Features

* High-performance, Low-power AVR® 8-bit Microcontroller
* Advanced RISC Architecture
— 131 Powerful Instructions — Most Single-clock Cycle Execution
— 32 x 8 General Purpose Working Registers
— Fully Static Operation
— Up to 16 MIPS Throughput at 16 MHz
— On-chip 2-cycle Multiplier
* Nonvolatile Program and Data Memories
— 32K Bytes of In-System Self-Programmable Flash
Endurance: 10,000 Write/Erase Cycles
— Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
— 1024 Bytes EEPROM
Endurance: 100,000 Write/Erase Cycles
— 2K Byte Internal SRAM
— Programming Lock for Software Security
e JTAG (IEEE std. 1149.1 Compliant) Interface
— Boundary-scan Capabilities According to the JTAG Standard
— Extensive On-chip Debug Support
— Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
e Peripheral Features
— Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
— One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
Real Time Counter with Separate Oscillator
Four PWM Channels
8-channel, 10-bit ADC
8 Single-ended Channels
7 Differential Channels in TQFP Package Only
2 Differential Channels with Programmable Gain at 1x, 10x, or 200x
Byte-oriented Two-wire Serial Interface
Programmable Serial USART
Master/Slave SPI Serial Interface
Programmable Watchdog Timer with Separate On-chip Oscillator
— On-chip Analog Comparator
¢ Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
— Internal Calibrated RC Oscillator
— External and Internal Interrupt Sources
— Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby
and Extended Standby
1/0 and Packages
— 32 Programmable I/O Lines
— 40-pin PDIP, 44-lead TQFP, and 44-pad MLF
e Operating Voltages
— 2.7 -5.5V for ATmega32L
— 4.5-5.5V for ATmega32
* Speed Grades
— 0 - 8 MHz for ATmega32L
— 0-16 MHz for ATmega32
* Power Consumption at 1 MHz, 3V, 25°C for ATmega32L
— Active: 1.1 mA
— Idle Mode: 0.35 mA
— Power-down Mode: <1 pA

ATMEL

L [G)

Y F)

8-bit AVR"
Microcontroller
with 32K Bytes
In-System
Programmable
Flash

ATmega32
ATmega32L

Preliminary

2503F-AVR-12/03

Pin Configurations

ATMEL

Figure 1. Pinouts ATmega32

(XCK/TO) PBO] 1 7 PAO (ADCO)
(T1) PB1] 2 7 PAT1 ()
(INT2/AINO) PB2 | 3 1 PA2 (ADC2)
(OCO/AINT) PB3] 4 '] PA3 (ADC3)
(38) PB4] 5 T PA4 (ADC4)
(MOSI) PB5] 6 '] PA5 (ADC5)
(MISO) PB6] 7 1 PA6 (ADCS)
(SCK) PB7] 8 T PA7 (ADC7)
RESET] 9 1 AREF
VCC] 10 '] GND
GND] 11 1 AVCC
XTAL2] 12 1 PC7 (TOSC2)
XTAL1] 13 1 PC6 (TOSC1)
(RXD) PDO (] 14 1 PC5 (
(TXD) PD1 (] 15 1 PC4 (
(INTO) PD2 | 16 1 PC3 (
(INT1) PD3] 17 1 PC2 (
(OC1B) PD4] 18 1 PC1 (
(OC1A) PD5] 19 1 PCO (
(ICP) PD6 [20] PD7 (
=
= —
82 B s-oqa
~S S ¥ 00O
IB3SSER 2222
IB8E8202538¢
oo O0O>aa0aa
OO00000000(]
o 4443424140393837363534
(MOSI) PB5] 1 33 |1 PA4 (ADC4)
(MISO) PB6] 2 32 [PA5 (ADC5)
(SCK) PB7] 3 31 [PA6 (ADC6)
RESET L] 4 30 [PA7 (ADC7)
VCC [] 5 29 [J AREF
GND [] 6 28 |1 GND
XTAL2 17 27 |1 AVCC
XTAL1] 8 26 [J PC7 (TOSC2)
(RXD) PDO] 9 25 [PC6 (TOSC1)
(TXD) PD1] 10 24 [T PC5 (TDI)
(INTO) PD2] 11 23 [PC4 (TDO)
1 21 3 2 02 12 2
EjEgEgN EREgEREN
[SelS Tl O~ N M
on O 000
[a N ey a Ty s o oo a
cPs 0352
299 QOEE

Disclaimer Typical values contained in this datasheet are based on simulations and characteriza-
tion of other AVR microcontrollers manufactured on the same process technology. Min
and Max values will be available after the device is characterized.

2 ATm ega32(L) |

2503F-AVR-12/03

Overview

Block Diagram

2503F-AVR-12/03

ATmega32(L)

The ATmega32 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced
RISC architecture. By executing powerful instructions in a single clock cycle, the
ATmega32 achieves throughputs approaching 1 MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed.

Figure 2. Block Diagram

PAO - PA7

vee A A A A A A A &

PCO - PC7

A A A A A

A A A

L

PORTC DRIVERS/BUFFERS

r PORTA DRIVERS/BUFFERS

G?\ID PORTA DIGITAL INTERFACE

i

PORTC DIGITAL INTERFACE

i

(i

Avce \
o Muxe | acc i
ADC INTERFACE
AREF B —
* TIMERS/ —
PROGRAM STACK COUNTERS [«—* OSCILLATOR
e
COUNTER POINTER
T T
PROGRAM | 1% INTERNAL
FLASH SRAM OSCILLATOR
T XTALL
! e
INSTRUCTION GENERAL WATCHDOG
ReGISTER | LIy oombaat TIMER OSCILLATOR —
REGISTERS i
i l XTAL2
f X
INSTRUCTION MCU CTRL.
DECODER [l Y & TIMING RESET
I
CONTROL INTERRUPT INTERNAL
LINES ONIT CALIBRATED
OSCILLATOR
STATUS
AVR CPU REGISTER EEPROM
PROGRAMMING
[SP! USART
¥ COMP.
- INTERFACE

—

PORTB DIGITAL INTERFACE

i

i

PORTD DIGITAL INTERFACE

PORTB DRIVERS/BUFFERS

i

PORTD DRIVERS/BUFFERS

vVVvY VvVvoy

A

v vV v Vv

PBO - PB7

ATMEL

L [G)

vVYvY VVYYy

v v v

PDO - PD7

Pin Descriptions
vcc
GND

Port A (PA7..PAD)

ATMEL

The AVR core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing
two independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.

The ATmega32 provides the following features: 32K bytes of In-System Programmable
Flash Program memory with Read-While-Write capabilities, 1024 bytes EEPROM, 2K
byte SRAM, 32 general purpose /O lines, 32 general purpose working registers, a
JTAG interface for Boundary-scan, On-chip Debugging support and programming, three
flexible Timer/Counters with compare modes, Internal and External Interrupts, a serial
programmable USART, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit
ADC with optional differential input stage with programmable gain (TQFP package only),
a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, and six
software selectable power saving modes. The Idle mode stops the CPU while allowing
the USART, Two-wire interface, A/D Converter, SRAM, Timer/Counters, SPI port, and
interrupt system to continue functioning. The Power-down mode saves the register con-
tents but freezes the Oscillator, disabling all other chip functions until the next External
Interrupt or Hardware Reset. In Power-save mode, the Asynchronous Timer continues
to run, allowing the user to maintain a timer base while the rest of the device is sleeping.
The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchro-
nous Timer and ADC, to minimize switching noise during ADC conversions. In Standby
mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping.
This allows very fast start-up combined with low-power consumption. In Extended
Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.

The device is manufactured using Atmel’s high density nonvolatile memory technology.
The On-chip ISP Flash allows the program memory to be reprogrammed in-system
through an SPI serial interface, by a conventional nonvolatile memory programmer, or
by an On-chip Boot program running on the AVR core. The boot program can use any
interface to download the application program in the Application Flash memory. Soft-
ware in the Boot Flash section will continue to run while the Application Flash section is
updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU
with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega32 is
a powerful microcontroller that provides a highly-flexible and cost-effective solution to
many embedded control applications.

The ATmega32 AVR is supported with a full suite of program and system development
tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit
emulators, and evaluation kits.

Digital supply voltage.
Ground.

Port A serves as the analog inputs to the A/D Converter.

Port A also serves as an 8-bit bi-directional 1/0 port, if the A/D Converter is not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port A output
buffers have symmetrical drive characteristics with both high sink and source capability.
When pins PAO to PA7 are used as inputs and are externally pulled low, they will source
current if the internal pull-up resistors are activated. The Port A pins are tri-stated when
a reset condition becomes active, even if the clock is not running.

4 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

Port B (PB7..PB0)

Port C (PC7..PCO)

Port D (PD7..PDO)

XTAL1
XTAL2

AVCC

AREF

About Code
Examples

2503F-AVR-12/03

Port B is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATmega32 as listed
on page 55.

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running. If the JTAG interface is
enabled, the pull-up resistors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be acti-
vated even if a reset occurs.

The TDO pin is tri-stated unless TAP states that shift out data are entered.

Port C also serves the functions of the JTAG interface and other special features of the
ATmega32 as listed on page 58.

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega32 as listed
on page 60.

Reset Input. A low level on this pin for longer than the minimum pulse length will gener-
ate a reset, even if the clock is not running. The minimum pulse length is given in Table
15 on page 35. Shorter pulses are not guaranteed to generate a reset.

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
Output from the inverting Oscillator amplifier.

AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally
connected to V., even if the ADC is not used. If the ADC is used, it should be con-

nected to V. through a low-pass filter.

AREF is the analog reference pin for the A/D Converter.

This documentation contains simple code examples that briefly show how to use various
parts of the device. These code examples assume that the part specific header file is
included before compilation. Be aware that not all C Compiler vendors include bit defini-
tions in the header files and interrupt handling in C is compiler dependent. Please
confirm with the C Compiler documentation for more details.

AIMEL 5

L [G)

AVR CPU Core

Introduction

Architectural Overview

ATMEL

This section discusses the AVR core architecture in general. The main function of the
CPU core is to ensure correct program execution. The CPU must therefore be able to
access memories, perform calculations, control peripherals, and handle interrupts.

Figure 3. Block Diagram of the AVR MCU Architecture

(Data Bus 8-bit
Program Status
Flash < Counter Nl and Control ’
Program
Memory <
l Interrupt
— 28 <> uni
nstruction eneral
Register Purpose [€7] SPI
l— < Registrers [Unit
Instruction Watchdo
Decoder o P Timer g
j=2) c
£ 7]
l % % v pe
o 5 PEN nalog
Control Lines 3 2 Comparator
< g
o o
13 =
= °
e s <> 1/0 Module1
Data les}«>| 110 Module 2
SRAM
j<—> 1/O Module n
EEPROM <>
1/O Lines [

\/

In order to maximize performance and parallelism, the AVR uses a Harvard architecture
— with separate memories and buses for program and data. Instructions in the program
memory are executed with a single level pipelining. While one instruction is being exe-
cuted, the next instruction is pre-fetched from the program memory. This concept
enables instructions to be executed in every clock cycle. The program memory is In-
System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with
a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU)
operation. In a typical ALU operation, two operands are output from the Register File,
the operation is executed, and the result is stored back in the Register File — in one
clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing — enabling efficient address calculations. One of the these
address pointers can also be used as an address pointer for look up tables in Flash Pro-
gram memory. These added function registers are the 16-bit X-, Y-, and Z-register,
described later in this section.

The ALU supports arithmetic and logic operations between registers or between a con-
stant and a register. Single register operations can also be executed in the ALU. After

6 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

ALU - Arithmetic Logic
Unit

2503F-AVR-12/03

an arithmetic operation, the Status Register is updated to reflect information about the
result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions,
able to directly address the whole address space. Most AVR instructions have a single
16-bit word format. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot program section and
the Application Program section. Both sections have dedicated Lock bits for write and
read/write protection. The SPM instruction that writes into the Application Flash memory
section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the Stack. The Stack is effectively allocated in the general data SRAM, and
consequently the Stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the reset routine (before subroutines
or interrupts are executed). The Stack Pointer SP is read/write accessible in the 1/0O
space. The data SRAM can easily be accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the 1/0 space with an additional
global interrupt enable bit in the Status Register. All interrupts have a separate interrupt
vector in the interrupt vector table. The interrupts have priority in accordance with their
interrupt vector position. The lower the interrupt vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control
Registers, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as
the Data Space locations following those of the Register File, $20 - $5F.

The high-performance AVR ALU operates in direct connection with all the 32 general
purpose working registers. Within a single clock cycle, arithmetic operations between
general purpose registers or between a register and an immediate are executed. The
ALU operations are divided into three main categories — arithmetic, logical, and bit-func-
tions. Some implementations of the architecture also provide a powerful multiplier
supporting both signed/unsigned multiplication and fractional format. See the “Instruc-
tion Set” section for a detailed description.

AIMEL 7

L [G)

Status Register

ATMEL

The Status Register contains information about the result of the most recently executed
arithmetic instruction. This information can be used for altering program flow in order to
perform conditional operations. Note that the Status Register is updated after all ALU
operations, as specified in the Instruction Set Reference. This will in many cases
remove the need for using the dedicated compare instructions, resulting in faster and
more compact code.

The Status Register is not automatically stored when entering an interrupt routine and
restored when returning from an interrupt. This must be handled by software.

The AVR Status Register — SREG - is defined as:

Bit 7 6 5 4 3 2 1 0

| I | 7 | H | s | v N z c | srec
Read/Write RIW R/W R/W R/W RIW RIW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 —I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individ-
ual interrupt enable control is then performed in separate control registers. If the Global
Interrupt Enable Register is cleared, none of the interrupts are enabled independent of
the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt
has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-
bit can also be set and cleared by the application with the SEI and CLI instructions, as
described in the instruction set reference.

» Bit 6 — T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or
destination for the operated bit. A bit from a register in the Register File can be copied
into T by the BST instruction, and a bit in T can be copied into a bit in a register in the
Register File by the BLD instruction.

e Bit 5 - H: Half Carry Flag

The Half Carry Flag H indicates a half carry in some arithmetic operations. Half Carry is
useful in BCD arithmetic. See the “Instruction Set Description” for detailed information.

« Bit4-S:SignBit, S=N1V

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Comple-
ment Overflow Flag V. See the “Instruction Set Description” for detailed information.

e Bit 3-V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See
the “Instruction Set Description” for detailed information.

e Bit 2 — N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See
the “Instruction Set Description” for detailed information.

e Bit1-2Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

8 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

General Purpose
Register File

2503F-AVR-12/03

e Bit 0-C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruc-
tion Set Description” for detailed information.

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to
achieve the required performance and flexibility, the following input/output schemes are
supported by the Register File:

« One 8-bit output operand and one 8-bit result input
e Two 8-bit output operands and one 8-bit result input
« Two 8-bit output operands and one 16-bit result input
e One 16-bit output operand and one 16-bit result input

Figure 4 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4. AVR CPU General Purpose Working Registers

7 0 Addr.
RO $00
R1 $01
R2 $02
R13 $0D
General R14 $0E
Purpose R15 $OF
Working R16 $10
Registers R17 $11
R26 $1A X-register Low Byte
R27 $1B X-register High Byte
R28 $1C Y-register Low Byte
R29 $1D Y-register High Byte
R30 $1E Z-register Low Byte
R31 $1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers,
and most of them are single cycle instructions.

As shown in Figure 4, each register is also assigned a data memory address, mapping
them directly into the first 32 locations of the user Data Space. Although not being phys-
ically implemented as SRAM locations, this memory organization provides great
flexibility in access of the registers, as the X-, Y-, and Z-pointer Registers can be set to
index any register in the file.

AIMEL 0

L [G)

The X-register, Y-register and
Z-register

Stack Pointer

ATMEL

The registers R26..R31 have some added functions to their general purpose usage.
These registers are 16-bit address pointers for indirect addressing of the Data Space.
The three indirect address registers X, Y, and Z are defined as described in Figure 5.

Figure 5. The X-, Y-, and Z-registers

15 XH XL
X - register I 7 0 I 7 0 I
R27 ($1B) R26 ($1A)
15 YH YL
Y - register |7 of7 o]
R29 ($1D) R28 ($1C)
15 ZH ZL 0
Z - register |7 0 |7 0 |
R3L (S1F) R30 (SLE)

In the different addressing modes these address registers have functions as fixed dis-
placement, automatic increment, and automatic decrement (see the Instruction Set
Reference for details).

The Stack is mainly used for storing temporary data, for storing local variables and for
storing return addresses after interrupts and subroutine calls. The Stack Pointer Regis-
ter always points to the top of the Stack. Note that the Stack is implemented as growing
from higher memory locations to lower memory locations. This implies that a Stack
PUSH command decreases the Stack Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Inter-
rupt Stacks are located. This Stack space in the data SRAM must be defined by the
program before any subroutine calls are executed or interrupts are enabled. The Stack
Pointer must be set to point above $60. The Stack Pointer is decremented by one when
data is pushed onto the Stack with the PUSH instruction, and it is decremented by two
when the return address is pushed onto the Stack with subroutine call or interrupt. The
Stack Pointer is incremented by one when data is popped from the Stack with the POP
instruction, and it is incremented by two when data is popped from the Stack with return
from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The num-
ber of bits actually used is implementation dependent. Note that the data space in some
implementations of the AVR architecture is so small that only SPL is needed. In this
case, the SPH Register will not be present.

Bit 15 14 13 12 11 10 9 8
SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SPS SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
R/W RIW R/IW R/IW R/IW R/W R/IW R/IW
Initial Value 0 0 0 0 0 0
0 0 0 0 0 0
10 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

Instruction Execution

Timing

Reset and Interrupt
Handling

2503F-AVR-12/03

This section describes the general access timing concepts for instruction execution. The
AVR CPU is driven by the CPU clock clkcp, directly generated from the selected clock
source for the chip. No internal clock division is used.

Figure 6 shows the parallel instruction fetches and instruction executions enabled by the
Harvard architecture and the fast-access Register File concept. This is the basic pipelin-
ing concept to obtain up to 1 MIPS per MHz with the corresponding unique results for
functions per cost, functions per clocks, and functions per power-unit.

Figure 6. The Parallel Instruction Fetches and Instruction Executions
T1 T2 T3 T4

S A N S N A N A N

CPU
1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch

Figure 7 shows the internal timing concept for the Register File. In a single clock cycle
an ALU operation using two register operands is executed, and the result is stored back
to the destination register.

Figure 7. Single Cycle ALU Operation
T1 T2 T3 T4

N A N S N A N SR

CPU
Total Execution Time

Register Operands Fetch

Result Write Back

|
| |
| |
| |
| |
| |
| |
| |
| |
T T
| |
| |
t t
| |
| |

|
|
|
|
|
:
ALU Operation Execute l
|
|
|
|

The AVR provides several different interrupt sources. These interrupts and the separate
reset vector each have a separate program vector in the program memory space. All
interrupts are assigned individual enable bits which must be written logic one together
with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt.
Depending on the Program Counter value, interrupts may be automatically disabled
when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software
security. See the section “Memory Programming” on page 254 for details.

The lowest addresses in the program memory space are by default defined as the Reset
and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 42.
The list also determines the priority levels of the different interrupts. The lower the
address the higher is the priority level. RESET has the highest priority, and next is INTO

AIMEL 1

L [G)

ATMEL

— the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of
the Boot Flash section by setting the IVSEL bit in the General Interrupt Control Register
(GICR). Refer to “Interrupts” on page 42 for more information. The Reset Vector can
also be moved to the start of the boot Flash section by programming the BOOTRST
fuse, see “Boot Loader Support — Read-While-Write Self-Programming” on page 242.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts
are disabled. The user software can write logic one to the I-bit to enable nested inter-
rupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is
automatically set when a Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that
sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the
actual Interrupt Vector in order to execute the interrupt handling routine, and hardware
clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a
logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the
corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remem-
bered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or
more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the cor-
responding Interrupt Flag(s) will be set and remembered until the global interrupt enable
bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present.
These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disap-
pears before the interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and exe-
cute one more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt rou-
tine, nor restored when returning from an interrupt routine. This must be handled by
software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately
disabled. No interrupt will be executed after the CLI instruction, even if it occurs simulta-
neously with the CLI instruction. The following example shows how this can be used to
avoid interrupts during the timed EEPROM write sequence.

Assembly Code Example

in rl6, SREG ; store SREG val ue

cli ; disable interrupts during timed sequence
shi EECR, EEMAE ; start EEPROM write

shi EECR EEWE

out SREG r16 ; restore SREG value (I-bit)

C Code Example

char cSREG

CSREG = SREG, /* store SREG val ue */

/* disable interrupts during timed sequence */
_CLI();

EECR | = (1<<EEMAE); /* start EEPROMwite */
EECR | = (1<<EEVE);

SREG = ¢SREG, /* restore SREG value (l-bit) */

12 AT M €0 A3 2 (L)

A\ T M ega32(L)

Interrupt Response Time

2503F-AVR-12/03

When using the SEI instruction to enable interrupts, the instruction following SEI will be
executed before any pending interrupts, as shown in this example.

Assembly Code Example

sei ; set global interrupt enable

sleep; enter sleep, waiting for interrupt
note: will enter sleep before any pending
interrupt(s)

C Code Example

_SEI(); /* set global interrupt enable */
_SLEEP(); /* enter sleep, waiting for interrupt */
/* note: will enter sleep before any pending interrupt(s) */

The interrupt execution response for all the enabled AVR interrupts is four clock cycles
minimum. After four clock cycles the program vector address for the actual interrupt
handling routine is executed. During this four clock cycle period, the Program Counter is
pushed onto the Stack. The vector is normally a jump to the interrupt routine, and this
jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle
instruction, this instruction is completed before the interrupt is served. If an interrupt
occurs when the MCU is in sleep mode, the interrupt execution response time is
increased by four clock cycles. This increase comes in addition to the start-up time from
the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four
clock cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack
Pointer is incremented by two, and the I-bit in SREG is set.

AIMEL 12

L [G)

AVR ATmega32
Memories

In-System
Reprogrammable Flash
Program Memory

ATMEL

This section describes the different memories in the ATmega32. The AVR architecture
has two main memory spaces, the Data Memory and the Program Memory space. In
addition, the ATmega32 features an EEPROM Memory for data storage. All three mem-
ory spaces are linear and regular.

The ATmega32 contains 32K bytes On-chip In-System Reprogrammable Flash memory
for program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is orga-
nized as 16K x 16. For software security, the Flash Program memory space is divided
into two sections, Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The
ATmega32 Program Counter (PC) is 14 bits wide, thus addressing the 16K program
memory locations. The operation of Boot Program section and associated Boot Lock
bits for software protection are described in detail in “Boot Loader Support — Read-
While-Write Self-Programming” on page 242. “Memory Programming” on page 254 con-
tains a detailed description on Flash Programming in SPI, JTAG, or Parallell
Programming mode.

Constant tables can be allocated within the entire program memory address space (see
the LPM — Load Program Memory Instruction Description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execu-
tion Timing” on page 11.

Figure 8. Program Memory Map

$0000

Application Flash Section

R ———

Boot Flash Section
$3FFF

14 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

SRAM Data Memory

2503F-AVR-12/03

Figure 9 shows how the ATmega32 SRAM Memory is organized.

The lower 2144 Data Memory locations address the Register File, the /O Memory, and
the internal data SRAM. The first 96 locations address the Register File and 1/0O Mem-
ory, and the next 2048 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Dis-
placement, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In
the Register File, registers R26 to R31 feature the indirect Addressing Pointer
Registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base
address given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-
increment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/0 Registers, and the 2048 bytes of inter-
nal data SRAM in the ATmega32 are all accessible through all these addressing modes.
The Register File is described in “General Purpose Register File” on page 9.

Figure 9. Data Memory Map

Register File Data Address Space
RO $0000
R1 $0001
R2 $0002
R29 $001D
R30 $001E
R34 $001F
1/0 Registers
$00 $0020
$01 $0021
$02 $0022
$3D $005D
$3E $005E
$3F 41 $005F
Internal SRAM
$0060
$0061
$085E
$085F

AIMEL 15

L [G)

Data Memory Access Times

EEPROM Data Memory

EEPROM Read/Write Access

ATMEL

This section describes the general access timing concepts for internal memory access.
The internal data SRAM access is performed in two clkp, cycles as described in Figure
10.

Figure 10. On-chip Data SRAM Access Cycles

T1 T2 T3
I I I
I I I
I I I

S A Y 2 N A N

CPU

| |
| | |
Address | Compute Address | X Address Valid |
| | |
Data l : ! =,
| | | ‘E
| | |
WR I L/ N\ =
| | | —
| | }
Data f f i .
| | I ©
I I I &
RD ! L/ :\
T T —
| | |
Memory Access Instruction Next Instruction

The ATmega32 contains 1024 bytes of data EEPROM memory. It is organized as a sep-
arate data space, in which single bytes can be read and written. The EEPROM has an
endurance of at least 100,000 write/erase cycles. The access between the EEPROM
and the CPU is described in the following, specifying the EEPROM Address Registers,
the EEPROM Data Register, and the EEPROM Control Register.

“Memory Programming” on page 254 contains a detailed description on EEPROM Pro-
gramming in SPI, JTAG, or Parallell Programming mode.

The EEPROM Access Registers are accessible in the 1/0O space.

The write access time for the EEPROM is given in Table 1. A self-timing function, how-
ever, lets the user software detect when the next byte can be written. If the user code
contains instructions that write the EEPROM, some precautions must be taken. In
heavily filtered power supplies, V. is likely to rise or fall slowly on Power-up/down. This
causes the device for some period of time to run at a voltage lower than specified as
minimum for the clock frequency used. See “Preventing EEPROM Corruption” on page
20 for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be fol-
lowed. Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next
instruction is executed. When the EEPROM is written, the CPU is halted for two clock
cycles before the next instruction is executed.

16 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

The EEPROM Address
Register - EEARH and EEARL

The EEPROM Data Register —
EEDR

The EEPROM Control Register
- EECR

2503F-AVR-12/03

Bit 15 14 13 12 11 10 9 8
- - - - - - EEAR9 EEARS EEARH
EEAR7 EEARG6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/IW
Initial Value 0 0 0 0 0 0 0 X
X X X X X X X X

* Bits 15..10 — Res: Reserved Bits

These bits are reserved bits in the ATmega32 and will always read as zero.

* Bits 9..0 - EEAR9..0: EEPROM Address

The EEPROM Address Registers - EEARH and EEARL — specify the EEPROM address
in the 1024 bytes EEPROM space. The EEPROM data bytes are addressed linearly
between 0 and 1023. The initial value of EEAR is undefined. A proper value must be
written before the EEPROM may be accessed.

Bit 7 6 5 4 3 2 1 0

| wse Lse | EEDR
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0 — EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to
the EEPROM in the address given by the EEAR Register. For the EEPROM read oper-
ation, the EEDR contains the data read out from the EEPROM at the address given by
EEAR.

Bit 7 6 5 4 3 2 1 0

| - EERIE | EEMWE | EEWE EERE | EECR
Read/Write R R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 X 0

» Bits 7..4 — Res: Reserved Bits

These bits are reserved bits in the ATmega32 and will always read as zero.

e Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the | bit in SREG is set.
Writing EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a
constant interrupt when EEWE is cleared.

* Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be
written. When EEMWE is set, setting EEWE within four clock cycles will write data to the
EEPROM at the selected address If EEMWE is zero, setting EEWE will have no effect.

AIMEL 17

L [G)

18

ATMEL

When EEMWE has been written to one by software, hardware clears the bit to zero after
four clock cycles. See the description of the EEWE bit for an EEPROM write procedure.

» Bit 1 - EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When
address and data are correctly set up, the EEWE bit must be written to one to write the
value into the EEPROM. The EEMWE bit must be written to one before a logical one is
written to EEWE, otherwise no EEPROM write takes place. The following procedure
should be followed when writing the EEPROM (the order of steps 3 and 4 is not
essential):

1. Wait until EEWE becomes zero.

Wait until SPMEN in SPMCR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
Within four clock cycles after setting EEMWE, write a logical one to EEWE.

ook wDn

The EEPROM can not be programmed during a CPU write to the Flash memory. The
software must check that the Flash programming is completed before initiating a new
EEPROM write. Step 2 is only relevant if the software contains a Boot Loader allowing
the CPU to program the Flash. If the Flash is never being updated by the CPU, step 2
can be omitted. See “Boot Loader Support — Read-While-Write Self-Programming” on
page 242 for details about boot programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the
EEPROM is interrupting another EEPROM Access, the EEAR or EEDR reGister will be
modified, causing the interrupted EEPROM Access to fail. It is recommended to have
the Global Interrupt Flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The
user software can poll this bit and wait for a zero before writing the next byte. When
EEWE has been set, the CPU is halted for two cycles before the next instruction is
executed.

* Bit 0 — EERE: EEPROM Read Enable

The EEPROM Read Enable Signal — EERE — is the read strobe to the EEPROM. When
the correct address is set up in the EEAR Register, the EERE bit must be written to a
logic one to trigger the EEPROM read. The EEPROM read access takes one instruction,
and the requested data is available immediately. When the EEPROM is read, the CPU
is halted for four cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation
is in progress, it is neither possible to read the EEPROM, nor to change the EEAR
Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 1 lists the typical
programming time for EEPROM access from the CPU.

Table 1. EEPROM Programming Time

Number of Calibrated RC
Symbol Oscillator Cycles® Typ Programming Time

EEPROM write (from CPU) 8448 8.5ms

AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

2503F-AVR-12/03

Note: 1. Uses 1 MHz clock, independent of CKSEL Fuse setting.

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (for example by dis-
abling interrupts globally) so that no interrupts will occur during execution of these
functions. The examples also assume that no Flash Boot Loader is present in the soft-
ware. If such code is present, the EEPROM write function must also wait for any
ongoing SPM command to finish.

Assembly Code Example

EEPROM wri t e:
; Wait for conpletion of previous wite
shi ¢ EECR, EEVE
rinp EEPROM write
; Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, r17
Wite data (rl16) to data register
out EEDR r16
Wite |l ogical one to EEME
shi EECR, EEME
; Start eepromwite by setting EEWE
shi EECR, EEME
ret

C Code Example

voi d EEPROM wri te(unsi gned int ui Address, unsigned char ucData)
{
/* Wait for conpletion of previous wite */
whi | e(EECR & (1<<EEVE))
/* Set up address and data registers */
EEAR = ui Addr ess;
EEDR = ucDat a;
/* Wite logical one to EEMAE */
EECR | = (1<<EEM/E) ;
/* Start eepromwite by setting EEVE */
EECR | = (1<<EEVE);

AIMEL 19

L [G)

EEPROM Write During Power-
down Sleep Mode

Preventing EEPROM
Corruption

ATMEL

The next code examples show assembly and C functions for reading the EEPROM. The
examples assume that interrupts are controlled so that no interrupts will occur during
execution of these functions.

Assembly Code Example

EEPROM r ead:
; Wait for conpletion of previous wite
shi ¢ EECR, EEVE
rj mp EEPROM r ead
Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, rl7
; Start eepromread by witing EERE
shi EECR, EERE
Read data from data register
in rl16, EEDR
ret

C Code Example

unsi gned char EEPROM read(unsigned int ui Address)
{

/* Wait for conpletion of previous wite */

whi | e(EECR & (1<<EEVE))

/* Set up address register */

EEAR = ui Addr ess;

/* Start eepromread by witing EERE */
EECR | = (1<<EERE);

/* Return data from data register */
return EEDR;

When entering Power-down Sleep mode while an EEPROM write operation is active,
the EEPROM write operation will continue, and will complete before the Write Access
time has passed. However, when the write operation is completed, the crystal Oscillator
continues running, and as a consequence, the device does not enter Power-down
entirely. It is therefore recommended to verify that the EEPROM write operation is com-
pleted before entering Power-down.

During periods of low V. the EEPROM data can be corrupted because the supply volt-
age is too low for the CPU and the EEPROM to operate properly. These issues are the
same as for board level systems using EEPROM, and the same design solutions should
be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the EEPROM requires a minimum voltage to
operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage is too low.

20 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

I/O Memory

2503F-AVR-12/03

EEPROM data corruption can easily be avoided by following this design
recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply volt-
age. This can be done by enabling the internal Brown-out Detector (BOD). If the
detection level of the internal BOD does not match the needed detection level, an
external low V. Reset Protection circuit can be used. If a reset occurs while a write
operation is in progress, the write operation will be completed provided that the
power supply voltage is sufficient.

The 1/O space definition of the ATmega32 is shown in “Register Summary” on page 299.

All ATmega32 I/Os and peripherals are placed in the 1/O space. The I/O locations are
accessed by the IN and OUT instructions, transferring data between the 32 general pur-
pose working registers and the 1/0O space. /O Registers within the address range $00 -
$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to
the Instruction Set section for more details. When using the I/O specific commands IN
and OUT, the I/O addresses $00 - $3F must be used. When addressing I/0 Registers as
data space using LD and ST instructions, $20 must be added to these addresses.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/0O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI
and SBI instructions will operate on all bits in the I/O Register, writing a one back into
any flag read as set, thus clearing the flag. The CBI and SBI instructions work with reg-
isters $00 to $1F only.

The I/O and Peripherals Control Registers are explained in later sections.

AIMEL 2

L [G)

System Clock and
Clock Options

Clock Systems and their
Distribution

CPU Clock — clk¢epy

I/O Clock — clk ;o

Flash Clock — clkg asy

ATMEL

Figure 11 presents the principal clock systems in the AVR and their distribution. All of
the clocks need not be active at a given time. In order to reduce power consumption, the
clocks to modules not being used can be halted by using different sleep modes, as
described in “Power Management and Sleep Modes” on page 30. The clock systems
are detailed Figure 11.

Figure 11. Clock Distribution

Asynchronous General I/O Flash and
Timer/Counter Modules ADC CPU Core RAM EEPROM
A A 4 Y A 4 L A

clk,pe
clkyo AVR Clock e
Control Unit
ClkASY ClkFLASH
Y A
Reset Logic Watchdog Timer
1 t
Source Clock Watchdog Clock
Clock Watchdog
Multiplexer Oscillator
AL A A A A

]

Timer/Counter External RC External Clock Crystal Low-frequency Calibrated RC
Oscillator Oscillator Oscillator Crystal Oscillator Oscillator

The CPU clock is routed to parts of the system concerned with operation of the AVR
core. Examples of such modules are the General Purpose Register File, the Status Reg-
ister and the data memory holding the Stack Pointer. Halting the CPU clock inhibits the
core from performing general operations and calculations.

The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and
USART. The I/O clock is also used by the External Interrupt module, but note that some
external interrupts are detected by asynchronous logic, allowing such interrupts to be
detected even if the I/O clock is halted. Also note that address recognition in the TWI
module is carried out asynchronously when clk, is halted, enabling TWI address recep-
tion in all sleep modes.

The Flash clock controls operation of the Flash interface. The Flash clock is usually
active simultaneously with the CPU clock.

22 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

Asynchronous Timer Clock —
Clkasy

ADC Clock —clkapc

Clock Sources

Default Clock Source

2503F-AVR-12/03

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked
directly from an external 32 kHz clock crystal. The dedicated clock domain allows using
this Timer/Counter as a real-time counter even when the device is in sleep mode.

The ADC is provided with a dedicated clock domain. This allows halting the CPU and
I/O clocks in order to reduce noise generated by digital circuitry. This gives more accu-
rate ADC conversion results.

The device has the following clock source options, selectable by Flash Fuse bits as
shown below. The clock from the selected source is input to the AVR clock generator,
and routed to the appropriate modules.

Table 2. Device Clocking Options Select™®

Device Clocking Option CKSEL3..0
External Crystal/Ceramic Resonator 1111 - 1010
External Low-frequency Crystal 1001
External RC Oscillator 1000 - 0101
Calibrated Internal RC Oscillator 0100 - 0001
External Clock 0000

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the
CPU wakes up from Power-down or Power-save, the selected clock source is used to
time the start-up, ensuring stable Oscillator operation before instruction execution starts.
When the CPU starts from Reset, there is as an additional delay allowing the power to
reach a stable level before commencing normal operation. The Watchdog Oscillator is
used for timing this real-time part of the start-up time. The number of WDT Oscillator
cycles used for each time-out is shown in Table 3. The frequency of the Watchdog Oscil-
lator is voltage dependent as shown in “Register Summary” on page 299.

Table 3. Number of Watchdog Oscillator Cycles

Typ Time-out (V¢ = 5.0V) Typ Time-out (Ve = 3.0V) Number of Cycles
4.1 ms 4.3 ms 4K (4,096)
65 ms 69 ms 64K (65,536)

The device is shipped with CKSEL = “0001” and SUT = “10". The default clock source
setting is therefore the 1 MHz Internal RC Oscillator with longest startup time. This
default setting ensures that all users can make their desired clock source setting using
an In-System or Parallel Programmer.

AIMEL 23

L [G)

Crystal Oscillator

ATMEL

XTAL1 and XTALZ2 are input and output, respectively, of an inverting amplifier which can
be configured for use as an On-chip Oscillator, as shown in Figure 12. Either a quartz
crystal or a ceramic resonator may be used. The CKOPT Fuse selects between two dif-
ferent Oscillator amplifier modes. When CKOPT is programmed, the Oscillator output
will oscillate will a full rail-to-rail swing on the output. This mode is suitable when operat-
ing in a very noisy environment or when the output from XTAL2 drives a second clock
buffer. This mode has a wide frequency range. When CKOPT is unprogrammed, the
Oscillator has a smaller output swing. This reduces power consumption considerably.
This mode has a limited frequency range and it can not be used to drive other clock
buffers.

For resonators, the maximum frequency is 8 MHz with CKOPT unprogrammed and
16 MHz with CKOPT programmed. C1 and C2 should always be equal for both crystals
and resonators. The optimal value of the capacitors depends on the crystal or resonator
in use, the amount of stray capacitance, and the electromagnetic noise of the environ-
ment. Some initial guidelines for choosing capacitors for use with crystals are given in
Table 4. For ceramic resonators, the capacitor values given by the manufacturer should
be used.

Figure 12. Crystal Oscillator Connections

c2
— }—hXTALZ
L]

0—C) e XTAL1

GND

The Oscillator can operate in three different modes, each optimized for a specific fre-
guency range. The operating mode is selected by the fuses CKSEL3..1 as shown in
Table 4.

Table 4. Crystal Oscillator Operating Modes

Frequency Range Recommended Range for Capacitors
CKOPT CKSEL3..1 (MHz) C1 and C2 for Use with Crystals (pF)
1 101® 0.4-0.9 -
1 110 0.9-3.0 12-22
1 111 3.0-8.0 12 - 22
0 101, 110, 111 10< 12 - 22

Note: 1. This option should not be used with crystals, only with ceramic resonators.

24 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

The CKSELO Fuse together with the SUT1..0 fuses select the start-up times as shown in

Table 5.
Table 5. Start-up Times for the Crystal Oscillator Clock Selection
Start-up Time from | Additional Delay
Power-down and from Reset
CKSELO | SUT1..0 Power-save (Ve =5.0v) Recommended Usage

0 00 258 CK® 41ms C_:e_ramlc resonator, fast
rising power

0 01 258 CK® 65 ms C_:e_ramlc resonator, slowly
rising power

0 10 1K CK@ B Ceramic resonator, BOD
enabled

0 11 1K CK® 41ms Ceramic resonator, fast
rising power

1 00 1K CK® 65 ms C_:e_ramlc resonator, slowly
rising power

1 01 16K CK _ Crystal Oscillator, BOD
enabled

1 10 16K CK 41 ms (?rystal Oscillator, fast
rising power

1 11 16K CK 65 ms (?rystal Oscillator, slowly
rising power

Notes: 1. These options should only be used when not operating close to the maximum fre-
guency of the device, and only if frequency stability at start-up is not important for the

2.

application. These options are not suitable for crystals.

These options are intended for use with ceramic resonators and will ensure fre-
guency stability at start-up. They can also be used with crystals when not operating
close to the maximum frequency of the device, and if frequency stability at start-up is
not important for the application.

2503F-AVR-12/03

ATMEL

L [G)

25

Low-frequency Crystal
Oscillator

External RC Oscillator

ATMEL

To use a 32.768 kHz watch crystal as the clock source for the device, the Low-fre-
guency Crystal Oscillator must be selected by setting the CKSEL fuses to “1001". The
crystal should be connected as shown in Figure 12. By programming the CKOPT Fuse,
the user can enable internal capacitors on XTAL1 and XTALZ2, thereby removing the
need for external capacitors. The internal capacitors have a nominal value of 36 pF.

When this Oscillator is selected, start-up times are determined by the SUT fuses as
shown in Table 6.

Table 6. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
SUT1..0 Power-save (Ve =5.0V) Recommended Usage
00 1K CK®W 4.1ms Fast rising power or BOD enabled
01 1K CK®W 65 ms Slowly rising power
10 32K CK 65 ms Stable frequency at start-up
11 Reserved

Note: 1. These options should only be used if frequency stability at start-up is not important
for the application.

For timing insensitive applications, the external RC configuration shown in Figure 13
can be used. The frequency is roughly estimated by the equation f = 1/(3RC). C should
be at least 22 pF. By programming the CKOPT Fuse, the user can enable an internal
36 pF capacitor between XTAL1 and GND, thereby removing the need for an external
capacitor. For more information on Oscillator operation and details on how to choose R
and C, refer to the External RC Oscillator application note.

Figure 13. External RC Configuration

VCC
R NC —— XTAL2
I XTALL
©T
l GND

The Oscillator can operate in four different modes, each optimized for a specific fre-
quency range. The operating mode is selected by the fuses CKSEL3..0 as shown in
Table 7.

26 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

Calibrated Internal RC
Oscillator

2503F-AVR-12/03

Table 7. External RC Oscillator Operating Modes

CKSEL3..0 Frequency Range (MHz)
0101 <0.9
0110 0.9-3.0
0111 3.0-8.0
1000 8.0-12.0

When this Oscillator is selected, start-up times are determined by the SUT fuses as
shown in Table 8.

Table 8. Start-up Times for the External RC Oscillator Clock Selection

Start-up Time from | Additional Delay
Power-down and from Reset
SUT1..0 Power-save (Vee =5.0v) Recommended Usage
00 18 CK - BOD enabled
01 18 CK 4.1 ms Fast rising power
10 18 CK 65 ms Slowly rising power
11 6 CKW 4.1ms Fast rising power or BOD enabled

Note: 1. This option should not be used when operating close to the maximum frequency of
the device.

The Calibrated Internal RC Oscillator provides a fixed 1.0, 2.0, 4.0, or 8.0 MHz clock. All
frequencies are nominal values at 5V and 25°C. This clock may be selected as the sys-
tem clock by programming the CKSEL fuses as shown in Table 9. If selected, it will
operate with no external components. The CKOPT Fuse should always be unpro-
grammed when using this clock option. During Reset, hardware loads the calibration
byte into the OSCCAL Register and thereby automatically calibrates the RC Oscillator.
At 5V, 25°C and 1.0 MHz Oscillator frequency selected, this calibration gives a fre-
guency within + 3% of the nominal frequency. Using run-time calibration methods as
described in application notes available at www.atmel.com/avr it is possible to achieve
* 1% accuracy at any given V¢ and Temperature. When this Oscillator is used as the
Chip Clock, the Watchdog Oscillator will still be used for the Watchdog Timer and for the
reset time-out. For more information on the pre-programmed calibration value, see the
section “Calibration Byte” on page 256.

Table 9. Internal Calibrated RC Oscillator Operating Modes

CKSEL3..0 Nominal Frequency (MHz)
0001®W 1.0
0010 2.0
0011 4.0
0100 8.0

Note: 1. The device is shipped with this option selected.

AIMEL 21

L [G)

Oscillator Calibration Register
— OSCCAL

ATMEL

When this Oscillator is selected, start-up times are determined by the SUT fuses as
shown in Table 10. XTAL1 and XTALZ2 should be left unconnected (NC).

Table 10. Start-up Times for the Internal Calibrated RC Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
SUT1..0 Power-save (Ve =5.0V) Recommended Usage
00 6 CK - BOD enabled
01 6 CK 4.1 ms Fast rising power
10W 6 CK 65 ms Slowly rising power
11 Reserved

Note: 1. The device is shipped with this option selected.

Bit 7 6 5 4 3 2 1 0
| ca? CAL6 CALS CAL4 CAL3 CAL2 CAL1 CALO | osccAL

Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value Device Specific Calibration Value

* Bits 7..0 — CAL7..0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the Internal Oscillator to remove pro-
cess variations from the Oscillator frequency. During Reset, the 1 MHz calibration value
which is located in the signature row High Byte (address 0x00) is automatically loaded
into the OSCCAL Register. If the internal RC is used at other frequencies, the calibration
values must be loaded manually. This can be done by first reading the signature row by
a programmer, and then store the calibration values in the Flash or EEPROM. Then the
value can be read by software and loaded into the OSCCAL Register. When OSCCAL is
zero, the lowest available frequency is chosen. Writing non-zero values to this register
will increase the frequency of the Internal Oscillator. Writing $FF to the register gives the
highest available frequency. The calibrated Oscillator is used to time EEPROM and
Flash access. If EEPROM or Flash is written, do not calibrate to more than 10% above
the nominal frequency. Otherwise, the EEPROM or Flash write may fail. Note that the
Oscillator is intended for calibration to 1.0, 2.0, 4.0, or 8.0 MHz. Tuning to other values is
not guaranteed, as indicated in Table 11.

Table 11. Internal RC Oscillator Frequency Range.

Min Frequency in Percentage of Max Frequency in Percentage of
OSCCAL Value Nominal Frequency (%) Nominal Frequency (%)
$00 50 100
$7F 75 150
$FF 100 200
28 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

External Clock

Timer/Counter Oscillator

2503F-AVR-12/03

To drive the device from an external clock source, XTAL1 should be driven as shown in
Figure 14. To run the device on an external clock, the CKSEL fuses must be pro-
grammed to “0000”. By programming the CKOPT Fuse, the user can enable an internal
36 pF capacitor between XTAL1 and GND.

Figure 14. External Clock Drive Configuration

NC — - XTAL2
EXTERNAL
cLOcK ——— XTAL1
SIGNAL

GND

-

When this clock source is selected, start-up times are determined by the SUT fuses as
shown in Table 12.

Table 12. Start-up Times for the External Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
SUT1..0 Power-save (Ve =5.0V) Recommended Usage
00 6 CK - BOD enabled
01 6 CK 4.1 ms Fast rising power
10 6 CK 65 ms Slowly rising power
11 Reserved

When applying an external clock, it is required to avoid sudden changes in the applied
clock frequency to ensure stable operation of the MCU. A variation in frequency of more
than 2% from one clock cycle to the next can lead to unpredictable behavior. It is
required to ensure that the MCU is kept in reset during such changes in the clock
frequency.

For AVR microcontrollers with Timer/Counter Oscillator pins (TOSC1 and TOSC?2), the
crystal is connected directly between the pins. No external capacitors are needed. The
Oscillator is optimized for use with a 32.768 kHz watch crystal. Applying an external
clock source to TOSCL1 is not recommended.

AIMEL 29

L [G)

Power Management
and Sleep Modes

MCU Control Register —
MCUCR

ATMEL

Sleep modes enable the application to shut down unused modules in the MCU, thereby
saving power. The AVR provides various sleep modes allowing the user to tailor the
power consumption to the application’s requirements.

To enter any of the six sleep modes, the SE bit in MCUCR must be written to logic one
and a SLEEP instruction must be executed. The SM2, SM1, and SMO bits in the
MCUCR Register select which sleep mode (Idle, ADC Noise Reduction, Power-down,
Power-save, Standby, or Extended Standby) will be activated by the SLEEP instruction.
See Table 13 for a summary. If an enabled interrupt occurs while the MCU is in a sleep
mode, the MCU wakes up. The MCU is then halted for four cycles in addition to the
start-up time, it executes the interrupt routine, and resumes execution from the instruc-
tion following SLEEP. The contents of the Register File and SRAM are unaltered when
the device wakes up from sleep. If a Reset occurs during sleep mode, the MCU wakes
up and executes from the Reset Vector.

Figure 11 on page 22 presents the different clock systems in the ATmega32, and their
distribution. The figure is helpful in selecting an appropriate sleep mode.

The MCU Control Register contains control bits for power management.

Bit 7 6 5 4 3 2 1 0

I s | sv2 | smi | smo | Iscii | Isci0 | Iscoi | I1SC00 | MCUCR
Read/Write R/W RIW RIW R/W RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

» Bit 7 - SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the
SLEEP instruction is executed. To avoid the MCU entering the sleep mode unless it is
the programmers purpose, it is recommended to write the Sleep Enable (SE) bit to one
just before the execution of the SLEEP instruction and to clear it immediately after wak-

ing up.
* Bits 6...4 — SM2..0: Sleep Mode Select Bits 2, 1, and 0

These bits select between the six available sleep modes as shown in Table 13.

Table 13. Sleep Mode Select

SM2 SM1 SMO Sleep Mode

Idle

ADC Noise Reduction

Power-down

Power-save

Reserved

Reserved
Standby®
1 Extended Standby®

O | | O|F | O|FL |O

|k, |k, |FP, | O|O0|O|O
P |, O | O|F || O O

Note: 1. Standby mode and Extended Standby mode are only available with external crystals
or resonators.

30 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

Idle Mode

ADC Noise Reduction
Mode

Power-down Mode

Power-save Mode

2503F-AVR-12/03

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter
Idle mode, stopping the CPU but allowing SPI, USART, Analog Comparator, ADC, Two-
wire Serial Interface, Timer/Counters, Watchdog, and the interrupt system to continue
operating. This sleep mode basically halts clk.p, and clkg, a5y, While allowing the other
clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as
internal ones like the Timer Overflow and USART Transmit Complete interrupts. If
wake-up from the Analog Comparator interrupt is not required, the Analog Comparator
can be powered down by setting the ACD bit in the Analog Comparator Control and Sta-
tus Register — ACSR. This will reduce power consumption in Idle mode. If the ADC is
enabled, a conversion starts automatically when this mode is entered.

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter
ADC Noise Reduction mode, stopping the CPU but allowing the ADC, the External Inter-
rupts, the Two-wire Serial Interface address watch, Timer/Counter2 and the Watchdog
to continue operating (if enabled). This sleep mode basically halts clk;q, clkepy, and clk-
rLasH: While allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measure-
ments. If the ADC is enabled, a conversion starts automatically when this mode is
entered. Apart form the ADC Conversion Complete interrupt, only an External Reset, a
Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface Address Match Inter-
rupt, a Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an External level
interrupt on INTO or INTL1, or an external interrupt on INT2 can wake up the MCU from
ADC Noise Reduction mode.

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter
Power-down mode. In this mode, the External Oscillator is stopped, while the External
interrupts, the Two-wire Serial Interface address watch, and the Watchdog continue
operating (if enabled). Only an External Reset, a Watchdog Reset, a Brown-out Reset, a
Two-wire Serial Interface address match interrupt, an External level interrupt on INTO or
INT1, or an External interrupt on INT2 can wake up the MCU. This sleep mode basically
halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the
changed level must be held for some time to wake up the MCU. Refer to “External Inter-
rupts” on page 64 for details.

When waking up from Power-down mode, there is a delay from the wake-up condition
occurs until the wake-up becomes effective. This allows the clock to restart and become
stable after having been stopped. The wake-up period is defined by the same CKSEL
fuses that define the reset time-out period, as described in “Clock Sources” on page 23.

When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter
Power-save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 is clocked asynchronously, i.e., the AS2 bit in ASSR is set,
Timer/Counter2 will run during sleep. The device can wake up from either Timer Over-
flow or Output Compare event from Timer/Counter2 if the corresponding
Timer/Counter2 interrupt enable bits are set in TIMSK, and the Global Interrupt Enable
bit in SREG is set.

If the Asynchronous Timer is NOT clocked asynchronously, Power-down mode is rec-
ommended instead of Power-save mode because the contents of the registers in the

AIMEL 3

L [G)

Standby Mode

Extended Standby Mode

Minimizing Power
Consumption

Analog to Digital Converter

ATMEL

Asynchronous Timer should be considered undefined after wake-up in Power-save
mode if AS2 is 0.

This sleep mode basically halts all clocks except clk,gy, allowing operation only of asyn-
chronous modules, including Timer/Counter2 if clocked asynchronously.

When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected,
the SLEEP instruction makes the MCU enter Standby mode. This mode is identical to
Power-down with the exception that the Oscillator is kept running. From Standby mode,
the device wakes up in six clock cycles.

When the SM2..0 bits are 111 and an external crystal/resonator clock option is selected,
the SLEEP instruction makes the MCU enter Extended Standby mode. This mode is
identical to Power-save mode with the exception that the Oscillator is kept running.
From Extended Standby mode, the device wakes up in six clock cycles..

Table 14. Active Clock Domains and Wake Up Sources in the Different Sleep Modes

Active Clock domains | Oscillators Wake-up Sources
o S s
% kS| n @]
v ® | = 0 14
Sa 3 : il
5 Sel OF 3 w
5 S o 8 8 cg| 88| woo| X5 8 |38 0| B
O w = < < = 5 E [- - - = = E ® E
Sleep Mode % % % % % gc% EL| z2z2 Eg | 6& ?(58
Idle X | X| X X | x@ X X X X | X| X
ADC Noi
€ Noise X| x| x| x@| x@ | x| x| x |x
Reduction
Power-down X®
Power-save xX@ X@ X X | x®@
Standby® X X®
Extended
(2) (2) (3) (2)
Standby® X XX X XX

Notes: 1. External Crystal or resonator selected as clock source.
2. If AS2 bit in ASSR is set.
3. Only INT2 or level interrupt INT1 and INTO.

There are several issues to consider when trying to minimize the power consumption in
an AVR controlled system. In general, sleep modes should be used as much as possi-
ble, and the sleep mode should be selected so that as few as possible of the device’s
functions are operating. All functions not needed should be disabled. In particular, the
following modules may need special consideration when trying to achieve the lowest
possible power consumption.

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should
be disabled before entering any sleep mode. When the ADC is turned off and on again,
the next conversion will be an extended conversion. Refer to “Analog to Digital Con-
verter” on page 199 for details on ADC operation.

32 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

Analog Comparator

Brown-out Detector

Internal Voltage Reference

Watchdog Timer

Port Pins

JTAG Interface and On-chip
Debug System

2503F-AVR-12/03

When entering ldle mode, the Analog Comparator should be disabled if not used. When
entering ADC Noise Reduction mode, the Analog Comparator should be disabled. In the
other sleep modes, the Analog Comparator is automatically disabled. However, if the
Analog Comparator is set up to use the Internal Voltage Reference as input, the Analog
Comparator should be disabled in all sleep modes. Otherwise, the Internal Voltage Ref-
erence will be enabled, independent of sleep mode. Refer to “Analog Comparator” on
page 196 for details on how to configure the Analog Comparator.

If the Brown-out Detector is not needed in the application, this module should be turned
off. If the Brown-out Detector is enabled by the BODEN Fuse, it will be enabled in all
sleep modes, and hence, always consume power. In the deeper sleep modes, this will
contribute significantly to the total current consumption. Refer to “Brown-out Detection”
on page 37 for details on how to configure the Brown-out Detector.

The Internal Voltage Reference will be enabled when needed by the Brown-out Detec-
tor, the Analog Comparator or the ADC. If these modules are disabled as described in
the sections above, the internal voltage reference will be disabled and it will not be con-
suming power. When turned on again, the user must allow the reference to start up
before the output is used. If the reference is kept on in sleep mode, the output can be
used immediately. Refer to “Internal Voltage Reference” on page 39 for details on the
start-up time.

If the Watchdog Timer is not needed in the application, this module should be turned off.
If the Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence,
always consume power. In the deeper sleep modes, this will contribute significantly to
the total current consumption. Refer to “Watchdog Timer” on page 39 for details on how
to configure the Watchdog Timer.

When entering a sleep mode, all port pins should be configured to use minimum power.
The most important thing is then to ensure that no pins drive resistive loads. In sleep
modes where the both the 1/O clock (clk,) and the ADC clock (clk,pc) are stopped, the
input buffers of the device will be disabled. This ensures that no power is consumed by
the input logic when not needed. In some cases, the input logic is needed for detecting
wake-up conditions, and it will then be enabled. Refer to the section “Digital Input
Enable and Sleep Modes” on page 51 for details on which pins are enabled. If the input
buffer is enabled and the input signal is left floating or have an analog signal level close
to Vc/2, the input buffer will use excessive power.

If the On-chip debug system is enabled by the OCDEN Fuse and the chip enter Power
down or Power save sleep mode, the main clock source remains enabled. In these
sleep modes, this will contribute significantly to the total current consumption. There are
three alternative ways to avoid this:

» Disable OCDEN Fuse.

» Disable JTAGEN Fuse.

e Write one to the JTD bit in MCUCSR.

The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP
controller is not shifting data. If the hardware connected to the TDO pin does not pull up
the logic level, power consumption will increase. Note that the TDI pin for the next
device in the scan chain contains a pull-up that avoids this problem. Writing the JTD bit

in the MCUCSR register to one or leaving the JTAG fuse unprogrammed disables the
JTAG interface.

AIMEL 32

L [G)

System Control and
Reset

Resetting the AVR

Reset Sources

ATMEL

During Reset, all I/O Registers are set to their initial values, and the program starts exe-
cution from the Reset Vector. The instruction placed at the Reset Vector must be a JMP
— absolute jump — instruction to the reset handling routine. If the program never enables
an interrupt source, the Interrupt Vectors are not used, and regular program code can
be placed at these locations. This is also the case if the Reset Vector is in the Applica-
tion section while the Interrupt Vectors are in the Boot section or vice versa. The circuit
diagram in Figure 15 shows the reset logic. Table 15 defines the electrical parameters of
the reset circuitry.

The 1/0O ports of the AVR are immediately reset to their initial state when a reset source
goes active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the
Internal Reset. This allows the power to reach a stable level before normal operation
starts. The time-out period of the delay counter is defined by the user through the
CKSEL Fuses. The different selections for the delay period are presented in “Clock
Sources” on page 23.

The ATmega32 has five sources of reset:

« Power-on Reset. The MCU is reset when the supply voltage is below the Power-on
Reset threshold (Vpgr)-

+ External Reset. The MCU is reset when a low level is present on the RESET pin for
longer than the minimum pulse length.

* Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and
the Watchdog is enabled.

* Brown-out Reset. The MCU is reset when the supply voltage V. is below the
Brown-out Reset threshold (Vzor) and the Brown-out Detector is enabled.

« JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset
Register, one of the scan chains of the JTAG system. Refer to the section “IEEE
1149.1 (JTAG) Boundary-scan” on page 223 for details.

34 AT M €0 A3 2 (L)

2503F-AVR-12/03

Figure 15. Reset Logic

DATA BUS

A\ T M ega32(L)

MCU Control and Status
Register (MCUCSR)
Power- ajol X2
vee Regge(;i?cnuit “
BODEN Brown-out
BODLEVEL Reset Circuit _
[; Pull-up Resistor 5
4
RESET FS|FL’TIEER Reset Circuit - \l \ s Q 7?2('
H i
{ el I =
JTAG Reset Watchdog Q
Register Timer o
w
i =
Watchdog 8
Oscillator
L, ;
Clock CK Delay Counters I
Generator TIMEOUT
CKSEL[3:0] —;T
SUTI[1:0]
Table 15. Reset Characteristics
Symbol | Parameter Condition Min Typ Max Units
Power-on Reset
Threshold Voltage (rising) 1.4 23 v
VpoT | Power-on Reset
Threshold Voltage 1.3 2.3 \%
(falling)®
RESET Pin Threshold
Vrst Voltage 0.1 Ve 0.9V¢ \Y,
Minimum pulse width on
'RsT | RESET Pin 15 Hs
Brown-out Reset BODLEVEL =1 25 2.7 3.2
V (@) \%
BOT Threshold Voltage BODLEVEL = 0 37 40 42
Minimum low voltage BODLEVEL =1 2 Us
tsop period for Brown-out
Brown-out Detector
Vst hysteresis 50 mv
Notes: 1. The Power-on Reset will not work unless the supply voltage has been below Vpqr
(falling).
2. Vgor may be below nominal minimum operating voltage for some devices. For

2503F-AVR-12/03

devices where this is the case, the device is tested down to V¢ = Vgor during the
production test. This guarantees that a Brown-out Reset will occur before V. drops
to a voltage where correct operation of the microcontroller is no longer guaranteed.
The test is performed using BODLEVEL = 1 for ATmega32L and BODLEVEL = 0 for
ATmega32. BODLEVEL =1 is not applicable for ATmega32.

ATMEL

L [G)

35

ATMEL

Power-on Reset A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detec-

36

tion level is defined in Table 15. The POR is activated whenever V. is below the
detection level. The POR circuit can be used to trigger the Start-up Reset, as well as to
detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reach-
ing the Power-on Reset threshold voltage invokes the delay counter, which determines
how long the device is kept in RESET after V. rise. The RESET signal is activated
again, without any delay, when V. decreases below the detection level.

Figure 16. MCU Start-up, RESET Tied to V.

1
-7~ Veor
Vee J

RESET _7:/ VrsT
E‘it'rom 4"
INTERNAL
RESET 4
Figure 17. MCU Start-up, RESET Extended Externally

1
-7~ Veor
Vee X
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

TIME-OUT

TIME-OUT

INTERNAL
RESET

AT M €0 A3 2 (L)

A\ T M ega32(L)

External Reset

Brown-out Detection

2503F-AVR-12/03

An External Reset is generated by a low level on the RESET pin. Reset pulses longer
than the minimum pulse width (see Table 15) will generate a reset, even if the clock is
not running. Shorter pulses are not guaranteed to generate a reset. When the applied
signal reaches the Reset Threshold Voltage — Vgst — On its positive edge, the delay
counter starts the MCU after the Time-out period t;o has expired.

Figure 18. External Reset During Operation

Vee

RESET I I

1

1

1

1 1 t
1 < tour 4"

TIME-OUT ! :

1

1

1

1

1

INTERNAL | |
RESET

ATmega32 has an On-chip Brown-out Detection (BOD) circuit for monitoring the V¢
level during operation by comparing it to a fixed trigger level. The trigger level for the
BOD can be selected by the fuse BODLEVEL to be 2.7V (BODLEVEL unprogrammed),
or 4.0V (BODLEVEL programmed). The trigger level has a hysteresis to ensure spike
free Brown-out Detection. The hysteresis on the detection level should be interpreted as
Veor+ = Veor + Viyst/2 and Vgor. = Vgor - Viyst/2.

The BOD circuit can be enabled/disabled by the fuse BODEN. When the BOD is
enabled (BODEN programmed), and V. decreases to a value below the trigger level
(Vgor. in Figure 19), the Brown-out Reset is imnmediately activated. When V. increases
above the trigger level (Vgor, in Figure 19), the delay counter starts the MCU after the
Time-out period tyo,1 has expired.

The BOD circuit will only detect a drop in V. if the voltage stays below the trigger level
for longer than tgzp given in Table 15.

Figure 19. Brown-out Reset During Operation

VCC
| |
I I
| |
RESET ; ;
| |
I I
| |
I I
TIME-OUT 1 < tour T
| |
| |
| |
INTERNAL ‘ |
RESET ‘ \

AIMEL 3

L [G)

Watchdog Reset

MCU Control and Status
Register - MCUCSR

ATMEL

When the Watchdog times out, it will generate a short reset pulse of one CK cycle dura-
tion. On the falling edge of this pulse, the delay timer starts counting the Time-out period
trouT- Refer to page 39 for details on operation of the Watchdog Timer.

Figure 20. Watchdog Reset During Operation

VCC
RESET
WOT —>», [«— 1 CK Cycle
TIME-OUT n
"
1
1
RESET | trour 4"
TIME-OUT |
1

INTERNAL | |
RESET

The MCU Control and Status Register provides information on which reset source
caused an MCU Reset.

Bit 7 6 5 4 3 2 1 0
| oo | sc2 | - JTRF WDRF BORF | EXTRF | PORF | MCUCSR

Read/Write R/W R/W R R/W R/W RIW R/W R/W

Initial Value 0 0 0 See Bit Description

e Bit4 - JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register
selected by the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or
by writing a logic zero to the flag.

» Bit 3—- WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

» Bit 2 - BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

» Bit 1 — EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

» Bit 0 — PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to
the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and
then reset the MCUCSR as early as possible in the program. If the register is cleared
before another reset occurs, the source of the reset can be found by examining the
Reset Flags.

38 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

Internal Voltage
Reference

Voltage Reference Enable
Signals and Start-up Time

Watchdog Timer

2503F-AVR-12/03

ATmega32 features an internal bandgap reference. This reference is used for Brown-
out Detection, and it can be used as an input to the Analog Comparator or the ADC. The
2.56V reference to the ADC is generated from the internal bandgap reference.

The voltage reference has a start-up time that may influence the way it should be used.
The start-up time is given in Table 16. To save power, the reference is not always turned
on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODEN Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting
the ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the
user must always allow the reference to start up before the output from the Analog Com-
parator or ADC is used. To reduce power consumption in Power-down mode, the user
can avoid the three conditions above to ensure that the reference is turned off before
entering Power-down mode.

Table 16. Internal Voltage Reference Characteristics

Symbol Parameter Min Typ Max Units
Vie Bandgap reference voltage 1.15 1.23 1.35 \%
tag Bandgap reference start-up time 40 70 us
lsg Bandgap reference current consumption 10 HA

The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at 1
MHz. This is the typical value at V. = 5V. See characterization data for typical values at
other V. levels. By controlling the Watchdog Timer prescaler, the Watchdog Reset
interval can be adjusted as shown in Table 17 on page 40. The WDR — Watchdog Reset
— instruction resets the Watchdog Timer. The Watchdog Timer is also reset when it is
disabled and when a Chip Reset occurs. Eight different clock cycle periods can be
selected to determine the reset period. If the reset period expires without another
Watchdog Reset, the ATmega32 resets and executes from the Reset Vector. For timing
details on the Watchdog Reset, refer to page 38.

To prevent unintentional disabling of the Watchdog, a special turn-off sequence must be
followed when the Watchdog is disabled. Refer to the description of the Watchdog Timer
Control Register for details.

Figure 21. Watchdog Timer

WATCHDOG _ WATCHDOG
OSCILLATOR < PRESCALER
MIX| XM X X| XX
S HEEENE
slalols|Slelgla
WATCHDOG HHEEEEEE
RESET °|°l°| 8|8
YYYVYVYYY
WDPO :\\
WDP1 o
WDP2
WDE
MCU RESET
AIMEL 39
—

Watchdog Timer Control

Register - WDTCR Bit 7 6 5 4 3 2 1 0
| - - - WDTOE WDE WDP2 WDP1 wDP0 | WDTCR

Read/Write R R R RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

» Bits 7..5 - Res: Reserved Bits

These bits are reserved bits in the ATmega32 and will always read as zero.

e Bit4 - WDTOE: Watchdog Turn-off Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog
will not be disabled. Once written to one, hardware will clear this bit after four clock
cycles. Refer to the description of the WDE bit for a Watchdog disable procedure.

« Bit 3 - WDE: Watchdog Enable

When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is
written to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared
if the WDTOE bit has logic level one. To disable an enabled Watchdog Timer, the follow-
ing procedure must be followed:
1. Inthe same operation, write a logic one to WDTOE and WDE. A logic one must
be written to WDE even though it is set to one before the disable operation starts.
2. Within the next four clock cycles, write a logic 0 to WDE. This disables the
Watchdog.

e Bits 2..0 - WDP2, WDP1, WDPO: Watchdog Timer Prescaler 2, 1, and 0

The WDP2, WDP1, and WDPO bits determine the Watchdog Timer prescaling when the
Watchdog Timer is enabled. The different prescaling values and their corresponding
Timeout Periods are shown in Table 17.

Table 17. Watchdog Timer Prescale Select

Number of WDT Typical Time-out | Typical Time-out
WDP2 | WDP1 | WDPO Oscillator Cycles at Vee = 3.0V at Vec = 5.0V

0 0 0 16K (16,384) 17.1ms 16.3 ms
0 0 1 32K (32,768) 34.3ms 32.5ms
0 1 0 64K (65,536) 68.5 ms 65 ms
0 1 1 128K (131,072) 0.14s 0.13s
1 0 0 256K (262,144) 0.27s 0.26s
1 0 1 512K (524,288) 0.55s 0.52s
1 1 0 1,024K (1,048,576) 1.1s 1.0s

1 1 1 2,048K (2,097,152) 2.2s 21s

40 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

2503F-AVR-12/03

The following code example shows one assembly and one C function for turning off the
WDT. The example assumes that interrupts are controlled (for example by disabling
interrupts globally) so that no interrupts will occur during execution of these functions.

Assembly Code Example

WDT_of f:
; Wite logical one to WOTCE and WDE
Idi r16, (1<<WDTCE)| (1<<WDE)
out WDTCR, r16
; Turn of f WDT
Idi r16, (0<<WDE)
out WDTCR, r16
ret

C Code Example

voi d WDT_of f (voi d)
{
/* Wite |logical one to WDTOE and WDE */
WDTCR = (1<<WDTOE) | (1<<WDE);
/* Turn off WDT */
WDTCR = 0x00;

AIMEL 4

L [G)

Interrupts

Interrupt Vectors in

ATMEL

This section describes the specifics of the interrupt handling as performed in
ATmega32. For a general explanation of the AVR interrupt handling, refer to “Reset and

Interrupt Handling” on page 11.

ATmega32 Table 18. Reset and Interrupt Vectors
Program
Vector No. | Address® Source Interrupt Definition
1 $000® RESET External Pin, Power-on Reset, Brown-out
Reset, Watchdog Reset, and JTAG AVR
Reset
2 $002 INTO External Interrupt Request 0
3 $004 INT1 External Interrupt Request 1
4 $006 INT2 External Interrupt Request 2
5 $008 TIMER2 COMP | Timer/Counter2 Compare Match
6 $00A TIMER2 OVF Timer/Counter2 Overflow
7 $00C TIMER1 CAPT Timer/Counterl Capture Event
8 $00E TIMER1 COMPA | Timer/Counterl Compare Match A
9 $010 TIMER1 COMPB | Timer/Counterl Compare Match B
10 $012 TIMER1 OVF Timer/Counterl Overflow
11 $014 TIMERO COMP | Timer/CounterO Compare Match
12 $016 TIMERO OVF Timer/Counter0 Overflow
13 $018 SPI, STC Serial Transfer Complete
14 $01A USART, RXC USART, Rx Complete
15 $01C USART, UDRE USART Data Register Empty
16 $01E USART, TXC USART, Tx Complete
17 $020 ADC ADC Conversion Complete
18 $022 EE_RDY EEPROM Ready
19 $024 ANA_COMP Analog Comparator
20 $026 TWI Two-wire Serial Interface
21 $028 SPM_RDY Store Program Memory Ready
Notes: 1. When the BOOTRST fuse is programmed, the device will jump to the Boot Loader
address at reset, see “Boot Loader Support — Read-While-Write Self-Programming”
on page 242.
2. When the IVSEL bit in GICR is set, interrupt vectors will be moved to the start of the
Boot Flash section. The address of each Interrupt Vector will then be the address in
this table added to the start address of the Boot Flash section.
Table 19 shows Reset and Interrupt Vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the
Interrupt Vectors are not used, and regular program code can be placed at these loca-
tions. This is also the case if the Reset Vector is in the Application section while the
Interrupt Vectors are in the Boot section or vice versa.
42 ATm ega32(|_) |

2503F-AVR-12/03

A\ T M ega32(L)

Table 19. Reset and Interrupt Vectors Placement®

BOOTRST IVSEL Reset address Interrupt Vectors Start Address
1 0 $0000 $0002
1 1 $0000 Boot Reset Address + $0002
0 0 Boot Reset Address $0002
0 1 Boot Reset Address Boot Reset Address + $0002

Note: 1. The Boot Reset Address is shown in Table 100 on page 253. For the BOOTRST
Fuse “1” means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector
Addresses in ATmega32 is:

Addr ess
$000
$002
$004
$006
$008
$00A
$00C
$00E
$010
$012
$014
$016
$018
$01A
$01C
$01E
$020
$022
$024
$026
$028
$02A
$02B
$02C
$02D
$02E
$02F

2503F-AVR-12/03

Label s

RESET:

Cod
jmp
jmp
jp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jp
jmp
jmp
jmp
jmp
jmp
jmp

| di
out
| di
out
sei

<in

e
RESET
EXT_I NTO
EXT_I NT1
EXT_I NT2
TI M2_COWP
TI M2_OVF
TI ML_CAPT
TI ML_COMPA
TI ML_COMPB
TI ML_OVF
TI MD_COMP
TI MD_OVF
SPI_STC
USART_RXC
USART_UDRE
USART_TXC
ADC
EE_RDY
ANA_COVP
W
SPM_RDY

r 16, hi gh(RAMEND)
SPH, r 16

r 16, | ow(RAVEND)
SPL, r 16

str> XXX

ATMEL

L [G)

Comment s

Reset Handl er

| RQO Handl er

| RQL Handl er

| RQ2 Handl er

Ti mer 2 Conpare Handl er
Timer2 Overfl ow Handl er

Timer1l Capture Handl er

Ti mer1 Conpar eA Handl er

Ti mer 1 Conpar eB Handl er
Timer1 Overfl ow Handl er

Ti mer 0 Conpar e Handl er

Ti mer 0 Overfl ow Handl er

SPI Transfer Conplete Handler
USART RX Conpl et e Handl er

UDR Enpty Handl er

USART TX Conpl et e Handl er

ADC Conversion Conpl ete Handl er
EEPROM Ready Handl er

Anal og Conpar ator Handl er
Two-wire Serial Interface Handl er
Store Program Menory Ready Handl er

Mai n program start

Set Stack Pointer to top of RAM

Enabl e interrupts

43

ATMEL

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 4K bytes and
the IVSEL bit in the GICR Register is set before any interrupts are enabled, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Label s Code Commrent s

$000 RESET: | di r 16, hi gh(RAMEND) ; Main program start

$001 out SPH, r 16 ; Set Stack Pointer to top of RAM
$002 | di r 16, | ow(RAMEND)

$003 out SPL,r16

$004 sei ; Enable interrupts

$005 <instr> xxx

.org $3802

$3802 jmp EXT_INTO ; | RQD Handl er

$3804 jmp EXT_INT1 ; | RQL Handl er

$3828 jnmp SPM_RDY ; Store Program Menory Ready Handl er

When the BOOTRST Fuse is programmed and the Boot section size set to 4K bytes, the
most typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Label s Code Comment s

.org $002

$002 jmp EXT_INTO ; | RQD Handl er

$004 jmp EXT_INT1 ; IRQL Handl er

$028 jnmp SPM_RDY ; Store Program Menory Ready Handl er
.org $3800

$3800 RESET: | di r16, hi gh(RAMEND) ; Main program start

$3801 out SPH, r 16 ; Set Stack Pointer to top of RAM
$3802 | di r 16, | ow(RAMEND)

$3803 out SPL, r 16

$3804 sei ; Enable interrupts

$3805 <instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 4K bytes and the
IVSEL bit in the GICR Register is set before any interrupts are enabled, the most typical
and general program setup for the Reset and Interrupt Vector Addresses is:

Address Label s Code Commrent s
.org $3800
$3800 jmp RESET ; Reset handl er
$3802 jmp EXT_INTO ;| RQD Handl er
$3804 jmp EXT_INT1 ;| RQL Handl er
$3828 jmp SPM_RDY ; Store Program Menory Ready Handl er
$382A RESET: | di r 16, hi gh(RAMEND) ; Main program start
$382B out SPH, r 16 ; Set Stack Pointer to top of RAM
$382C Idi ri16, | ow RAVEND)
$382D out SPL, r 16
$382E sei ; Enable interrupts
$382F <instr> xxx
44 ATm ega32(L) e

2503F-AVR-12/03

A\ T M ega32(L)

Moving Interrupts Between
Application and Boot Space

General Interrupt Control
Register — GICR

2503F-AVR-12/03

The General Interrupt Control Register controls the placement of the Interrupt Vector
table.

Bit 7 6 5 4 3 2 1 0

| w11 INTO INT2 = = = IVSEL IVCE | GICR
Read/Write R/W RIW RIW R R R RIW RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit 1 - IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the
Flash memory. When this bit is set (one), the interrupt vectors are moved to the begin-
ning of the Boot Loader section of the Flash. The actual address of the start of the Boot
Flash section is determined by the BOOTSZ fuses. Refer to the section “Boot Loader
Support — Read-While-Write Self-Programming” on page 242 for details. To avoid unin-
tentional changes of Interrupt Vector tables, a special write procedure must be followed
to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.
2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are
disabled in the cycle IVCE is set, and they remain disabled until after the instruction fol-
lowing the write to IVSEL. If IVSEL is not written, interrupts remain disabled for four
cycles. The I-bit in the Status Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLBO2 is pro-
grammed, interrupts are disabled while executing from the Application section. If
Interrupt Vectors are placed in the Application section and Boot Lock bit BLB12 is pro-
gramed, interrupts are disabled while executing from the Boot Loader section. Refer to
the section “Boot Loader Support — Read-While-Write Self-Programming” on page 242
for details on Boot Lock bits.

AIMEL 4

L [G)

ATMEL

e Bit 0 - IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is
cleared by hardware four cycles after it is written or when IVSEL is written. Setting the
IVCE bit will disable interrupts, as explained in the IVSEL description above. See Code
Example below.

Assembly Code Example

Move_i nterrupts:
Enabl e change of interrupt vectors
Idi r16, (1<<IVCE)
out G CR rl6
Move interrupts to boot Flash section
Idi r16, (1<<IVSEL)
out G CR rl6
ret

C Code Example

voi d Move_interrupts(void)
{
/* Enabl e change of interrupt vectors */
G CR = (1<<IVCE);
/* Move interrupts to boot Flash section */
G CR = (1<<IVSEL);

46 AT M €0 A3 2 (L)

A\ T M ega32(L)

I/O Ports

Introduction

2503F-AVR-12/03

All AVR ports have true Read-Modify-Write functionality when used as general digital
I/O ports. This means that the direction of one port pin can be changed without uninten-
tionally changing the direction of any other pin with the SBI and CBI instructions. The
same applies when changing drive value (if configured as output) or enabling/disabling
of pull-up resistors (if configured as input). Each output buffer has symmetrical drive
characteristics with both high sink and source capability. The pin driver is strong enough
to drive LED displays directly. All port pins have individually selectable pull-up resistors
with a supply-voltage invariant resistance. All I/O pins have protection diodes to both
V¢ and Ground as indicated in Figure 22. Refer to “Electrical Characteristics” on page
285 for a complete list of parameters.

Figure 22. 1/O Pin Equivalent Schematic

Pxn .

Logic

See Figure 23
"General Digital 1/0" for

\
\
\
\
\
\
| -
|
T
\
\
\
‘ Details

|

All registers and bit references in this section are written in general form. A lower case
“X” represents the numbering letter for the port, and a lower case “n” represents the bit
number. However, when using the register or bit defines in a program, the precise form
must be used. i.e., PORTB3 for bit no. 3 in Port B, here documented generally as
PORTxn. The physical I/O Registers and bit locations are listed in “Register Description
for I/0 Ports” on page 62.

Three I/O memory address locations are allocated for each port, one each for the Data
Register — PORTX, Data Direction Register — DDRX, and the Port Input Pins — PINXx. The
Port Input Pins I/O location is read only, while the Data Register and the Data Direction
Register are read/write. In addition, the Pull-up Disable — PUD bit in SFIOR disables the
pull-up function for all pins in all ports when set.

Using the I/O port as General Digital 1/0 is described in “Ports as General Digital 1/0” on
page 48. Most port pins are multiplexed with alternate functions for the peripheral fea-
tures on the device. How each alternate function interferes with the port pin is described
in “Alternate Port Functions” on page 52. Refer to the individual module sections for a
full description of the alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use
of the other pins in the port as general digital 1/0.

AIMEL 4

L [G)

Ports as General Digital
I/10

Configuring the Pin

ATMEL

The ports are bi-directional I/O ports with optional internal pull-ups. Figure 23 shows a
functional description of one 1/O-port pin, here generically called Pxn.

Figure 23. General Digital I/0®

" PUD
ill __—
Q D |
DDxn
5.
I _l—WDx
RESET
:é RDx
[: 92}
2
A1 3 Dla
il \I PORTxN B <
eI |
I WPx @)

———— SLEEP ; RRx

SYNCHRONIZER

Ll

clkyo
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRXx
SLEEP: SLEEP CONTROL WPX: WRITE PORTX
clk,o: 1/0 CLOCK RRXx: READ PORTx REGISTER
RPx: READ PORTx PIN

Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk;,q,
SLEEP, and PUD are common to all ports.

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in
“Register Description for I/0 Ports” on page 62, the DDxn bits are accessed at the DDRx
I/O address, the PORTxn bits at the PORTx I/O address, and the PINxn bits at the PINXx
I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written
logic one, Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is config-
ured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up
resistor is activated. To switch the pull-up resistor off, PORTxn has to be written logic
zero or the pin has to be configured as an output pin. The port pins are tri-stated when a
reset condition becomes active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is
driven high (one). If PORTxn is written logic zero when the pin is configured as an out-
put pin, the port pin is driven low (zero).

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn,
PORTxn} = 0b11), an intermediate state with either pull-up enabled ({DDxn, PORTxn} =
0b01) or output low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up

48 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

Reading the Pin Value

2503F-AVR-12/03

enabled state is fully acceptable, as a high-impedant environment will not notice the dif-
ference between a strong high driver and a pull-up. If this is not the case, the PUD bhit in
the SFIOR Register can be set to disable all pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The
user must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state
({DDxn, PORTxn} = 0b11) as an intermediate step.

Table 20 summarizes the control signals for the pin value.

Table 20. Port Pin Configurations

DDxn | PORTxn | (in lei:i)R) 110 Pull-up | Comment
0 0 X Input No Tri-state (Hi-2)
Pxn will source current if ext. pulled
0 1 0 Input Yes low.
0 1 1 Input No Tri-state (Hi-2)
1 0 X Output No Output Low (Sink)
1 1 X Output No Output High (Source)

Independent of the setting of Data Direction bit DDxn, the port pin can be read through
the PINxn Register bit. As shown in Figure 23, the PINxn Register bit and the preceding
latch constitute a synchronizer. This is needed to avoid metastability if the physical pin
changes value near the edge of the internal clock, but it also introduces a delay. Figure
24 shows a timing diagram of the synchronization when reading an externally applied
pin value. The maximum and minimum propagation delays are denoted t,g nax and t,g min
respectively.

Figure 24. Synchronization when Reading an Externally Applied Pin Value

SYSTEM CLK
INSTRUCTIONS Py x>§<x X xf}(x >< n7, PiNx X
SYNC LATCH U0

PINxn

ri7 § 0x00 | | >< OXFF

tpd, max

A
N A

§ tpd, min

Consider the clock period starting shortly after the first falling edge of the system clock.
The latch is closed when the clock is low, and goes transparent when the clock is high,
as indicated by the shaded region of the “SYNC LATCH" signal. The signal value is
latched when the system clock goes low. It is clocked into the PINxn Register at the

AIMEL 49

L [G)

ATMEL

succeeding positive clock edge. As indicated by the two arrows t g nax @and tog min, &
single signal transition on the pin will be delayed between % and 1% system clock
period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as
indicated in Figure 25. The out instruction sets the “SYNC LATCH?” signal at the positive
edge of the clock. In this case, the delay t,q through the synchronizer is one system
clock period.

Figure 25. Synchronization when Reading a Software Assigned Pin Value

SYSTEM CLK

ri6 ? OXFF

INSTRUCTIONS X out PORTx, 116 X nop X iz e X
SYNC LATCH | j
PINXN
r7 0x00 X oxFF

50 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

Digital Input Enable and Sleep
Modes

2503F-AVR-12/03

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and
define the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The
resulting pin values are read back again, but as previously discussed, a nop instruction
is included to be able to read back the value recently assigned to some of the pins.

Assembly Code Example®

Define pull-ups and set outputs high
Define directions for port pins
| di ri16, (1<<PB7)| (1<<PB6) | (1<<PBL1) | (1<<PBO0)
| di r17, (1<<DDB3) | (1<<DDB2) | (1<<DDBL1) | (1<<DDB0)
out PORTB, r 16
out DDRB, r 17
Insert nop for synchronization
nop
Read port pins
in r16, Pl NB

C Code Example®

unsi gned char i;

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)| (1<<PB6)| (1<<PB1) | (1<<PB0);
DDRB = (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO) ;
/* Insert nop for synchronization*/

_NOP() ;

/* Read port pins */

i = PINB;

Note: 1. For the assembly program, two temporary registers are used to minimize the time
from pull-ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set,
defining bit 2 and 3 as low and redefining bits 0 and 1 as strong high drivers.

As shown in Figure 23, the digital input signal can be clamped to ground at the input of
the schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep
Controller in Power-down mode, Power-save mode, Standby mode, and Extended
Standby mode to avoid high power consumption if some input signals are left floating, or
have an analog signal level close to Vc/2.

SLEEP is overridden for port pins enabled as External Interrupt pins. If the External
Interrupt Request is not enabled, SLEEP is active also for these pins. SLEEP is also
overridden by various other alternate functions as described in “Alternate Port Func-
tions” on page 52.

If a logic high level (“one”) is present on an Asynchronous External Interrupt pin config-
ured as “Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the
External Interrupt is not enabled, the corresponding External Interrupt Flag will be set
when resuming from the above mentioned sleep modes, as the clamping in these sleep
modes produces the requested logic change.

AIMEL 51

L [G)

Unconnected pins

Alternate Port Functions

ATMEL

If some pins are unused, it is recommended to ensure that these pins have a defined
level. Even though most of the digital inputs are disabled in the deep sleep modes as
described above, floating inputs should be avoided to reduce current consumption in all
other modes where the digital inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal
pullup. In this case, the pullup will be disabled during reset. If low power consumption
during reset is important, it is recommended to use an external pullup or pulldown. Con-
necting unused pins directly to V- or GND is not recommended, since this may cause
excessive currents if the pin is accidentally configured as an output.

Most port pins have alternate functions in addition to being General Digital 1/0s. Figure
26 shows how the port pin control signals from the simplified Figure 23 can be overrid-
den by alternate functions. The overriding signals may not be present in all port pins, but
the figure serves as a generic description applicable to all port pins in the AVR micro-
controller family.

Figure 26. Alternate Port Functions®

PUOEXn A

PUOVXn
PUD
DDOExn
L DDOVxn
b3
S
3T ©
oDxn
5.
WDx
PVOExn
RESET
PVOVxn RDx
(92}
1 2
Pxn
\, Q D
N <
5 <
DIEOExn Qs
WPx o
o<} pIEOVXKN RESET
RRx
SLEEP I:
SYNCHRONIZER
,\
ﬁ l’/
= » Dixn
@ AlOxn
PUOExn: Pxn PULL-UP OVERRIDE ENABLE PUD: PULLUP DISABLE
PUOVxn: Pxn PULL-UP OVERRIDE VALUE WDx: WRITE DDRx
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE RDx: READ DDRx
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE RRXx: READ PORTx REGISTER
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE WPx: WRITE PORTx
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE RPx: READ PORTx PIN
DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE ol /O CLOCK
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE DIxn: DIGITAL INPUT PIN n ON PORTx
SLEEP: SLEEP CONTROL AlOxn: ANALOG INPUT/OUTPUT PIN n ON PORTX

Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkq,
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.

52 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

Table 21 summarizes the function of the overriding signals. The pin and port indexes
from Figure 26 are not shown in the succeeding tables. The overriding signals are gen-
erated internally in the modules having the alternate function.

Table 21. Generic Description of Overriding Signals for Alternate Functions

Signal Name

Full Name

Description

PUOE

Pull-up Override
Enable

If this signal is set, the pull-up enable is controlled by
the PUOV signal. If this signal is cleared, the pull-up is
enabled when {DDxn, PORTxn, PUD} = 0b010.

PUOV

Pull-up Override
Value

If PUOE is set, the pull-up is enabled/disabled when
PUOQV is set/cleared, regardless of the setting of the
DDxn, PORTxn, and PUD Register bits.

DDOE

Data Direction
Override Enable

If this signal is set, the Output Driver Enable is
controlled by the DDQOV signal. If this signal is cleared,
the Output driver is enabled by the DDxn Register bit.

DDOV

Data Direction
Override Value

If DDOE is set, the Output Driver is enabled/disabled
when DDOV is set/cleared, regardless of the setting of
the DDxn Register bit.

PVOE

Port Value Override
Enable

If this signal is set and the Output Driver is enabled,
the port value is controlled by the PVOV signal. If
PVOE is cleared, and the Output Driver is enabled, the
port Value is controlled by the PORTxn Register bit.

PVOV

Port Value Override
Value

If PVOE is set, the port value is set to PVOV,
regardless of the setting of the PORTxn Register bit.

DIEOE

Digital Input Enable
Override Enable

If this bit is set, the Digital Input Enable is controlled by
the DIEOV signal. If this signal is cleared, the Digital
Input Enable is determined by MCU-state (Normal
Mode, sleep modes).

DIEOV

Digital Input Enable
Override Value

If DIEOE is set, the Digital Input is enabled/disabled
when DIEOV is set/cleared, regardless of the MCU
state (Normal Mode, sleep modes).

DI

Digital Input

This is the Digital Input to alternate functions. In the
figure, the signal is connected to the output of the
schmitt trigger but before the synchronizer. Unless the
Digital Input is used as a clock source, the module with
the alternate function will use its own synchronizer.

AIO

Analog Input/ output

This is the Analog Input/output to/from alternate
functions. The signal is connected directly to the pad,
and can be used bi-directionally.

The following subsections shortly describe the alternate functions for each port, and
relate the overriding signals to the alternate function. Refer to the alternate function
description for further details.

2503F-AVR-12/03

ATMEL

L [G)

53

Special Function I/O Register
— SFIOR Bit

Read/Write
Initial Value

ATMEL

PSR10 | SFIOR

6 5 4 3 2 1 0
I ADTS2 ADTS1 ADTSO - ACME PUD PSR2
R/W R/W R/W R R/IW R/W R/W R/W
0 0 0 0 0 0 0

» Bit 2 - PUD: Pull-up disable

When this bit is written to one, the pull-ups in the 1/O ports are disabled even if the DDxn
and PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01).
See “Configuring the Pin” on page 48 for more details about this feature.

Alternate Functions of Port A Port A has an alternate function as analog input for the ADC as shown in Table 22. If
some Port A pins are configured as outputs, it is essential that these do not switch when
a conversion is in progress. This might corrupt the result of the conversion.

Table 22. Port A Pins Alternate Functions

Port Pin

Alternate Function

PA7

ADC7 (ADC input channel 7)

PAG

ADCE6 (ADC input channel 6)

PAS

ADCS5 (ADC input channel 5)

PA4

ADC4 (ADC input channel 4)

PA3

ADC3 (ADC input channel 3)

PA2

ADC2 (ADC input channel 2)

PA1

ADCL1 (ADC input channel 1)

PAO

ADCO (ADC input channel 0)

Table 23 and Table 24 relate the alternate functions of Port A to the overriding signals
shown in Figure 26 on page 52.

Table 23. Overriding Signals for Alternate Functions in PA7..PA4

Signal Name PA7/ADC7 PAG6/ADC6 PA5/ADC5 PA4/ADC4
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE 0 0 0 0
PVOV 0 0 0 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0

DI - - - -

AIO ADC7 INPUT ADC6 INPUT ADCS5 INPUT ADC4 INPUT

54 ATm ega32(L) 1

2503F-AVR-12/03

A\ T M ega32(L)

Table 24. Overriding Signals for Alternate Functions in PA3..PAQ

Signal Name PA3/ADC3 PA2/ADC2 PA1/ADC1 PAO/ADCO
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE 0 0 0 0
PVOV 0 0 0 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI - - - -
AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADCO INPUT

Alternate Functions of Port B The Port B pins with alternate functions are shown in Table 25.

Table 25. Port B Pins Alternate Functions

Port Pin

Alternate Functions

PB7

SCK (SPI Bus Serial Clock)

PB6

MISO (SPI Bus Master Input/Slave Output)

PBS

MOSI (SPI Bus Master Output/Slave Input)

PB4

SS (SPI Slave Select Input)

PB3

AIN1 (Analog Comparator Negative Input)
OCO (Timer/Counter0 Output Compare Match Output)

PB2

AINO (Analog Comparator Positive Input)
INT2 (External Interrupt 2 Input)

PB1

T1 (Timer/Counterl External Counter Input)

PBO

TO (Timer/Counter0 External Counter Input)
XCK (USART External Clock Input/Output)

The alternate pin configuration is as follows:

» SCK-Port B, Bit7

SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is
enabled as a Slave, this pin is configured as an input regardless of the setting of DDB7.
When the SPI is enabled as a Master, the data direction of this pin is controlled by
DDB7. When the pin is forced by the SPI to be an input, the pull-up can still be con-
trolled by the PORTB?7 bit.

* MISO - Port B, Bit 6

MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is
enabled as a Master, this pin is configured as an input regardless of the setting of
DDB6. When the SPI is enabled as a Slave, the data direction of this pin is controlled by

2503F-AVR-12/03

ATMEL

L [G)

55

ATMEL

DDB6. When the pin is forced by the SPI to be an input, the pull-up can still be con-
trolled by the PORTBS6 bit.

* MOSI - Port B, Bit 5

MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is
enabled as a Slave, this pin is configured as an input regardless of the setting of DDB5.
When the SPI is enabled as a Master, the data direction of this pin is controlled by
DDB5. When the pin is forced by the SPI to be an input, the pull-up can still be con-
trolled by the PORTB5 bit.

+ SS-Port B, Bit4

SS: Slave Select input. When the SPI is enabled as a Slave, this pin is configured as an
input regardless of the setting of DDB4. As a Slave, the SPI is activated when this pin is
driven low. When the SPI is enabled as a Master, the data direction of this pin is con-
trolled by DDB4. When the pin is forced by the SPI to be an input, the pull-up can still be
controlled by the PORTBA4 bit.

* AIN1/OCO — Port B, Bit 3

AIN1, Analog Comparator Negative Input. Configure the port pin as input with the inter-
nal pull-up switched off to avoid the digital port function from interfering with the function
of the analog comparator.

OCO0, Output Compare Match output: The PB3 pin can serve as an external output for
the Timer/Counter0 Compare Match. The PB3 pin has to be configured as an output
(DDB3 set (one)) to serve this function. The OCO pin is also the output pin for the PWM
mode timer function.

* AINO/INT2 — Port B, Bit 2

AINO, Analog Comparator Positive input. Configure the port pin as input with the internal
pull-up switched off to avoid the digital port function from interfering with the function of
the Analog Comparator.

INT2, External Interrupt Source 2: The PB2 pin can serve as an external interrupt
source to the MCU.
e T1-PortB,Bitl

T1, Timer/Counterl Counter Source.

e TO/XCK — Port B, Bit 0
TO, Timer/CounterO Counter Source.

XCK, USART External Clock. The Data Direction Register (DDBO0) controls whether the
clock is output (DDBO set) or input (DDBO cleared). The XCK pin is active only when the
USART operates in Synchronous mode.

Table 26 and Table 27 relate the alternate functions of Port B to the overriding signals
shown in Figure 26 on page 52. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute
the MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE
INPUT.

56 AT M €0 A3 2 (L)

A\ T M ega32(L)

Table 26. Overriding Signals for Alternate Functions in PB7..PB4
Signal o
Name | PB7/SCK PB6/MISO PB5/MOSI PB4/SS
PUOE | SPE+MSTR SPE « MSTR SPE « MSTR SPE « MSTR
PUOV | PORTB7«PUD | PORTB6 « PUD PORTBS5 « PUD PORTB4 « PUD
DDOE | SPE«MSTR SPE « MSTR SPE « MSTR SPE « MSTR
DDOV | 0 0 0 0
PVOE | SPE-«MSTR SPE « MSTR SPE « MSTR 0
PVOV | SCK OUTPUT | SPISLAVE OUTPUT | SPIMSTR OUTPUT | 0
DIECE | 0 0 0 0
DIEQOV | 0 0 0 0
DI SCK INPUT SPI MSTR INPUT SPI SLAVE INPUT | SPISS
AlO - - - -
Table 27. Overriding Signals for Alternate Functions in PB3..PBO
Signal
Name PB3/OCO/AIN1 PB2/INT2/AINO PB1/T1 PBO/TO/XCK
PUOE |0 0 0 0
PUOV |0 0 0 0
DDOE |0 0 0 0
DDOV | 0 0 0 0
PVOE OCO ENABLE 0 0 UMSEL
PVOV 0oCo 0 0 XCK OUTPUT
DIEOE |0 INT2 ENABLE 0 0
DIEOV |0 1 0 0
DI - INT2 INPUT T1INPUT | XCK INPUT/TO INPUT
AlO AIN1 INPUT AINO INPUT - -

2503F-AVR-12/03

ATMEL

L [G)

57

Alternate Functions of Port C

ATMEL

The Port C pins with alternate functions are shown in Table 28. If the JTAG interface is
enabled, the pull-up resistors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be acti-
vated even if a reset occurs.

Table 28. Port C Pins Alternate Functions

Port Pin Alternate Function
PC7 TOSC2 (Timer Oscillator Pin 2)
PC6 TOSC1 (Timer Oscillator Pin 1)
PC5 TDI (JTAG Test Data In)
PC4 TDO (JTAG Test Data Out)
PC3 TMS (JTAG Test Mode Select)
PC2 TCK (JTAG Test Clock)
PC1 SDA (Two-wire Serial Bus Data Input/Output Line)
PCO SCL (Two-wire Serial Bus Clock Line)

The alternate pin configuration is as follows:

+ TOSC2-Port C, Bit 7

TOSC2, Timer Oscillator pin 2: When the AS2 bit in ASSR is set (one) to enable asyn-
chronous clocking of Timer/Counter2, pin PC7 is disconnected from the port, and
becomes the inverting output of the Oscillator amplifier. In this mode, a Crystal Oscillator
is connected to this pin, and the pin can not be used as an I/O pin.

e TOSC1 - Port C, Bit6

TOSC1, Timer Oscillator pin 1: When the AS2 bit in ASSR is set (one) to enable asyn-
chronous clocking of Timer/Counter2, pin PC6 is disconnected from the port, and
becomes the input of the inverting Oscillator amplifier. In this mode, a Crystal Oscillator
is connected to this pin, and the pin can not be used as an 1/O pin.

* TDI-Port C, Bit 5

TDI, JTAG Test Data In: Serial input data to be shifted in to the Instruction Register or
Data Register (scan chains). When the JTAG interface is enabled, this pin can not be
used as an I/O pin.

« TDO - Port C, Bit 4

TDO, JTAG Test Data Out: Serial output data from Instruction Register or Data Regis-
ter. When the JTAG interface is enabled, this pin can not be used as an I/O pin.

The TDO pin is tri-stated unless TAP states that shifts out data are entered.

e TMS - Port C, Bit 3

TMS, JTAG Test Mode Select: This pin is used for navigating through the TAP-controller
state machine. When the JTAG interface is enabled, this pin can not be used as an I/O

pin.

58 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

2503F-AVR-12/03

* TCK —Port C, Bit 2

TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG inter-
face is enabled, this pin can not be used as an I/O pin.

* SDA - Port C, Bit 1

SDA, Two-wire Serial Interface Data: When the TWEN bit in TWCR is set (one) to
enable the Two-wire Serial Interface, pin PC1 is disconnected from the port and
becomes the Serial Data 1/O pin for the Two-wire Serial Interface. In this mode, there is
a spike filter on the pin to suppress spikes shorter than 50 ns on the input signal, and the
pin is driven by an open drain driver with slew-rate limitation. When this pin is used by
the Two-wire Serial Interface, the pull-up can still be controlled by the PORTCL1 bit.

* SCL —Port C, Bit0

SCL, Two-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to
enable the Two-wire Serial Interface, pin PCO is disconnected from the port and
becomes the Serial Clock I/O pin for the Two-wire Serial Interface. In this mode, there is
a spike filter on the pin to suppress spikes shorter than 50 ns on the input signal, and the
pin is driven by an open drain driver with slew-rate limitation. When this pin is used by
the Two-wire Serial Interface, the pull-up can still be controlled by the PORTCO bit.

Table 29 and Table 30 relate the alternate functions of Port C to the overriding signals
shown in Figure 26 on page 52.

Table 29. Overriding Signals for Alternate Functions in PC7..PC4

ﬁllagrgzl PC7/TOSC2 PC6/TOSC1 PC5/TDI PC4/TDO
PUOE | AS2 AS2 JTAGEN | JTAGEN
PUOV 0 0 1 0

DDOE | AS2 AS2 JTAGEN | JTAGEN
DDOV | 0 0 0 SHIFT_IR + SHIFT_DR
PVOE 0 0 0 JTAGEN
PVOV 0 0 0 TDO
DIEOCE | AS2 AS2 JTAGEN | JTAGEN
DIEQV | O 0 0 0

DI - - - -

AIO T/C2 OSC OUTPUT | T/C2 OSC INPUT | TDI -

ATMEL

L [G)

59

ATMEL

Table 30. Overriding Signals for Alternate Functions in PC3..PC0W

ﬁfmni' PC3/TMS PC2/TCK PC1/SDA PCO/SCL
PUOE JTAGEN JTAGEN TWEN TWEN
PUOV 1 1 PORTC1 « PUD PORTCO « PUD
DDOE JTAGEN JTAGEN TWEN TWEN
DDOV 0 0 SDA_OUT SCL_OUT
PVOE 0 0 TWEN TWEN
PVOV 0 0 0 0

DIEOE JTAGEN JTAGEN 0 0

DIEOV 0 0 0 0

DI - - - -

AIO T™MS TCK SDA INPUT SCL INPUT

Note: 1. When enabled, the Two-wire Serial Interface enables slew-rate controls on the output
pins PCO and PCL1. This is not shown in the figure. In addition, spike filters are con-
nected between the AIO outputs shown in the port figure and the digital logic of the
TWI module.

Alternate Functions of Port D The Port D pins with alternate functions are shown in Table 31.

Table 31. Port D Pins Alternate Functions

Port Pin Alternate Function
PD7 OC2 (Timer/Counter2 Output Compare Match Output)
PD6 ICP (Timer/Counterl Input Capture Pin)
PD5 OC1A (Timer/Counterl Output Compare A Match Output)
PD4 OC1B (Timer/Counterl Output Compare B Match Output)
PD3 INT1 (External Interrupt 1 Input)
PD2 INTO (External Interrupt O Input)
PD1 TXD (USART Output Pin)
PDO RXD (USART Input Pin)

The alternate pin configuration is as follows:

« OC2-PortD,Bit7

OC2, Timer/Counter2 Output Compare Match output: The PD7 pin can serve as an
external output for the Timer/Counter2 Output Compare. The pin has to be configured
as an output (DDD7 set (one)) to serve this function. The OC2 pin is also the output pin
for the PWM mode timer function.

* ICP—-PortD, Bit6

ICP — Input Capture Pin: The PD6 pin can act as an Input Capture pin for
Timer/Counterl.

60 AT M €0 A3 2 (L)

2503F-AVR-12/03

A\ T M ega32(L)

* OCl1A —Port D, Bit 5

OC1A, Output Compare Match A output: The PD5 pin can serve as an external output
for the Timer/Counterl Output Compare A. The pin has to be configured as an output
(DDD5 set (one)) to serve this function. The OC1A pin is also the output pin for the
PWM mode timer function.

e OC1B - Port D, Bit 4

OC1B, Output Compare Match B output: The PD4 pin can serve as an external output
for the Timer/Counterl Output Compare B. The pin has to be configured as an output
(DDD4 set (one)) to serve this function. The OC1B pin is also the output pin for the
PWM mode timer function.

e INT1 - Port D, Bit 3

INT1, External Interrupt Source 1: The PD3 pin can serve as an external interrupt
source.

e INTO - Port D, Bit 2

INTO, External Interrupt Source 0: The PD2 pin can serve as an external interrupt
source.

« TXD - Port D, Bit 1

TXD, Transmit Data (Data output pin for the USART). When the USART Transmitter is
enabled, this pin is configured as an output regardless of the value of DDD1.

 RXD - Port D, Bit 0

RXD, Receive Data (Data input pin for the USART). When the USART Receiver is
enabled this pin is configured as an input regardless of the value of DDDO. When the
USART forces this pin to be an input, the pull-up can still be controlled by the PORTDO
bit.

Table 32 and Table 33 relate the alternate functions of Port D to the overriding signals
shown in Figure 26 on page 52.

Table 32. Overriding Signals for Alternate Functions PD7..PD4

Signal Name PD7/0C2 PD6/ICP PD5/OC1A PD4/0OC1B
PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC2 ENABLE 0 OC1A ENABLE OC1B ENABLE
PVOV oCc2 0 OC1A OC1B
DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI - ICP INPUT - -

AlIO - - - -

AIMEL 61

2503F-AVR-12/03 I ©

Signal Name PD3/INT1 PD2/INTO PD1/TXD PDO/RXD
PUOE 0 0 TXEN RXEN
PUOV 0 0 0 PORTDO « PUD
DDOE 0 0 TXEN RXEN
DDOV 0 0 1 0
PVOE 0 0 TXEN 0
PVOV 0 0 TXD 0
DIEOE INT1 ENABLE INTO ENABLE 0 0
DIEOV 1 1 0 0
DI INT1 INPUT INTO INPUT - RXD
AlO - - - -
Register Description for
I/O Ports
Port A Data Register — PORTA
Bit 7 6 5 4 3 2 1 0
I PORTA7 PORTA6 PORTAS PORTA4 PORTA3 PORTA2 PORTA1 PORTAO I PORTA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Port A Data Direction Register
— DDRA Bit 7 6 5 4 3 2 1 0
I DDA7 DDA6 DDAS5 DDA4 DDA3 DDA2 DDAl DDAO I DDRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Port A Input Pins Address —
PINA Bit 7 6 5 4 3 2 1 0
I PINA7 PINAG PINA5 PINA4 PINA3 PINA2 PINA1 PINAO I PINA
Read/Write R R R R R R R R
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
Port B Data Register — PORTB
Bit 7 6 5 4 3 2 1 0
I PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTBO I PORTB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Port B Data Direction Register
- DDRB Bit 7 6 5 4 3 2 1 0
I DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO I DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
62 ATm ega32(L) |

ATMEL

Table 33. Overriding Signals for Alternate Functions in PD3..PDO

2503F-AVR-12/03

A\ T M ega32(L)

Port B Input Pins Address —
PINB

Port C Data Register — PORTC

Port C Data Direction Register
— DDRC

Port C Input Pins Address —
PINC

Port D Data Register — PORTD

Port D Data Direction Register
— DDRD

Port D Input Pins Address —
PIND

Bit

Read/Write
Initial Value

Bit

Read/Write

Initial Value

Bit

Read/Write

Initial Value

Bit

Read/Write
Initial Value

Bit

Read/Write

Initial Value

Bit

Read/Write
Initial Value

Bit

Read/Write
Initial Value

PINB

PORTCO | PORTC

DDCO | DDRC

PINC

PORTDO | PORTD

popo | porp

2503F-AVR-12/03

7 6 5 4 3 2 1 0
I PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO I
R R R R R R R R
N/A N/A N/A N/A N/A N/A N/A N/A
7 6 5 4 3 2 1 0
I PORTC7 | PORTC6 | PORTC5 | PORTC4 | PORTC3 | PORTC2 | PORTC1
R/W RIW R/W R/IW R/IW R/W R/W RIW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
I DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1
R/W RW R/W R/W RIW R/W R/W RIW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
I PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO I
R R R R R R R R
N/A N/A N/A N/A N/A N/A N/A N/A
7 6 5 4 3 2 1 0
I PORTD7 | PORTD6 | PORTD5 | PORTD4 | PORTD3 | PORTD2 | PORTD1
R/W RIW R/W R/W R/IW R/W R/W RIW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
I DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1
R/W RW R/W R/W RIW R/W R/W RIW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
I PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO I
R R R R R R R R
N/A N/A N/A N/A N/A N/A N/A N/A
L [G)

PIND

63

External Interrupts

MCU Control Register —
MCUCR

ATMEL

The External Interrupts are triggered by the INTO, INT1, and INT2 pins. Observe that, if
enabled, the interrupts will trigger even if the INTO..2 pins are configured as outputs.
This feature provides a way of generating a software interrupt. The external interrupts
can be triggered by a falling or rising edge or a low level (INT2 is only an edge triggered
