Preliminary Technical Data

FEATURES

Single-ended-to-differential converter

Ultralow distortion
120 dBc THD @ 10 kHz

Low noise

97 dB SNR @ $100 \mathrm{kHz}, \mathrm{V}_{\mathrm{o}}=4 \mathrm{~V}$ p-p
Extremely low power
2.1 mA (3 V supply)

High input impedance
Easy-to-use gain adjustment
No external components for $\mathbf{G}=+2$
External resistors can be used for additional gain
High speed
$32 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth ($\mathbf{G}=+2$)
Fast settling time
Rail-to-rail output
Disable
Wide supply voltage range: 2.7 V to 12 V

APPLICATIONS

Single supply data acquisition systems
Instrumentation
Process control
Battery-power systems
Medical instruments

GENERAL DESCRIPTION

The ADA4941-1 is a low power, differential driver for 16 - to 18 bit ADCs. Configured in an easy-to-use, single-ended-todifferential $G=+2$ configuration, the ADA4941-1 requires no external components to drive ADCs with differential inputs provided that the IN- pin is tied to the OUT+ pin. A resistive network around the IN- pin can be used for additional gain as needed. The ADA4941-1 provides essential benefits, such as low distortion and high SNR, that are required for driving high resolution ADCs.

With a wide input voltage range (0 V to 4 V on a single 5 V supply), rail-to-rail output, and high input impedance, the ADA4941-1 is designed to drive single-supply ADCs found in a variety of low power applications, including battery-operated instruments and single-supply data acquisition systems.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The ADA4941-1 is manufactured on ADI's proprietary $2^{\text {nd }}$ generation XFCB process that enables the single-ended-todifferential converter to achieve 18-bit performance using only 2.1 mA of supply current.

The ADA4941-1 is ideal for driving 16- to 18-bit differential PulSAR ${ }^{m i}$ ADCs such as the AD7690 and AD7691.

The ADA4941-1 is available in a small 8 lead LFCSP packaging as well as 8 -lead SOIC packaging. The ADA4941-1 is rated to work over the extended industrial temperature range, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features \qquad
.. 1
Applications. .. 1

Functional Block Diagram .. 1
General Description .. 1

REVISION HISTORY

10/05-Revision PrA: Preliminary Version

Specifications
.. 3

Outline Dimensions ... 6
Ordering Guide .. 6

SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Overdrive Recovery Time Slew Rate Settling Time 0.0004\%	$\begin{aligned} & \mathrm{V}_{\mathrm{o}}=0.1 \mathrm{~V} \text { p-p } \\ & \mathrm{V}_{\mathrm{o}}=2.0 \mathrm{~V} \text { p-p } \\ & \mathrm{V}_{\mathrm{o}}=2 \mathrm{~V} \text { step } \\ & \mathrm{V}_{\mathrm{o}}=2 \mathrm{~V} \text { p-p step } \end{aligned}$		$\begin{aligned} & 30 \\ & 6.6 \\ & 300 \\ & 22.5 \\ & 0.3 \end{aligned}$		MHz MHz ns $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{s}$
NOISE/DISTORTION PERFORMANCE THD SNR RTO Voltage Noise Input Current Noise	$\begin{aligned} & \mathrm{f}_{\mathrm{c}}=10 \mathrm{kHz}, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{~V} p-\mathrm{p} \\ & \mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{f}_{\mathrm{c}}=100 \mathrm{kHz}, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 105 \\ & 57 \\ & 91 \\ & 1 \end{aligned}$		dBc dBc dB $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE Differential Input Offset Voltage Differential Input Offset Voltage Drift Common-Mode Offset Voltage Common-Mode Offset Voltage Drift Input Bias Current Input Offset Current Gain Gain Error Gain Error Drift	IN and REF IN and REF (+OUT - -OUT)/(IN - REF)		$\begin{aligned} & 0.2 \\ & \\ & 2.2 \\ & 0.2 \\ & 2 \\ & 0.1 \\ & 0.01 \end{aligned}$. 5	mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ V/V \% $\% /{ }^{\circ} \mathrm{C}$
INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio	IN and REF IN and REF $V_{\text {cм }}= \pm 2.5 \mathrm{~V}$	0.1	$\begin{aligned} & 12 \\ & 2 \\ & 110 \end{aligned}$	2	$\mathrm{M} \Omega$ pF V dB
OUTPUT CHARACTERISTICS Output Voltage Swing: VON VOP Output Current Capacitive Load Drive	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \\ & R_{L}=1 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & 0.1 \text { to } 2.9 \\ & 0.1 \text { to } 2.9 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \\ & \mathrm{pF} \end{aligned}$
POWER SUPPLY Operating Range Quiescent Current Quiescent Current—Disable Power Supply Rejection Ration $\begin{aligned} & + \text { +PSRR } \\ & \text {-PSRR } \end{aligned}$		2.7	2.1 30 110 110	12	V mA $\mu \mathrm{A}$ dB dB
DISABLE $V_{\text {DIS }} H i g h$ Vis Low Input Current $\mathrm{V}_{\mathrm{DIS}}=\mathrm{HIGH} / \mathrm{LOW}$ Turn-On Time Turn-Off Time			$\begin{aligned} & 1.8 \\ & 1.6 \\ & 5 / 10 \\ & 30 \\ & 0.65 \end{aligned}$		$\begin{aligned} & V \\ & V \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Overdrive Recovery Time Slew Rate Settling Time 0.0004\%	$\begin{aligned} & \mathrm{V}_{\mathrm{o}}=0.1 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{o}}=2.0 \mathrm{Vp}-\mathrm{p} \end{aligned}$ 0 V to 5 V step overdrive $\mathrm{V}_{\mathrm{o}}=2 \mathrm{~V}$ step $\mathrm{V}_{\mathrm{o}}=6 \mathrm{~V}$ p-p step		$\begin{aligned} & 31 \\ & 7.0 \\ & 350 \\ & 25 \\ & 610 \end{aligned}$		MHz MHz ns V/ $\mu \mathrm{s}$ ns
NOISE/DISTORTION PERFORMANCE THD SNR RTO Voltage Noise Input Current Noise	$\begin{aligned} & \mathrm{f}_{\mathrm{c}}=10 \mathrm{kHz}, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{~V} \mathrm{p}-\mathrm{p} \\ & \mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{~V} \mathrm{p}-\mathrm{p} \\ & \mathrm{f}_{\mathrm{c}}=100 \mathrm{kHz}, \mathrm{~V}_{\mathrm{o}}=4 \mathrm{Vp}-\mathrm{p}, \mathrm{fb}=2 \mathrm{MHz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 120 \\ & 72 \\ & 97 \end{aligned}$		dBc dBc dB $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE Differential Input Offset Voltage Differential Input Offset Voltage Drift Common-Mode Offset Voltage Common-Mode Offset Voltage Drift Input Bias Current Input Offset Current Gain Gain Error Gain Error Drift	IN and REF IN and REF (OUT+- OUT-)/(IN+ - REF)		0.2 0.1 2.2 0.2 2 0.1 0.01	.5 .25	mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ V/V \% $\% /{ }^{\circ} \mathrm{C}$
INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio	IN and REF IN and REF $\mathrm{V}_{\mathrm{cm}}= \pm 2.5 \mathrm{~V}$	0.1	$\begin{aligned} & 12 \\ & 2 \\ & 110 \end{aligned}$	4	$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{pF} \\ & \mathrm{~V} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS Output Voltage Swing: OUTOUT+ Output Current Capacitive Load Drive	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \\ & R_{L}=1 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & 0.1 \text { to } 4.9 \\ & 0.1 \text { to } 4.9 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \\ & \mathrm{pF} \end{aligned}$
POWER SUPPLY Operating Range Quiescent Current Quiescent Current-Disable Power Supply Rejection Ration $\begin{aligned} & + \text { +PSRR } \\ & \text {-PSRR } \end{aligned}$		2.7	2.2 40 110 110	12	V mA $\mu \mathrm{A}$ dB dB
DISABLE $V_{\text {DIS }}$ High VIIS Low Input Current V $_{\text {DIS }}=$ HIGH/LOW Turn-On Time Turn-Off Time			$\begin{aligned} & 3.8 \\ & 3.6 \\ & 5 / 12 \\ & 30 \\ & 0.65 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$

ADA4941-1
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vs}= \pm 5 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Overdrive Recovery Time Slew Rate Settling Time 0.0005\%	$\begin{aligned} & \mathrm{V}_{\mathrm{o}}=0.1 \mathrm{~V} \text { p-p } \\ & \mathrm{V}_{\mathrm{o}}=2.0 \mathrm{~V} \text { p-p } \\ & -5 \mathrm{~V} \text { to }+5 \mathrm{~V} \text { step overdrive } \\ & \mathrm{V}_{0}=2 \mathrm{~V} \text { step } \\ & \mathrm{V}_{0}=12 \mathrm{~V} \text { p-p step } \\ & \hline \end{aligned}$		$\begin{aligned} & 32.5 \\ & 7.5 \\ & 400 \\ & 26.5 \\ & 980 \end{aligned}$		MHz MHz ns V/ $\mu \mathrm{s}$ ns
NOISE/DISTORTION PERFORMANCE THD SNR RTO Voltage Noise Input Current Noise	$\begin{aligned} & \mathrm{f}_{\mathrm{c}}=10 \mathrm{kHz}, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{~V} \mathrm{p}-\mathrm{p} \\ & \mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{~V} \mathrm{p}-\mathrm{p} \\ & \mathrm{f}_{\mathrm{c}}=100 \mathrm{kHz}, \mathrm{~V}_{\mathrm{o}}=4 \mathrm{Vp}-\mathrm{p}, \mathrm{fb}=2 \mathrm{MHz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz}, \mathrm{IN}+\text { and REF } \end{aligned}$		$\begin{aligned} & 120 \\ & 74 \\ & 97 \end{aligned}$		dBc dBc dB $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE Differential Input Offset Voltage Differential Input Offset Voltage Drift Common-Mode Offset Voltage Common-Mode Offset Voltage Drift Input Bias Current Input Offset Current Gain Gain Error Gain Error Drift	IN+ and REF IN+ and REF (OUT+ - OUT-)/(IN+ - REF)		$\begin{aligned} & 0.2 \\ & 0.1 \\ & 2.2 \\ & 0.2 \\ & 2 \\ & 0.1 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.25 \end{aligned}$	mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ V/V \% $\% /{ }^{\circ} \mathrm{C}$
INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio	IN+ and REF IN+ and REF $\mathrm{V}_{\mathrm{cm}}= \pm 2.5 \mathrm{~V}$	-4.9	$\begin{aligned} & 12 \\ & 2 \\ & 110 \end{aligned}$	+4	$\mathrm{M} \Omega$ pF V dB
OUTPUT CHARACTERISTICS Output Voltage Swing: OUTOUT+ Output Current Capacitive Load Drive	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \\ & R_{L}=1 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & -4.9 \text { to }+4.9 \\ & -4.9 \text { to }+4.9 \\ & 40 \end{aligned}$		V V mA pF
POWER SUPPLY Operating Range Quiescent Current Quiescent Current—Disable Power Supply Rejection Ration $\begin{aligned} & + \text { +PSRR } \\ & \text {-PSRR } \end{aligned}$		2.7	$\begin{aligned} & 2.5 \\ & 50 \\ & \\ & 110 \\ & 110 \end{aligned}$	12	V mA $\mu \mathrm{A}$ dB dB
DISABLE $V_{\text {DIS }}$ High Vois Low Input Current $\mathrm{V}_{\text {DIS }}=\mathrm{HIGH} / \mathrm{LOW}$ Turn-On Time Turn-Off Time			$\begin{aligned} & 3.8 \\ & 3.6 \\ & 5 / 16 \\ & 30 \\ & 0.65 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$

OUTLINE DIMENSIONS

Figure 1. 8-Lead Standard Small Outline Package Narrow Body [SOIC] (R-8)—Dimensions shown in millimeters and (inches)

Figure 2. 8-Lead Lead Frame Chip Scale Package [LFCSP], $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body (CP-8-2)—Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADA4941-1YRZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Small Outline Package (SOIC)	R-8	
ADA4941-1YRZ-RL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Small Outline Package (SOIC)	R-8	
ADA4941-1YRZ-R71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Small Outline Package (SOIC)	R-8	
ADA4941-1YCPZ-R2 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Lead Frame Chip Scale Package (LFCSP)	CP-8-2	H9C
ADA4941-1YCPZ-RL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Lead Frame Chip Scale Package (LFCSP)	CP-8-2	H9C
ADA4941-1YCPZ-R71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Lead Frame Chip Scale Package (LFCSP)	CP-8-2	H9C

${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

