIT
R _{θJC}	Junction to case thermal resistance			4.17	°C/W
R _{0JA}	Junction to free air thermal resistance			62.5	°C/W


resistive-load-switching characteristics at 25°C case temperature

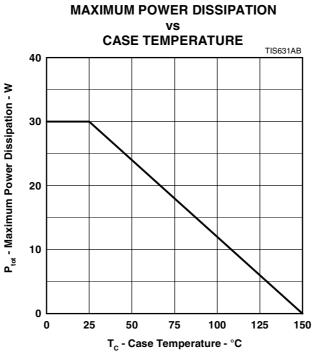
	PARAMETER	TEST CONDITIONS [†]			MIN	ТҮР	MAX	UNIT
t _{on}	Turn-on time	I _C = -200 mA	I _{B(on)} = -20 mA	I _{B(off)} = 20 mA		0.2		μs
t _{off}	Turn-off time	$V_{BE(off)} = 3.4 V$	$R_L = 150 \ \Omega$	t_p = 20 µs, dc \leq 2%		0.4		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

TYPICAL CHARACTERISTICS

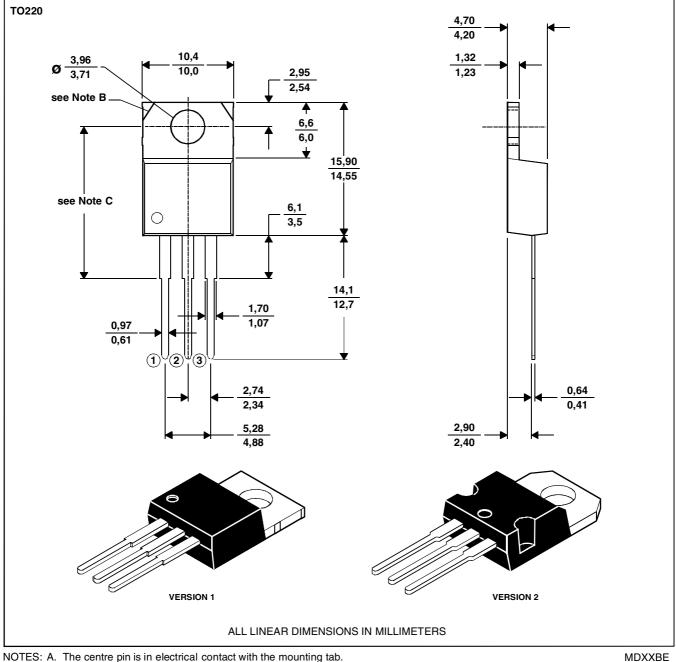


BASE-EMITTER VOLTAGE vs **COLLECTOR CURRENT** TCS632AF -1.0 $V_{CE} = -4 V$ $T_c = 25^{\circ}C$ V_{BE} - Base-Emitter Voltage - V -0.9 -0.8 -0.7 -0.6 -0.5 -0.01 -0.1 -1.0 I_c - Collector Current - A Figure 3.


PRODUCT INFORMATION

JUNE 1973 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

MAXIMUM SAFE OPERATING REGIONS


PRODUCT INFORMATION

MECHANICAL DATA

TO-220

3-pin plastic flange-mount package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

B. Mounting tab corner profile according to package version.

B. Mounting tab corner profile according to package version.
 C. Typical fixing hole centre stand off height according to package version.

Version 1, 18.0 mm. Version 2, 17.6 mm.

PRODUCT INFORMATION

JUNE 1973 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.