5V/3.3V $256K \times 16$ CMOS SRAM #### **Features** - AS7C4098 (5V version) - AS7C34098 (3.3V version) - Industrial and commercial temperature - Organization: 262,144 words \times 16 bits - Center power and ground pins - High speed - 10/12/15/20 ns address access time - 5/6/7/8 ns output enable access time - Low power consumption: ACTIVE - 1375 mW (AS7C4098)/max @ 12 ns - 468 mW (AS7C34098)/max @ 12 ns - Low power consumption: STANDBY - 110 mW (AS7C4098)/max CMOS - 72 mW (AS7C34098)/max CMOS - Individual byte read/write controls - Easy memory expansion with CE, OE inputs - TTL- and CMOS-compatible, three-state I/O - 44-pin JEDEC standard packages - 400-mil SOJ - TSOP 2 - 48-ball FBGA 7 x 11 mm - ESD protection ≥ 2000 volts - Latch-up current ≥ 200 mA #### Logic block diagram #### Pin arrangement for SOJ and TSOP 2 44-pin (400 mil) SOJ TSOP2 #### **Selection guide** | | | -10 | -12 | -15 | -20 | Unit | |-----------------------------------|-----------|-----|-----|-----|-----|------| | Maximum address access time | | 10 | 12 | 15 | 20 | ns | | Maximum output enable access time | | 5 | 6 | 7 | 9 | ns | | Maximum operating current | AS7C4098 | - | 250 | 220 | 180 | mA | | waximum operating current | AS7C34098 | 160 | 130 | 110 | 100 | mA | | Maximum CMOS standby current | AS7C4098 | - | 20 | 20 | 20 | mA | | Waximum Cwos standby current | AS7C34098 | 20 | 20 | 20 | 20 | mA | ## **Ball arrangement BGA** ## 48-BGA Ball-Grid-Array Package | | 1 | 2 | 3 | 4 | 5 | 6 | |---|----------|-------|-----|-----|------|----------| | A | LB | OE | A0 | A1 | A2 | NC | | В | I/09 | UB | A3 | A4 | CE | I/01 | | С | I/O10 | | A5 | A6 | I/O2 | I/O3 | | D | V_{SS} | I/O12 | | A7 | I/O4 | V_{CC} | | E | 00 | I/O13 | NC | A16 | I/O5 | V_{SS} | | F | I/O15 | I/014 | A14 | A15 | I/06 | I/07 | | G | I/O16 | NC | A12 | A13 | WE | I/08 | | Н | NC | A8 | A9 | A10 | A11 | NC | # **48-BGA Ball-Grid-Array Package - Version 2 Alternative** | | 1 | 2 | 3 | 4 | 5 | 6 | |---|----------|------|-----|-----|-------|----------| | A | LB | OE | A0 | A1 | A2 | NC | | В | I/01 | UB | A3 | A4 | CE | I/O9 | | С | I/O2 | I/O3 | A5 | A6 | I/011 | I/O10 | | D | V_{SS} | I/O4 | A17 | | I/O12 | V_{CC} | | E | V_{CC} | I/O5 | NC | | I/O13 | V_{SS} | | F | I/07 | I/06 | A14 | A15 | I/O14 | I/O15 | | G | I/08 | NC | A12 | A13 | WE | I/O16 | | Н | NC | A8 | A9 | A10 | A11 | NC | #### **Functional description** The AS7C4098 and AS7C34098 are high-performance CMOS 4,194,304-bit Static Random Access Memory (SRAM) devices organized as 262,144 words \times 16 bits. They are designed for memory applications where fast data access, low power, and simple interfacing are desired. Equal address access and cycle times (t_{AA} , t_{RC} , t_{WC}) of 10/12/15/20 ns with output enable access times (t_{OE}) of 5/6/7/8 ns are ideal for high-performance applications. The chip enable input \overline{CE} permits easy memory expansion with multiple-bank memory systems. When CE is High the device enters standby mode. The standard AS7C4098 is guaranteed not to exceed 110 mW power consumption in CMOS standby mode. A write cycle is accomplished by asserting write enable (WE) and chip enable (CE). Data on the input pins I/O1–I/O16 is written on the rising edge of WE (write cycle 1) or CE (write cycle 2). To avoid bus contention, external devices should drive I/O pins only after outputs have been disabled with output enable (OE) or write enable (WE). A read cycle is accomplished by asserting output enable (\overline{OE}) and chip enable (\overline{CE}) , with write enable (\overline{WE}) High. The chip drives I/O pins with the data word referenced by the input address. When either chip enable or output enable is inactive, or write enable is active, output drivers stay in high-impedance mode. These devices provide multiple center power and ground pins, and separate byte enable controls, allowing individual bytes to be written and read. \overline{LB} controls the lower bits, I/O1–I/O8, and \overline{UB} controls the higher bits, I/O9–I/O16. All chip inputs and outputs are TTL- and CMOS-compatible, and operation is from either a single 5V (AS7C4098) or 3.3V (AS7C34098) supply. Both devices are available in the JEDEC standard 400-mL, 44-pin SOJ, TSOP 2, and 48 - CSP/BGA packages. #### **Absolute maximum ratings** | Parameter | Device | Symbol | Min | Max | Unit | |--|-----------|-------------------|-------|-----------------|------| | Voltage on V _{CC} relative to GND | AS7C4098 | V _{t1} | -0.50 | +7.0 | V | | voltage on ver relative to divid | AS7C34098 | V _{t1} | -0.50 | +5.0 | V | | Voltage on any pin relative to GND | | V _{t2} | -0.50 | $V_{CC} + 0.50$ | V | | Power dissipation | | P_{D} | - | 1.5 | W | | Storage temperature (plastic) | | T _{stg} | -65 | +150 | °C | | Ambient temperature with V_{CC} applied | | T _{bias} | -55 | +125 | °C | | DC current into outputs (low) | | I _{OUT} | - | ±20 | mA | Note: Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. #### Truth table | CE | WE | OE | <u>I.B</u> | UB | I/O1-I/O8 | I/O9-I/O16 | Mode | |----|----|-----------|------------|----|------------------|------------------|---| | Н | X | X | X | X | High Z | High Z | Standby (I _{SB} , I _{SB1}) | | L | Н | Н | X | X | High Z | High Z | Output disable (I _{CC}) | | L | X | X | Н | Н | Tilgii Z | Ingn Z | Output disable (ICC) | | | | | L | Н | D _{OUT} | High Z | | | L | Н | L | Н | L | High Z | D _{OUT} | Read (I _{CC}) | | | | | L | L | D _{OUT} | D _{OUT} | | | | | | L | Н | D _{IN} | High Z | | | L | L | X | Н | L | High Z | D_{IN} | Write (I _{CC}) | | | | | L | L | D _{IN} | D _{IN} | | Key: X = Don't care, L = Low, H = High. # **Recommended operating conditions** | Parameter | | | Symbol | Min | Typical | Max | Unit | |---------------------------------|------------|-----------|----------------------------|------------|----------------|----------------|------| | | | AS7C4098 | V _{CC} (12/15/20) | 4.5 | 5.0 | 5.5 | V | | Supply voltage | | AS7C34098 | V _{CC} (10) | 3.15 | 3.3 | 3.6 | V | | | | AS7C34098 | V _{CC} (12/15/20) | 3.0 | 3.3 | 3.6 | V | | | | AS7C4098 | V _{IH} | 2.2 | _ | $V_{CC} + 0.5$ | V | | Input voltage | | AS7C34098 | V _{IH} | 2.0 | _ | $V_{CC} + 0.5$ | V | | | | | $V_{ m IL}$ | -0.5^{1} | _ | 0.8 | V | | Ambient operating temperature | commercial | | T_{A} | 0 | _ | 70 | °C | | Timble it operating temperature | industrial | | T_{A} | -40 | - | 85 | °C | $^{1 \}text{ V}_{IL} \text{ min} = -3.0 \text{V}$ for pulse width less than $t_{RC}/2$. ## DC operating characteristics (over the operating range) I | | | - | | -1 | 10 | - | 12 | -: | 15 | -20 | | | |---------------------------|------------------|--|-----------|-----|-----|-----|-----|-----|-----|-----|-----|------| | Parameter | Symbol | Test conditions | | Min | Max | Min | Max | Min | Max | Min | Max | Unit | | Input leakage
current | I _{LI} | $V_{CC} = Max$ $V_{IN} = GND \text{ to } V_{CC}$ | | _ | 1 | 1 | 1 | _ | 1 | - | 1 | μА | | Output leakage
current | I _{LO} | $\begin{aligned} V_{CC} &= Max \\ CE &= V_{IH} \text{ or } OE = V_{IH} \\ \text{ or } WE &= V_{IL} \\ V_{I/O} &= GND \text{ to } V_{CC} \end{aligned}$ | | _ | 1 | - | 1 | _ | 1 | ı | 1 | μА | | Operating | | $V_{CC} = Max$ | AS7C4098 | - | - | 1 | 250 | - | 220 | 1 | 180 | mA | | power supply
current | I_{CC} | Min cycle, 100% duty $\overline{\text{CE}} = V_{\text{IL}}$, $I_{\text{OUT}} = 0\text{mA}$ | AS7C34098 | _ | 160 | J | 130 | ı | 110 | 1 | 100 | mA | | | I _{SB} | $V_{CC} = Max$ | AS7C4098 | - | - | _ | 60 | _ | 60 | 1 | 60 | mA | | Standby power | 1SB | $\overline{\text{CE}} = V_{\text{IH}}, \text{ f} = \text{Max}$ | AS7C34098 | - | 60 | _ | 60 | _ | 60 | - | 60 | mA | | supply current | _ | $V_{CC} = Max$ | AS7C4098 | - | - | _ | 20 | _ | 20 | 1 | 20 | mA | | I _{SB1} | I _{SB1} | $\overline{CE} \ge V_{CC} - 0.2V, V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V, f = 0$ | AS7C34098 | _ | 20 | 1 | 20 | - | 20 | 1 | 20 | mA | | Output voltage | V _{OL} | $I_{OL} = 8 \text{ mA}, V_{CC} = \text{Min}$ | | _ | 0.4 | _ | 0.4 | _ | 0.4 | - | 0.4 | V | | Output voltage | V _{OH} | $I_{OH} = -4 \text{ mA}, V_{CC} = \text{Min}$ | | 2.4 | - | 2.4 | _ | 2.4 | _ | 2.4 | _ | V | # Capacitance (f = 1MHz, $T_a = 25^{\circ}$ C, $V_{CC} = NOMINAL)^2$ | Parameter | Symbol | Signals | Test conditions | Max | Unit | |-------------------|------------------|-----------------------|-------------------------|-----|------| | Input capacitance | C_{IN} | A, CE, WE, OE, UB, LB | $V_{IN} = 0V$ | 6 | pF | | I/O capacitance | C _{I/O} | I/O | $V_{IN} = V_{OUT} = 0V$ | 8 | pF | # Read cycle (over the operating range) 3,9 | | | -1 | 10 | -1 | 12 | -1 | 15 | -9 | 20 | | | |---------------------------------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|-------| | Parameter | Symbol | Min | Max | Min | Max | Min | Max | Min | Max | Unit | Notes | | Read cycle time | t _{RC} | 10 | - | 12 | - | 15 | - | 20 | - | ns | | | Address access time | t _{AA} | _ | 10 | - | 12 | - | 15 | - | 20 | ns | | | Chip enable (CE) access time | t _{ACE} | _ | 10 | - | 12 | - | 15 | - | 20 | ns | | | Output enable (OE) access time | t _{OE} | _ | 5 | - | 6 | - | 7 | - | 8 | ns | | | Output hold from address change | t _{OH} | 3 | - | 3 | - | 3 | - | 3 | _ | ns | 5 | | CE Low to output in low Z | t _{CLZ} | 0 | _ | 3 | _ | 0 | - | 0 | _ | ns | 4, 5 | | CE High to output in higfch Z | t _{CHZ} | _ | 5 | - | 6 | - | 7 | - | 9 | ns | 4, 5 | | OE Low to output in low Z | t _{OLZ} | 0 | - | 0 | _ | 0 | _ | 0 | _ | ns | 4, 5 | | OE High to output in high Z | t _{OHZ} | _ | 5 | - | 6 | _ | 7 | _ | 9 | ns | 4, 5 | | LB, UB access time | t _{BA} | _ | 5 | - | 6 | _ | 7 | _ | 8 | ns | | | LB, UB Low to output in low Z | t _{BLZ} | 0 | - | 0 | _ | 0 | _ | 0 | _ | ns | | | LB, UB High to output in high Z | t _{BHZ} | _ | 5 | _ | 6 | - | 7 | - | 9 | ns | | | Power up time | t _{PU} | 0 | _ | 0 | _ | 0 | - | 0 | _ | ns | 5 | | Power down time | t _{PD} | - | 10 | - | 12 | ı | 15 | ı | 20 | ns | 5 | ## **Key to switching waveforms** Rising input Falling input Undefined/don't care ## Read waveform 1 (address controlled)^{6,7,9} # Read waveform 2 (CE, OE, UB, LB controlled) 6,8,9 ## Write cycle (over the operating range)¹¹ | | | -: | 10 | -: | 12 | _ | 15 | - | 20 | | | |--|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------| | Parameter | Symbol | Min | Max | Min | Max | Min | Max | Min | Max | Unit | Note | | Write cycle time | t _{WC} | 10 | _ | 12 | _ | 15 | - | 20 | _ | ns | | | Chip enable (CE) to write end | t _{CW} | 7 | - | 8 | - | 10 | - | 12 | - | ns | | | Address setup to write end | t _{AW} | 7 | - | 8 | - | 10 | - | 12 | - | ns | | | Address setup time | t _{AS} | 0 | _ | 0 | _ | 0 | - | 0 | _ | ns | | | Write pulse width $(\overline{OE} = High)$ | t _{WP1} | 7 | - | 8 | - | 10 | - | 12 | - | ns | | | Write pulse width $(\overline{OE} = Low)$ | t _{WP2} | 10 | _ | 12 | _ | 15 | - | 20 | _ | ns | | | Write recovery time | t _{WR} | 0 | _ | 0 | _ | 0 | _ | 0 | _ | ns | | | Address hold from end of write | t _{AH} | 0 | _ | 0 | _ | 0 | - | 0 | _ | ns | | | Data valid to write end | t _{DW} | 5 | _ | 6 | | 7 | - | 9 | _ | ns | | | Data hold time | t _{DH} | 0 | _ | 0 | _ | 0 | _ | 0 | _ | ns | 4, 5 | | Write enable to output in High-Z | t _{WZ} | 0 | 5 | 0 | 6 | 0 | 7 | 0 | 9 | ns | 4, 5 | | Output active from write end | t _{OW} | 3 | _ | 3 | _ | 3 | _ | 3 | - | ns | 4, 5 | | Byte enable Low to write end | t _{BW} | 7 | _ | 8 | - | 10 | _ | 12 | - | ns | 4, 5 | # Write waveform 1(WE controlled)^{10,11} ## Write waveform 2 (CE controlled) 10,11 ## Write waveform 3 10,11 #### **AC** test conditions - Output load: see Figure B or Figure C. - Input pulse level: GND to 3.0V. See Figure A. - Input rise and fall times: 2 ns. See Figure A. - Input and output timing reference levels: 1.5V. Figure A: Input pulse Figure B: 5V Output load Figure C: 3.3V Output load #### Notes - 1 During V_{CC} power-up, a pull-up resistor to V_{CC} on \overline{CE} is required to meet I_{SB} specification. - 2 This parameter is sampled, but not 100% tested. - 3 For test conditions, see AC Test Conditions, Figures A, B, C. - 4 t_{CIZ} and t_{CHZ} are specified with $C_L = 5pF$ as in Figure C. Transition is measured $\pm 500mV$ from steady-state voltage. - 5 This parameter is guaranteed, but not tested. - 6 WE is High for read cycle. - \overline{CE} and \overline{OE} are Low for read cycle. - 8 Address valid prior to or coincident with $\overline{\text{CE}}$ transition Low. - 9 All read cycle timings are referenced from the last valid address to the first transitioning address. - 10 $\overline{\text{CE}}$ or $\overline{\text{WE}}$ must be High during address transitions. Either $\overline{\text{CE}}$ or $\overline{\text{WE}}$ asserting high terminates a write cycle. - 11 All write cycle timings are referenced from the last valid address to the first transitioning address. - 12 Not applicable. - 13 $\,$ C = 30pF, except on High Z and Low Z parameters, where C = 5pF. #### Typical DC and AC characteristics¹² # **Package dimensions** | | 44-pin | TSOP 2 | | | | | | | |-----------------------|----------|----------------|--|--|--|--|--|--| | | Min (mm) | Max (mm) | | | | | | | | A | | 1.2 | | | | | | | | A ₁ | 0.05 | | | | | | | | | A ₂ | 0.95 | 1.05 | | | | | | | | b | 0.25 | 0.45 | | | | | | | | C | 0.15 (t | ypical) | | | | | | | | d | 18.28 | 18.54 | | | | | | | | e | 10.06 | 10.26 | | | | | | | | H _e | 11.56 | 11.96 | | | | | | | | E | 0.80 (t | 0.80 (typical) | | | | | | | | 1 | 0.40 | 0.60 | | | | | | | | | 44-pin SO. | J 400 mils | | | | |-----------|------------|------------|--|--|--| | | Min(mils) | Max(mils) | | | | | A | 0.128 | 0.148 | | | | | A1 | 0.025 | - | | | | | A2 | 1.105 | 1.115 | | | | | В | 0.026 | 0.032 | | | | | b | 0.015 | 0.020 | | | | | C | 0.007 | 0.013 | | | | | D | 1.120 | 1.130 | | | | | E | 0.370 | NOM | | | | | E1 | 0.395 | 0.405 | | | | | E2 | 0.435 | 0.445 | | | | | e | 0.050 | NOM | | | | #### 48-ball FBGA | | Minimum | Typical | Maximum | |------------|---------|---------|---------| | A | _ | 0.75 | _ | | В | 6.90 | 7.00 | 7.10 | | B 1 | _ | 3.75 | - | | C | 10.90 | 11.00 | 11.10 | | C1 | _ | 5.25 | _ | | D | 0.30 | 0.35 | 0.40 | | E | _ | - | 1.20 | | E1 | _ | 0.68 | - | | E2 | 0.22 | 0.25 | 0.27 | | Y | _ | _ | 0.08 | #### Notes - 1. Bump counts: 48 (8 row \times 6 column). - 2. Pitch: $(x,y) = 0.75 \text{ mm} \times 0.75 \text{ mm}$ (typ). - 3. Units: millimeters. - 4. All tolerance are ± 0.050 unless otherwise specified. - 5. Typ: typical. - 6. Y is coplanarity: 0.08 (max). ### **Ordering Codes** | Package | Version | 10 ns | 12 ns | 15 ns | 20 ns | |-------------------|-----------------|-----------------|-----------------|-----------------|-----------------| | | 5V commercial | NA | AS7C4098-12JC | AS7C4098-15JC | AS7C4098-20JC | | SOJ | 5V industrial | NA | AS7C4098-12JI | AS7C4098-15JI | AS7C4098-20JI | | 303 | 3.3V commercial | AS7C34098-10JC | AS7C34098-12JC | AS7C34098-15JC | AS7C34098-20JC | | | 3.3V industrial | NA | AS7C34098-12JI | AS7C34098-15JI | AS7C34098-20JI | | | 5V commercial | NA | AS7C4098-12TC | AS7C4098-15TC | AS7C4098-20TC | | TSOP 2 | 5V industrial | NA | AS7C4098-12TI | AS7C4098-15TI | AS7C4098-20TI | | 1301 2 | 3.3V commercial | AS7C34098-10TC | AS7C34098-12TC | AS7C34098-15TC | AS7C34098-20TC | | | 3.3V industrial | NA | AS7C34098-12TI | AS7C34098-15TI | AS7C34098-20TI | | | 5V commercial | NA | AS7C4098-12BC | AS7C4098-15BC | AS7C4098-20BC | | BGA | 5V industrial | NA | AS7C4098-12BI | AS7C4098-15BI | AS7C4098-20BI | | DGA | 3.3V commercial | AS7C34098-10BC | AS7C34098-12BC | AS7C34098-15BC | AS7C34098-20BC | | | 3.3V industrial | NA | AS7C34098-12BI | AS7C34098-15BI | AS7C34098-20BI | | BGA Ball | 5V commercial | NA | AS7C4098-12B2C | AS7C4098-15B2C | AS7C4098-20B2C | | Arrange- | 5V industrial | NA | AS7C4098-12B2I | AS7C4098-15B2I | AS7C4098-20B2I | | ment
Version 2 | 3.3V commercial | AS7C34098-10B2C | AS7C34098-12B2C | AS7C34098-15B2C | AS7C34098-20B2C | | version 2 | 3.3V industrial | NA | AS7C34098-12B2I | AS7C34098-15B2I | AS7C34098-20B2I | #### Part numbering system | AS7C | X | 4098 | -XX | J, T, or B | X | |-------------|--|------------------|----------------|---|---| | SRAM prefix | Voltage:
Blank: 5V CMOS
3: 3.3V CMOS | Device
number | Access
time | Packages:
J: SOJ 400 mil
T: TSOP 2
B: 48-ball FBGA 7x11 mm | Temperature ranges:
C: Commercial, 0°C to 70°C
I: Industrial, –40°C to 85°C | 5/23/02; v.1.8 Alliance Semiconductor P. 12 of 12