

Preliminary Technical Data

Small, Low Power, 3-Axis ±2 g iMEMS® Accelerometer

ADXL330

FEATURES

3-axis sensing Small, low-profile package 4 mm × 4 mm × 1.45 mm LFCSP Low power 200 μA at V₅ = 2.0 V (typ) Single-supply operation 2.0 V to 3.6 V 10,000 g shock survival Good zero g bias stability Good sensitivity accuracy BW adjustment with a single capacitor RoHS/WEEE lead-free compliant

APPLICATIONS

Cost-sensitive motion- and tilt-sensing applications

Cellular handsets

Gaming devices

Disk drive protection

- Image stabilization
- Sports and health devices

GENERAL DESCRIPTION

The ADXL330 is a small, low power complete three axis accelerometer with signal conditioned voltage outputs, all on a single monolithic IC. The product measures acceleration with a minimum full-scale range of ± 2 g. It can measure the static acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration resulting from motion, shock, or vibration.

The user selects the bandwidth of the accelerometer using capacitors C_x , C_y , C_z and at the X_{OUT}, Y_{OUT}, and Z_{OUT} pins. Bandwidths may be selected to suit the application, with a range of 0.5 Hz to 1,600 Hz for X and Y axes, and a range of 0.5 Hz to 550 Hz for the Z axis.

The ADXL330 is available in a small, low-profile, 4 mm \times 4 mm \times 1.45 mm, 16-lead, plastic lead frame chip scale package (LFCSP).

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Applications	1
General Description	1
Functional Block Diagram	1
Revision History	2
Specifications	3

Absolute Maximum Ratings4
ESD Caution4
Pin Configuration and Function Descriptions5
Axes of Acceleration Sensitivity6
Outline Dimensions7
Ordering Guide7

REVISION HISTORY

10/05—Revision PrA: Preliminary Version

SPECIFICATIONS

 $T_A = 25^{\circ}C$, $V_S = 3 V$, $C_X = C_Y = C_Z = 0.1 \mu$ F, acceleration = 0 g, unless otherwise noted. All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed.

Parameter	Conditions	Min	Тур	Max	Unit
SENSOR INPUT	Each axis				
Measurement Range		±2	±4		g
Nonlinearity	% of full scale		±0.3		%
Inter-Axis Alignment Error			±0.1		Degrees
Cross Axis Sensitivity ¹			±1		%
SENSITIVITY (RATIOMETRIC) ²	Each axis				
Sensitivity at Xout, Yout, Zout	$V_S = 3 V$	270	300	330	mV/ <i>g</i>
Sensitivity Change Due to Temperature ³	$V_S = 3 V$		±0.01		%/°C
ZERO g BIAS LEVEL (RATIOMETRIC)	Each axis				
0 g Voltage at Хоит, Yоит, Zоит	$V_S = 3 V$	1.2	1.5	1.8	V
0 g Offset vs. Temperature			±1		m <i>g</i> /°C
NOISE PERFORMANCE					
Noise Density Xout, Yout			170		µ <i>g</i> /√Hz rms
Noise Density Zout			350		µ <i>g</i> /√Hz rms
FREQUENCY RESPONSE ⁴					
Bandwidth Xout, Yout ⁵	No external filter		1600		Hz
Bandwidth Zout	No external filter		550		Hz
R _{FILT} Tolerance			32 ± 15%		kΩ
Sensor Resonant Frequency			5.5		kHz
SELF-TEST ⁶					
Logic Input Low			+0.6		V
Logic Input High			+2.4		V
Output Change at Xout	Self-test 0 to 1		-130		mV
Output Change at Yout	Self-test 0 to 1		+130		mV
Output Change at Zout	Self-test 0 to 1		-70		mV
OUTPUT AMPLIFIER					
Output Swing Low	No load		0.1		V
Output Swing High	No load		2.8		V
POWER SUPPLY					
Operating Voltage Range		2.0		3.6	V
Quiescent Supply Current			320		μA
Turn-On Time ⁷	No external filter		1		ms
TEMPERATURE					
Operating Temperature Range		-25		70	°C

¹ Defined as coupling between any two axes.

² Sensitivity is essentially ratiometric to V_s. For V_s = 2.7 V to 3.3 V, sensitivity is TBD mV/V/g to TBD mV/V/g typical. ³ Defined as the output change from ambient-to-maximum temperature or ambient-to-minimum temperature.

⁴ Actual frequency response controlled by user-supplied external filter capacitors (C_x, C_y, C_z).

⁵ Bandwidth with external capacitors = $1/(2 \times \pi \times 32 \text{ k}\Omega \times \text{C})$. For C_x, C_y, C_z = 0.003 µF, bandwidth = 1.6 kHz. For C_x, C_y, C_z = 10 µF, bandwidth = 0.5 Hz. ⁶ Self-test response changes cubically with Vs.

⁷ Turn-on time is dependent on C_x, C_y, C_z and is approximately 160 × C_x or C_y or C_z + 1 ms, where C_x, C_y, C_z are in μ F.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Acceleration (Any Axis, Unpowered)	10,000 g
Acceleration (Any Axis, Powered)	10,000 <i>g</i>
Vs	–0.3 V to +7.0 V
All Other Pins	$(COM - 0.3 V)$ to $(V_{s} + 0.3 V)$
Output Short-Circuit Duration (Any Pin to Common)	Indefinite
Temperature Range (Powered)	−55°C to +125°C
Temperature Range (Storage)	−65°C to +150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

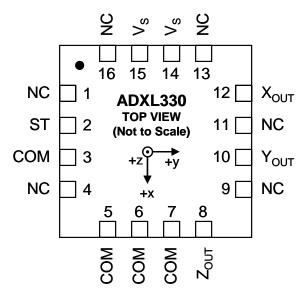


Figure 2. Pin Configuration

Pin No.	Mnemonic	Description
1	NC	No Connect
2	ST	Self-Test
3	COM	Common
4	NC	No Connect
5	СОМ	Common
6	СОМ	Common
7	COM	Common
8	Zout	Z Channel Output
9	NC	No Connect
10	Yout	Y Channel Output
11	NC	No Connect
12	Xout	X Channel Output
13	NC	No Connect
14	Vs	Supply Voltage (2.0 V to 3.6 V)
15	Vs	Supply Voltage (2.0 V to 3.6 V)
16	NC	No Connect

AXES OF ACCELERATION SENSITIVITY

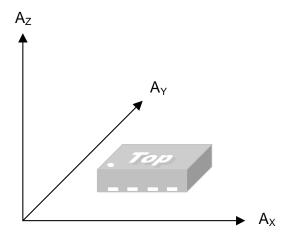


Figure 3. Axes of Acceleration Sensitivity (Corresponding Output Voltage Increases When Accelerated Along the Sensitive Axis)

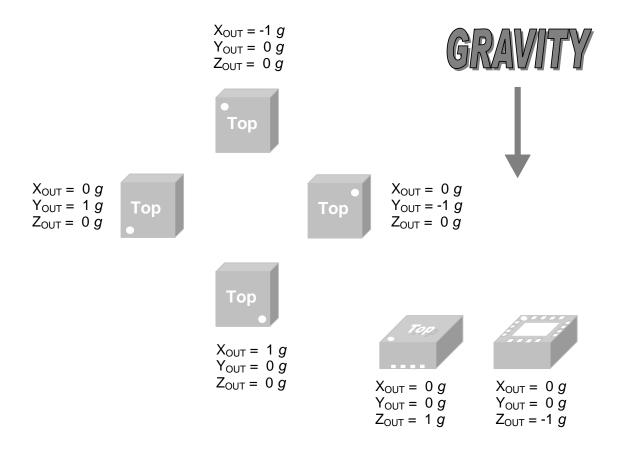
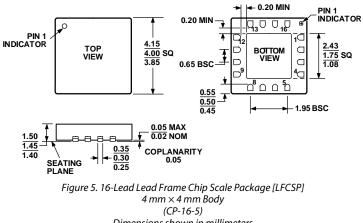



Figure 4. Output Response vs. Orientation to Gravity

OUTLINE DIMENSIONS

Dimensions shown in millimeters (Drawing Not to Scale)

ORDERING GUIDE

Model	Measurement Range	Specified Voltage (V)	Temperature Range	Package Description	Package Option
ADXL330KCPZ ¹	±2 g	3	-25°C to +70°C	16-Lead LFCSP	CP-16-5
ADXL330KCPZ-RL	±2 g	3	-25°C to +70°C	16-Lead LFCSP	CP-16-5
EVAL-ADXL330				Evaluation Board	

¹ Lead finish—matte tin.

NOTES

 $^{\odot}$ 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05677-0-10/05(PrA)

www.analog.com

Rev. PrA | Page 8 of 8