

Cascadable Silicon Bipolar MMIC Amplifier

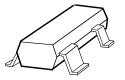
Technical Data

MSA-2111

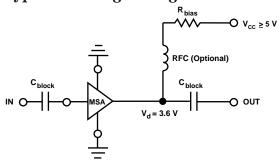
Features

- Cascadable 50 Ω Gain Block
- Medium Power: 10 dBm at 900 MHz
- **High Gain:** 16.5 dB Typical at 900 MHz
- Low Noise Figure: 3.3 dB Typical at 900 MHz
- Low Cost Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available^[1]

Note:


 Refer to PACKAGING section "Tapeand-Reel Packaging for Semiconductor Devices."

Description


The MSA-2111 is a low cost silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a surface mount plastic SOT-143 package. This MMIC is designed for use as a general purpose $50~\Omega$ gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using HP's $10\,\mathrm{GHz}\,\mathrm{f_T}, 25\,\mathrm{GHz}\,\mathrm{f_{MAX}},$ silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

SOT-143 Package

Typical Biasing Configuration

5965-9663E 6-478

MSA-2111 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]
Device Current	40 mA
Power Dissipation ^[2,3]	125 mW
RF Input Power	+13dBm
Junction Temperature	150℃
Storage Temperature	−65°C to 150°C

Thermal Resistance ^[2] :	
$\theta_{\rm jc} = 505$ °C/W	

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 2.0 mW/°C for $T_{\rm C} > 85$ °C.

Electrical Specifications $^{[1]}$, $T_A = 25$ $^{\circ}$ C

Symbol	Parameters and Test Conditions:	Units	Min.	Тур.	Max.	
GP	Power Gain ($ S_{21} ^2$)	$f = 900 \mathrm{MHz}$	dB	16.0	17.5	
$\Delta G_{ m P}$	Gain Flatness	f = 0.1 to 0.3 GHz	dB		± 0.5	
f _{3 dB}	3 dB Bandwidth		GHz		0.5	
MOME	Input VSWR	f = 0.1 to 2.5 GHz			1.8:1	
VSWR	Output VSWR	f = 0.1 to 2.5 GHz			1.8:1	
NF	50Ω Noise Figure	f = 900 MHz	dB		3.3	
P _{1 dB}	Output Power at 1 dB Gain Compression	$f = 900 \mathrm{MHz}$	dBm		10	
IP ₃	Third Order Intercept Point	$f = 900 \mathrm{MHz}$	dBm		20	
t_{D}	Group Delay	$f = 900 \mathrm{MHz}$	psec		158	
V_{d}	Device Voltage		V	2.9	3.6	4.3
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Notes:

Part Number Ordering Information

Part Number	No. of Devices	Container		
MSA-2111-TR1	3000	7" Reel		
MSA-2111-BLK	100	Antistatic Bag		

For more information, see "Tape and Reel Packaging for Semiconductor Devices".

^{1.} The recommended operating current range for this device is 12 to 35 mA. Typical gain performance as a function of current is on the following page.

MSA-2111 Typical Scattering Parameters (Z $_{0}$ = 50 $\Omega,$ $T_{_{A}}$ = 25 $^{\circ}\text{C},$ $I_{_{d}}$ = 29 mA)

Freq.	\mathbf{S}_1	1		S_{21}		\mathbf{S}_{12}		S	\mathbf{S}_{22}		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	k
0.1	.28	171	23.0	14.1	167	-26.0	.050	9	.27	177	1.03
0.2	.26	163	22.5	13.4	156	-25.5	.053	18	.27	175	1.03
0.3	.24	156	21.9	12.5	145	-24.9	.057	25	.26	173	1.03
0.4	.21	152	21.2	11.5	136	-24.0	.063	30	.26	171	1.03
0.5	.18	149	20.5	10.6	128	-23.4	.068	35	.24	170	1.03
0.6	.15	148	19.7	9.7	120	-22.6	.074	38	.24	169	1.03
0.7	.13	148	19.0	8.9	114	-21.8	.081	40	.22	169	1.04
0.8	.11	152	18.3	8.2	108	- 21.1	.088	42	.21	169	1.04
0.9	.09	158	17.6	7.6	102	-20.4	.095	43	.20	168	1.04
1.0	.07	169	16.9	7.0	98	-19.9	.101	44	.19	169	1.05
1.5	.08	-123	14.0	5.0	79	-17.3	.136	45	.10	179	1.06
2.0	.11	- 124	11.8	3.9	63	-15.5	.167	42	.06	-147	1.08
2.5	.15	-167	10.1	3.2	56	-14.3	.193	43	.06	-177	1.10
3.0	.27	158	8.3	2.6	43	-13.5	.211	38	.12	149	1.13
3.5	.38	145	6.8	2.2	32	-13.1	.222	34	.16	145	1.14
4.0	.46	135	5.6	1.9	21	-12.6	.234	30	.17	144	1.14

Typical Performance, $T_A = 25$ °C (unless otherwise noted)

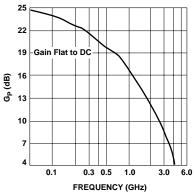


Figure 1. Power Gain vs. Frequency, I_d = 29 mA.

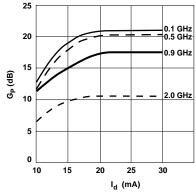


Figure 2. Power Gain vs. Current.

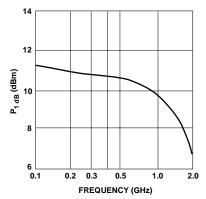


Figure 3. Output Power at 1 dB Gain Compression vs. Frequency, $I_d = 29 \text{ mA}.$

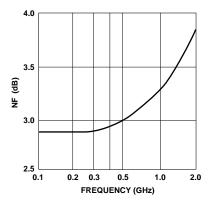
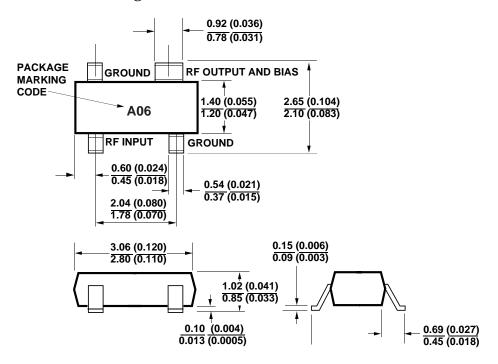



Figure 4. Noise Figure vs. Frequency, I_d = 29 mA.

SOT-143 Package Dimensions

DIMENSIONS ARE IN MILLIMETERS (INCHES)