16-/32-Channel, Serially Controlled 4Ω 1.8 V to $5.5 \mathrm{~V}, \pm 2.5 \mathrm{~V}$, Analog Multiplexers

Preliminary Technical Data

FEATURES

3-Wire SPI Serial Interface

1.8 V to 5.5 V Single Supply
± 2.5 V Dual Supply Operation

4Ω On Resistance

0.5Ω On Resistance Flatness
$7 \mathrm{~mm} \times 7 \mathrm{~mm} 48$ lead Chip Scale Package (CSP)
or 48 lead TQFP package.
Rail to Rail Operation
Power On Reset
Fast Switching Times

Single 32 to 1 Channel Multiplexer

Dual/Differential 16 to 1 Channel Multiplexer
TTL/CMOS Compatible Inputs
For Functionally Equivalent devices with Parallel Interface
See ADG726/ADG732

APPLICATIONS

Optical Applications

Data Acquisition Systems

Communication Systems

Relay replacement

Audio and Video Switching
Battery Powered Systems
Medical Instrumentation
Automatic Test Equipment

GENERAL DESCRIPTION

The ADG725/ADG731 are monolithic CMOS 32 channel/dual 16 channel analog multiplexers with a serially controlled 3 -wire interface. The ADG732 switches one of thirty-two inputs (S1-S32) to a common output, D. The ADG725 can be configured as a dual mux switching one of sixteen inputs to one output or a differential mux switching one of sixteen inputs to a differential output.

These mulitplexers utilize a 3-wire serial interface that is compatible with SPI ${ }^{\text {TM }}$, QSPI $^{\text {TM }}$, MICROWIRE ${ }^{\text {TM }}$ and some DSP interface standards. On power-up, the internal shift register contains all zeros and all switch are in the OFF state.

These multiplexers are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on resistance and leakage currents. They operate from single supply of 1.8 V to 5.5 V and $\pm 2.5 \mathrm{~V}$ dual supply, making them ideally suited to a variety of applications. On resistance is in the region of a few Ohms and is closely matched between switches and very flat over the full signal range. These parts can operate equally well as either Multiplexers or De-Multiplexers

REV. PrD May 2002

[^0] reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAMS

and have an input signal range which extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All channels exhibit break before make switching action preventing momentary shorting when switching channels.
They are available in either 48 lead CSP or TQFP package.

PRODUCT HIGHLIGHTS

1. 3-Wire Serial Interface.

2 . +1.8 V to +5.5 V Single or $\pm 2.5 \mathrm{~V}$ Dual Supply operation. These parts are specified and guaranteed with $+5 \mathrm{~V} \pm 10 \%,+3 \mathrm{~V} \pm 10 \%$ single supply and $\pm 2.5 \mathrm{~V} \pm 10 \%$ dual supply rails.
3. On Resistance of 4Ω.
4. Guaranteed Break-Before-Make Switching Action.
5. $7 \mathrm{~mm} \times 7 \mathrm{~mm} 48$ lead Chip Scale Package (CSP) or 48 lead TQFP package.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 Tel: 781/329-4700 www.analog.com Fax: 781/326-8703

Analog Devices, Inc., 2002

Parameter	B Version		Units	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On-Resistance (R_{ON}) On-Resistance Match Between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On-Resistance Flatness ($\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$)	4 5.5 0.5	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 6 \\ & 0.3 \\ & 0.8 \\ & \\ & 1 \end{aligned}$	V Ω typ Ω max Ω typ $\Omega \max$ Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} ; \\ & \text { Test Circuit } 1 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage I_{S} (OFF) Drain OFF Leakage I_{D} (OFF) ADG725 ADG731 Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$ ADG725 ADG726	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.05 \\ & \pm 0.5 \\ & \pm 1 \\ & \pm 0.05 \\ & \pm 0.5 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 2.5 \\ & \pm 5 \\ & \pm 2.5 \\ & \pm 5 \end{aligned}$	nA typ nA max nA typ nA max nA max nA typ nA max $n A \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \text {; } \\ & \text { Test Circuit } 2 \\ & \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \text {; } \end{aligned}$ Test Circuit 3 $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} \text {, or } 4.5 \mathrm{~V}$ Test Circuit 4
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ C_{IN}, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	V min $\mathrm{V} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
```DYNAMIC CHARACTERISTICS \({ }^{2}\) \(\mathrm{t}_{\text {TRansition }}\) Break-Before-Make Time Delay, \(\mathrm{t}_{\mathrm{D}}\) Charge Injection Off Isolation Channel to Channel Crosstalk -3 dB Bandwidth ADG725 ADG731 \(\mathrm{C}_{\mathrm{S}}\) (OFF) \(\mathrm{C}_{\mathrm{D}}\) (OFF) ADG725 ADG731 \(C_{D}, C_{S}(\mathrm{ON})\) ADG725 ADG731```	$\begin{aligned} & 40 \\ & 30 \\ & \pm 5 \\ & -60 \\ & \\ & -60 \\ & \\ & 34 \\ & 18 \\ & 13 \\ & 180 \\ & 360 \\ & 200 \\ & 400 \end{aligned}$	60 1	ns typ   ns max   ns typ   ns min   pC typ   dB typ   dB typ   MHz typ   MHz typ   pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \text { Test Circuit } 5 ; \\ & \mathrm{V}_{\mathrm{S} 1}=3 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 32}=0 \mathrm{~V} / 3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \text { Test Circuit } 6 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \\ & \text { Test Circuit } 7 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ; \\ & \text { Test Circuit } 8 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ; \\ & \text { Test Circuit } 9 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \text { Test Circuit } 10 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS $\mathrm{I}_{\mathrm{DD}}$	10	20	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or }+5.5 \mathrm{~V} \end{aligned}$

[^1]SPECIFICATIONS ${ }^{1}{ }_{\left(\mathrm{V}_{00}=3 V \pm 10 \%\right.}, \mathrm{V}_{\mathrm{Ss}}=\mathrm{OV}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted)

Parameter	$B$ Version		Units	Test Conditions/Comments
		$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH   Analog Signal Range   On-Resistance ( $\mathrm{R}_{\mathrm{ON}}$ )   On-Resistance Match Between   Channels ( $\Delta \mathrm{R}_{\mathrm{ON}}$ )   On-Resistance Flatness ( $\mathrm{R}_{\text {FLAT(ON) }}$ )	$\begin{aligned} & 7 \\ & 11 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 12 \\ & 0.4 \\ & 1 \\ & 3 \end{aligned}$	V   $\Omega$ typ   $\Omega$ max   $\Omega$ typ   $\Omega$ max   $\Omega$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} ; \\ & \text { Test Circuit } 1 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS   Source OFF Leakage $I_{S}$ (OFF)   Drain OFF Leakage $I_{D}$ (OFF) ADG725   ADG731   Channel ON Leakage $I_{D}, I_{S}(O N)$ ADG725 ADG731	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.05 \\ & \pm 0.5 \\ & \pm 1 \\ & \pm 0.05 \\ & \pm 0.5 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 2.5 \\ & \pm 5 \\ & \pm 2.5 \\ & \pm 5 \end{aligned}$	nA typ $n A \max$ nA typ nA max $n A \max$ nA typ nA max nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} \end{aligned}$   Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V}$   Test Circuit 3 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=+1 \mathrm{~V} \text { or }+3 \mathrm{~V} \text {; }$   Test Circuit 4
DIGITAL INPUTS   Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL   Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$   $\mathrm{C}_{\mathrm{IN}}$, Digital Input Capacitance	$0.005$	$\begin{array}{r} 2.0 \\ 0.8 \\ \\ \pm 0.1 \end{array}$	V min   V max   $\mu \mathrm{A}$ typ   $\mu \mathrm{A} \max$   pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$   $\mathrm{t}_{\text {TRANSITION }}$   Break-Before-Make Time Delay, $\mathrm{t}_{\mathrm{D}}$   Charge Injection   Off Isolation   Channel to Channel Crosstalk   -3 dB Bandwidth ADG725   ADG731   $\mathrm{C}_{\mathrm{S}}$ (OFF)   $\mathrm{C}_{\mathrm{D}}$ (OFF)   ADG725   ADG731   $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$   ADG725   ADG731		75	ns typ   ns max   ns typ   ns min   pC typ   dB typ   dB typ   MHz typ   MHz typ   pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text { Test Circuit } 5 \\ & \mathrm{~V}_{\mathrm{S} 1}=2 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 32}=0 \mathrm{~V} / 2 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}, \text { Test Circuit } 6 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \\ & \text { Test Circuit } 7 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { Test Circuit } 8^{\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;} \\ & \text { Test Circuit } 9 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \text { Test Circuit } 10 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS $\mathrm{I}_{\mathrm{DD}}$	10	20	$\mu \mathrm{A}$ typ   $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or }+3.3 \mathrm{~V} \end{aligned}$

[^2]
## ADG725/ADG731-SPECIFICATIONS ${ }^{1}$ Dual Supply <br> $\left(\mathrm{V}_{D D}=+2.5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=-2.5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}\right.$, unless otherwise noted)



## NOTES

${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

## TIMINGCHARACTERISTICS ${ }^{1,2}$

Parameter	Limit at $\mathbf{T}_{\text {MIN }}, \mathbf{T}_{\text {MAX }}$	Units	Conditions/Comments
$\mathrm{t}_{1}$	33	ns min	SCLK Cycle time
$\mathrm{t}_{2}$	13	ns min	SCLK High Time
$\mathrm{t}_{3}$	13	ns min	SCLK Low Time
$\mathrm{t}_{4}$	13	ns min	SYNC to SCLK falling edge setup time
$\mathrm{t}_{5}$	40	ns min	Minimum SYNC low time
$\mathrm{t}_{6}$	5	ns min	Data Setup Time
$\mathrm{t}_{7}$	4.5	ns min	Data Hold Time
$\mathrm{t}_{8}$	33	ns min	Minimum SYNC high time

NOTES
${ }^{1}$ See Figure 1.
${ }^{2}$ All input signals are specified with $\operatorname{tr}=\mathrm{tf}=5 \mathrm{~ns}\left(10 \%\right.$ to $90 \%$ of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$.
Specifications subject to change without notice.


Figure 1. 3-Wire Serial Interface Timing Diagram.


Figure 2. ADG725 Input Shift Register Contents


Figure 3. ADG731 Input Shift Register Contents

## ADG725/ADG731

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$
( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
$\mathrm{V}_{\mathrm{DD}}$ to $\mathrm{V}_{\mathrm{SS}} \quad+7 \mathrm{~V} \quad 48$ lead CSP $\theta_{\mathrm{JA}}$ Thermal Impedance
$\mathrm{V}_{\mathrm{DD}}$ to GND
$\mathrm{V}_{\mathrm{SS}}$ to GND
Analog Inputs ${ }^{2}$
Digital Inputs ${ }^{2}$
$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{Vor}$
30 mA , Whichever Occurs First
-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or
30 mA , Whichever Occurs First
Peak Current, S or D 60 mA
(Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max)
Continuous Current, S or D 30 mA
Operating Temperature Range
Industrial (B Version)
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

IR Reflow, Peak Temperature $+220^{\circ} \mathrm{C}$ NOTES
${ }^{1}$ Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2}$ Overvoltages at SCLK, $\overline{\text { SYNC }}, \mathrm{DIN}, \overline{\mathrm{RS}}, \mathrm{S}$ or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG725/ADG731 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG725BCP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Chip Scale Package (CSP)	$\mathrm{CP}-48$
ADG725BSU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Quad Flatpack	SU-48
ADG731BCP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Chip Scale Package (CSP)	$\mathrm{CP}-48$
ADG731BSU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Quad Flatpack	SU-48

## ADG725/ADG731

## PIN FUNCTION DESCRIPTION

ADG725	ADG731	Mnemonic	Function
		SCLK	Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. These devices can accomodate serial input rates of up to 30 MHz .
		$\overline{\mathrm{R}} \overline{\mathrm{S}}$	Active low control input that clears the input register and turns all switches to the OFF condition.
		DIN	Serial Data Input. Data is clocked into the 8 -bit input register on the falling edge of the serial clock input.
		SXX	Source. May be an input or output.
		DX	Drain. May be an input or output.
		$\mathrm{V}_{\mathrm{DD}}$	Power Supply Input. These parts can be operated from a supply of +1.8 V to +5.5 V and dual supply of $+/-2.5 \mathrm{~V}$.
		GND	Ground reference.
		$\overline{\mathrm{S}} \overline{\mathrm{Y}} \overline{\mathrm{N}} \overline{\mathrm{C}}$	Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC goes low, it powers on the SCLK and DIN buffers and the input shift register is enabled. An 8 -bit counter is also enabled. Data is transferred on the falling edges of the following clocks. After 8 falling clock edges, switch conditions are automaticaly updated. $\overline{\text { SYNC may be used to frame the signal, or just pulled low }}$ for a short period of time to enable the counter and input buffers.

## PIN CONFIGURATIONS CSP \& TQFP



## ADG725/ADG731

Table 1. ADG725 Truth Table

A3	A2	A1	A0	$\overline{\mathrm{E}} \overline{\mathrm{N}}$	$\overline{\mathrm{C}} \overline{\mathrm{S}} \overline{\mathrm{A}}$	$\overline{\mathrm{C}} \overline{\mathrm{S}} \overline{\mathrm{B}}$	Switch Condition
X	X	X	X	X	1	1	Retains previous switch condition
X	X	X	X	1	1	1	All Switches OFF
0	0	0	0	0	0	0	S1A - DA, S1B - DB
0	0	0	1	0	0	0	S2A - DA, S2B - DB
0	0	1	0	0	0	0	S3A - DA, S3B - DB
0	0	1	1	0	0	0	S4A - DA, S4B - DB
0	1	0	0	0	0	0	S5A - DA, S5B - DB
0	1	0	1	0	0	0	S6A - DA, S6B - DB
0	1	1	0	0	0	0	S7A - DA, S7B - DB
0	1	1	1	0	0	0	S8A - DA, S8B - DB
1	0	0	0	0	0	0	S9A - DA, S9B - DB
1	0	0	1	0	0	0	S10A - DA, S10B - DB
1	0	1	0	0	0	0	S11A - DA, S11B - DB
1	0	1	1	0	0	0	S12A - DA, S12B - DB
1	1	0	0	0	0	0	S13A - DA, S13B - DB
1	1	0	1	0	0	0	S14A - DA, S14B - DB
1	1	1	0	0	0	0	S15A - DA, S15B - DB
1	1	1	1	0	0	0	S16A - DA, S16B - DB

Table 2. ADG731 Truth Table

$\mathbf{A 4}$	$\mathbf{A 3}$	$\mathbf{A} \mathbf{2}$	$\mathbf{A} \mathbf{1}$	$\mathbf{A} \mathbf{0}$	$\overline{\mathrm{E}} \overline{\mathrm{N}}$	$\overline{\mathrm{C}} \overline{\mathrm{S}}$	Switch Condition
X	X	X	X	X	X	1	Retains previous switch condition
X	X	X	X	X	1	1	All Switches OFF
0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	2
0	0	0	1	0	0	0	3
0	0	0	1	1	0	0	4
0	0	1	0	0	0	0	5
0	0	1	0	1	0	0	6
0	0	1	1	0	0	0	7
0	0	1	1	1	0	0	8
0	1	0	0	0	0	0	9
0	1	0	0	1	0	0	10
0	1	0	1	0	0	0	11
0	1	0	1	1	0	0	12
0	1	1	0	0	0	0	13
0	1	1	0	1	0	0	14
0	1	1	1	0	0	0	15
0	1	1	1	1	0	0	16
1	0	0	0	0	0	0	17
1	0	0	0	1	0	0	18
1	0	0	1	0	0	0	19
1	0	0	1	1	0	0	20
1	0	1	0	0	0	0	21
1	0	1	0	1	0	0	22
1	0	1	1	0	0	0	23
1	0	1	1	1	0	0	24
1	1	0	0	0	0	0	25
1	1	0	0	1	0	0	26
1	1	0	1	0	0	0	27
1	1	0	1	1	0	0	28
1	1	1	0	0	0	0	29
1	1	1	0	1	0	0	30
1	1	1	1	0	0	0	31
1	1	1	1	1	0	0	32
$\mathrm{X}=$	Don't	Care					
0							

## ADG725/ADG731

## TERMINOLOGY

$\mathrm{V}_{\mathrm{DD}}$	Most positive power supply potential.
$\mathrm{V}_{\text {SS }}$	Most Negative power supply in a dual supply application. In single supply applications, connect to GND.
$\mathrm{I}_{\mathrm{DD}}$	Positive supply current.
$\mathrm{I}_{\text {SS }}$	Negative supply current.
GND	Ground (0 V) reference.
S	Source terminal. May be an input or output.
D	Drain terminal. May be an input or output.
IN	Logic control input.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog voltage on terminals $\mathrm{D}, \mathrm{S}$
$\mathrm{R}_{\text {ON }}$	Ohmic resistance between D and S.
$\Delta \mathrm{R}_{\text {ON }}$	On resistance match between any two channels, i.e. $\mathrm{R}_{\mathrm{ON}} \mathrm{max}-\mathrm{R}_{\mathrm{ON}} \mathrm{min}$
$\mathrm{R}_{\text {FLAT(ON) }}$	Flatness is defined as the difference between the maximum and minimum value of on-resistance as mea sured over the specified analog signal range.
$\mathrm{I}_{\text {S }}$ (OFF)	Source leakage current with the switch "OFF."
$\mathrm{I}_{\mathrm{D}}$ (OFF)	Drain leakage current with the switch "OFF."
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	Channel leakage current with the switch "ON."
$\mathrm{V}_{\text {INL }}$	Maximum input voltage for logic " 0 ".
$\mathrm{V}_{\text {INH }}$	Minimum input voltage for logic " 1 ".
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$	Input current of the digital input.
$\mathrm{C}_{\mathrm{S}}$ (OFF)	"OFF" switch source capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}$ (OFF)	"OFF" switch drain capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	"ON" switch capacitance. Measured with reference to ground.
$\mathrm{C}_{\text {IN }}$	Digital input capacitance.
$\mathrm{t}_{\text {Transition }}$	Delay time measured between the $50 \%$ and $90 \%$ points of the SYNC and the switch "ON" condi tion when switching from one address state to another.
topen	"OFF" time measured between the $80 \%$ points of both switches when switching from one address state to another.
Charge   Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Crosstalk	A measure of unwanted signal is coupled through from one channel to another as a result of parasitic capacitance.
On Response	The Frequency response of the "ON" switch.
Insertion Loss	The loss due to the ON resistance of the switch.

## ADG725/ADG731

## TYPICAL PERFORMANCE CHARACTERISTICS



TPC 1. On Resistance vs. $V_{D}\left(V_{S}\right)$ for for Single Supply


TPC 2. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Dual Supply


TPC 3. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply


TPC 4. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply


TPC 5. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply


TPC 6. Leakage Currents vs. $V_{D}\left(V_{S}\right)$


TPC 7. Leakage Currents vs. $V_{D}\left(V_{S}\right)$


TPC 8. Leakage Currents vs. $V_{D}\left(V_{S}\right)$


TPC 9. Leakage Currents vs. Temperature


TPC 10. Leakage Currents vs. Temperature


TPC 11. Supply Currents vs. Input Switching Frequency


TPC 12. Charge Injection vs. Source

Voltage
TBD

TBD


TPC 13. $T_{\text {ON }} / T_{\text {OFF }}$ Times vs. Temperature


TPC 14. Off Isolation vs. Frequency


TPC 15. Crosstalk vs. Frequency


TPC 16. On Response vs. Frequency

## ADG725/ADG731

## GENERAL DESCRIPTION

The ADG725 and ADG731 are serially controlled, 32 channel and dual/differential 16 channel multiplexers respectively.

POWER ON RESET
On power up of the device, all switches will be in the OFF condition and the internal shift register is filled with zeros and will remain so until a valid write takes place.

## SERIAL INTERFACE

The ADG725 and ADG731 have a three wire serial interface ( $\overline{\text { SYNC }}$, SCLK, and DIN), which is compatible with SPI, QSPI, MICROWIRE interface standards and most DSP's. Figure 1 shows the timing diagram of a typical write sequence.
Data is written to the 8 -bit shift register via DIN under the control of the $\overline{\text { SYNC }}$ and SCLK signals.
When $\overline{\text { SYNC }}$ goes low, the input shift register is enabled. An 8 -bit counter is also enabled. Data from DIN is clocked into the shift register on the falling edge of SCLK. Figures $2 \& 3$ show the contents of the input shift registers for these devices. When the part has received eight clock cycles after $\overline{\text { SYNC }}$ has been pulled low, the switches are automatically updated with the new configuration and the input shift register is disabled. With SYNC held high, any further data or noise on the DIN line will have no effect on the shift register.
The ADG725 $\overline{\mathrm{CSA}}$ and $\overline{\mathrm{CSB}}$ data bits allow the user the flexibility to change the configuration of either or both banks of the multiplexer.

## ADG725/ADG731

## Test Circuits



Test Circuit 1. On Resistance.


Test Circuit 2. $I_{s}$ (OFF).

* SIMILAR CONNECTION FOR ADG725


Test Circuit 3. $I_{D}$ (OFF)


Test Circuit 4. $I_{D}(O N)$


Test Circuit 5. Switching Time of Multiplexer, $t_{\text {TRANSITION }}$.


Test Circuit 6. Break Before Make Delay, $t_{\text {OPEN }}$.

## ADG725/ADG731



## SYNC

$\qquad$

*SIMILAR CONNECTION FOR ADG725
Test Circuit 7. Charge Injection.


Test Circuit 8. OFF Isolation
*SIMILAR CONNECTION FOR ADG725

Test Circuit 10. Bandwidth



Test Circuit 9. Channel-to-Channel Crosstalk.

## OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

48-Lead CSP
(CP-48)


48-Lead TQFP
(SU-48)



[^0]:    Information furnished by Analog Devices is believed to be accurate and

[^1]:    NOTES
    ${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design, not subject to production test.
    Specifications subject to change without notice.

[^2]:    NOTES
    ${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design, not subject to production test.
    Specifications subject to change without notice.

