16-BitSigma Delta ADC with Current Sources, Switchable Reference Inputs and I/OPort

Preliminary Technical Data

FEATURES

16-BIT SINGLE CHANNEL SIGMA DELTA-ADC
Factory Calibrated (field calibration not required)
Output settles in one conversion cycle (single conver
sion mode)
Programmable Gain Front End
16-bit No Missing Codes
13-bit Pk-Pk Resolution @ 20Hz, 20mV Range
16-bit Pk-PK Resolution @ 20Hz, 2.56V Range
INTERFACE
Three-Wire Serial
SPI ${ }^{\text {TM }}$, QSPI $^{\text {TM }}$, MICROWIRE ${ }^{\text {TM }}$ and DSP Compatible
Schmitt Trigger on SCLK
POWER
Specified for Single 3V and 5V operation
Normal : 2mA @ 3V
Powerdown : 20uA (32kHz Crystal Running)
On-ChipFunctions
Rail-to-Rail Input Buffer and PGA
Switchable Reference Inputs
3 Configurable Current Sources
Low Side Power Swtches
Digital I/O Port

GENERAL DESCRIPTION

The AD7709 is a complete analog front-end for low frequency measurement applications. The AD 7709 contains a 16-bit sigma delta ADC with PGA and can be configured as 2 fully-differential input channels or 4 pseudo-differential input channels. Inputs signal ranges from 20 mV to 2.56 V can be directly converted using the AD7709. These signals can be converted directly from a transducer without the need for signal conditioning. Other on-chip features include three software configurable current sources, switchable reference inputs, low side power switches and a 4-bit digital I/O port.

The device operates from a 32 kHz crystal with an onboard PLL generating the required internal operating frequency. The output data rate from the part is software programmable. The pk-pk resolution from the part varies with the programmed gain and output data rate.
The part operates from a single +3 V or +5 V supply. When operating from +3 V supplies, the power dissipation for the part is XmW . The AD 7709 are housed in a 24 pin SOIC and TSSOP packages.

APPLICATIONS
Industrial Process Control Instrumentation Pressure Transducers Portable Instrumentation

FUNCTIONAL BLOCK DIAGRAM

(®) SPland QSPI are a Registered Trademark of Motorola Inc.
® MICROWIRE is a Registered Trademark of National Semiconductor Corp.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/ 329-4700 World Wide Web Site: http:// www.analog.com Fax: 781/326-8703
© Analog Devices, Inc., 2001

All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted.)

PARAMETER	B Grade	Units	Test Conditions
Output Update Rate	$\begin{aligned} & 5.4 \\ & 105 \end{aligned}$	Hz min. Hz max.	0.021 Hz (0.732msec.) increments
No Missing Codes	16	bits min.	
Resolution	13	bits pk-pk	+20 mV range, 20 Hz Update Rate
	16	bits pk-pk	+2.56 V range, 20 Hz Update Rate
Output Noise and Update Rates	See Tables Below in ADC Description		
Integral N onlinearity	15	ppm of FSR max.	
Offset Error	TBD		
Offset Error Drift Vs Temp	10	nV/ ${ }^{\circ} \mathrm{C}$ typ.	
Offset Error Drift Vs Time	TBD	$n \mathrm{~V} / 1000$ H ours typ.	
Gain Error	TBD		
Gain Error Drift Vs Temp	1	ppm/ ${ }^{\circ} \mathrm{C}$ typ.	
Gain Error Drift Vs Time	TbD	ppm/1000 Hours typ.	
Power Supply Rejection(PSR)	90	dB min .	Input Range $= \pm 20 \mathrm{mV}$
	90	dB min.	Input Range $= \pm 2.56 \mathrm{~V}$
Common Mode Rejection(CMR)			
On AIN	90	dB min.	At DC, Range $= \pm 20 \mathrm{mV}$
On AIN	90	dB min.	At DC, Range $= \pm 2.56 \mathrm{~V}$
On REFIN	90	dB min.	At DC, Range $= \pm 20 \mathrm{mV}$
On REFIN	90	dB min.	At DC, Range $= \pm 2.56 \mathrm{~V}$
Analog Input Current			
DC Bias Current	1		
DC Bias Current Drift	TBD	nA typ.	
DC Offset Current	TBD	nA typ.	
DC Offset Current Drift	TBD	nA typ.	

REFERENCE INPUTS (REFIN1\& REFIN2) N ormal M ode			
$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ Rejection	60	dB min	
Reference DC Input Current	TBD	$\mu \mathrm{A}$ typ.	
REFIN(+) to REFIN (-) Voltage	$+2.5 \mathrm{~V}$	nom.	REFIN referes to both REFIN1 and REFIN2
REFIN (+) to REFIN(-) Range	+1	$\checkmark \mathrm{min}$.	
	$V_{\text {D }}$	\checkmark max.	
REFIN Common M ode Range	GND-30mV	\checkmark min.	
	$\mathrm{V}_{\mathrm{DD}}+30 \mathrm{mV}$	\checkmark max.	
REFIN Common Mode 50/60H z Rejection	TBD	dB min	

ANALOG INPUTS			
Normal M ode $50 \mathrm{Hz/60Hz}$ Rejection	60	dB min.	$50 / 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}, 20 \mathrm{~Hz}$ Update Rate
Common Mode $50 / 60 \mathrm{~Hz}$ Rejection	90	dB min.	$50 / 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$, Range $= \pm 20 \mathrm{mV}$
	90	dB min.	$50 / 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$, Range $= \pm 2.5 \mathrm{~V}$
Differential Input Voltage Ranges			
	\pm REFIN/GAIN	V nom.	REFIN refers to both REFIN1 and REFIN 2. REFIN =REFIN(+)-REFIN(-) GAIN $=1$ to 128 .
Pseudo-Differential Input Voltage Ranges			
OV to REFIN/GAIN V nom.			
Absolute Ain Voltage Limits			
Buffered Inputs	GND +50 mV	\checkmark min.	
	$\mathrm{V}_{\text {DD }}-50 \mathrm{mV}$	\checkmark max	
Unbuffered Inputs	GND-30mV	V min	
	$\mathrm{V}_{\text {D }}+30 \mathrm{mV}$	\checkmark max	

AD7709

PARAMETER	B Grade	Units	TestConditions
Power Supply Currents			
$V_{\text {DD }}$ Current (Normal M ode)	TBD	mA	$V_{\text {D }}=3 \mathrm{~V}$
$V_{\text {DD }}$ C urrent (N ormal M ode)	TBD	mA	$V_{D D}=5 \mathrm{~V}$
$V_{\text {DD }}$ Current (Idle M ode)	TBD	mA	$V_{D D}=3 \mathrm{~V}$
$V_{\text {D }}$ Current (Idle M ode)	TBD	mA	$V_{D D}=5 \mathrm{~V}$
$V_{\text {D }}$ Current (Power-Down M ode)	20	$\mu \mathrm{A}$ max.	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, 32.768 \mathrm{kHz}$ Osc. Running
$V_{\text {DD }}$ Current (Power-Down M ode)	30	$\mu \mathrm{A}$ max.	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, 32.768 \mathrm{kHz}$ Osc. Running
NOTES ${ }^{1} \mathrm{~T}$ emperatureR ange $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

eference Input Voltage to GND......-0.3V to $\mathrm{V}_{\text {DD }}+0.3 \mathrm{~V}$
AIN/REFIN Current (Indefinite).........................30mA
Digital Input Voltage to GND.......... 0.3 V to $\mathrm{V}_{\text {DD }}+0.3 \mathrm{~V}$
Digital Output Voltage to GND.......-0.3V to $\mathrm{V}_{\text {D }}+0.3 \mathrm{~V}$
PWRGND to GND...........................0.3V to +0.3 V
Operating Temperature Range............... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range.................... $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Junction Temperature.. $150^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$ Thermal Impedance.................................... $90^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering
Vapor Phase (60sec)................................ $215^{\circ} \mathrm{C}$
frared (15 s

${ }^{1}$ Stresses abovethoselisted under "A bsoluteM aximum R atings" may causepermanent damageto thedevice. T hisisastress rating only and functional operation of thedevice at these or any other conditions above thoselisted in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periodsmay affect devicereliability.

OUTLINE DIMENSIONS

24-lead plastic SOIC (R-24)

24-lead plastic TSSOP (RU-24)

24-lead plastic
 TSSOP (RU-24)

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 7709 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD
 precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Drawing Option
AD 7709BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOIC	$\mathrm{R}-24$
AD 7709BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP	RU-24

unlessotherwisenoted)

Parameter	Limit at $\mathbf{T}_{\text {MIN }}, \mathbf{T}_{\text {MAX }}$ (B Version)	Units	Conditions/Comments
t_{1}	32.768	kHz typ	Crystal Oscillator Frequency.
t_{2}	50	ns min	RESET Pulse Width
Read Operation			
t_{3}	0	$n \mathrm{n}$ min	$\overline{\mathrm{RDY}}$ to $\overline{\mathrm{CS}}$ Setup Time
t_{4}	0	ns min	$\overline{\mathrm{CS}}$ Falling Edge to SCLK Active Edge Setup Time ${ }^{3}$
$t_{5}{ }^{4}$	0	$n \mathrm{n}$ min	SCLK Active Edge to Data Valid Delay ${ }^{3}$
	60	ns max	$\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}$ to +5.5 V
	80	ns max	$\mathrm{V}_{\text {DD }}=+2.7 \mathrm{~V}$ to +3.6 V
$t_{5 A}{ }^{4,5}$	0	ns min	$\overline{\mathrm{CS}}$ Falling Edge to Data Valid Delay ${ }^{3}$
	60	ns max	$V_{D D}=+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}$
	80	ns max	$\mathrm{V}_{\text {DD }}=+2.7 \mathrm{~V}$ to +3.6 V
t_{6}	100	$n \mathrm{n}$ min	SCLK High Pulse Width
t_{7}	100	$n \mathrm{n}$ min	SCLK Low Pulse Width
t_{8}	0	ns min	$\overline{\mathrm{CS}}$ Rising Edge to SCLK Inactive Edge Hold Time ${ }^{3}$
$\mathrm{tg}_{9}{ }^{6}$	10	$n \mathrm{n}$ min	Bus Relinquish Time after SCLK Inactive Edge ${ }^{3}$
	80	ns max	
t_{10}	100	ns max	SCLK Active Edge to $\overline{\mathrm{RDY}}$ High ${ }^{3,7}$
WriteOperation			
t_{11}	0	$n \mathrm{n}$ min	$\overline{\mathrm{CS}}$ Falling Edge to SCLK Active Edge Setup Time ${ }^{3}$
t_{12}	30	$n \mathrm{n}$ min	Data Valid to SCLK Edge Setup Time
t_{13}	25	$n \mathrm{n}$ min	Data Valid to SCLK Edge Hold Time
t_{14}	100	$n \mathrm{n}$ min	SCLK High Pulse Width
t_{15}	100	$n \mathrm{n}$ min	SCLK Low Pulse Width
t_{16}	0	$n \mathrm{n}$ min	$\overline{\mathrm{CS}}$ Rising Edge to SCLK Edge Hold Time

NOTES

${ }^{1}$ Sampletested duringinitial releasetoensurecompliance. All inputsignalsarespecified withtr $=\mathrm{tf}=5 \mathrm{~ns}(10 \% \mathrm{to} 90 \%$ of V $)$ andtimed from avoltagelevel of 1.6 V .
${ }^{2}$ SeeFigures 1 and 2 .
${ }^{3}$ SCLK activeedgeisfallingedgeofSCLK
${ }^{4}$ Thesenumbersaremeasured with theload circuitoff igure3and defined asthetimerequired fortheoutputtocrossthe V_{OL} or $\mathrm{V}_{\text {OH }}$ limits.
${ }^{5}$ Thisspecification only comesinto playifCS goeslow whileSCLK islow. Itisrequired primarilyfor interfacingtoD SP machines.
${ }^{6}$ T hesenumbersarederived from themeasuredtimetaken bythedataoutputtochange 0.5 V whenloaded withthecircuitoff igure3.T hemeasured number isthen extrapolated backtoremoveeffects of chargingor dischargingthe 50 pF capacitor. T hismeansthatthetimesquoted inthetimingcharacteristicsarethetruebusrelinquishtimesofthepartand assuch areindependentofexternal busloadingcapacitances.
${ }^{7}$ RDY returnshighafterthefirstread from thedeviceafteranoutputupdate. T hesamedatacan beread again, ifrequired, whileRDY ishigh, although careshould betakenthatsubsequentreadsdonotoccurcloseto thenextoutputupdate.

Figure 1. Write Cycle Timing Diagram

Figure 2. Read Cycle Timing Diagram

PIN CONFIGURATION

Pin Function Description

Pin No	Mnemonic
1	IOUT1
2	IOUT2
3	REFIN 1 (+)
4	REFIN1(-)
5	AIN 1
6	AIN 2
7	AIN 3/P3
8	AIN 4/P4
9	AINCOM
10	REFIN $2(+)$

Function

Output for internal excitation current sources. A single current source or any combination of the internal current sources $\mathrm{I} 1, \mathrm{I} 2$ and I 3 can be switched to this output.
Output for internal excitation current sources. A single current source or any combination of the internal current sources I1,I2 and I3 can be switched to this output.
Positive reference input. REFIN(+) can lie anywhere between $V_{D D}$ and GND. The nominal reference voltage ($\operatorname{REFIN}(+)$-REFIN $(-)$) is 2.5 V but the part is functional with a reference range from $1 V$ to $V_{D D}$.
Negative reference input. This reference input can lie anywhere between GND and $\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V}$.
Analog Input Channel 1. Programmable-gain analog input which can be used as a pseudo-differential input when used with AINCOM or as the positive input of a fully-differential input pair when used with AIN 2. (see Communications Register section)
Analog Input Channel 2. Programmable-gain analog input which can be used as a pseudo-differential input when used with AINCOM or as the negative input of a fully-differential input pair when used with AIN 1. (see Communications Register section)
Analog Input Channel 3 or Digital Port Bit. Programmable-gain analog input which can be used as a pseudo-differential input when used with AINCOM or as the positive input of a fully-differential input pair when used with AIN 4. The second function of this bit is as a general purpose digital input bit. Analog Input Channel 4 or digital port bit. Programmable-gain analog input which can be used as a pseudo-differential input when used with AINCOM or as the negative input of a fully-differential input pair when used with AIN 3. The second function of this bit is as a general purpose digital input bit. All analog inputs are referenced to this input when configured in pseudo-differential input mode.
Positive reference input. REFIN2(+) can lie anywhere between $V_{D D}$ and GND. The nominal reference voltage (REFIN2(+)-REFIN $2(-)$) is 2.5 V but the part is functional with a reference range from $1 V$ to $V_{D D}$.

11	REFIN2(-)	Negative reference input. This reference input can lie anywhere between GND and $V_{D D}$-1V. P2 can act as a general purpose Input/Output bit referenced between V
12	P2/SW2 and	
GND or as a low-side power switch to PWRGND..		
Ground point for the low-side power switches SW2 and SW1. PWRGND		
must be tied to GND.		
P1 can act as a general purpose Output bit referenced between V		

AD7709

ADC CIRCUIT INFORMATION

Overview

The AD 7709 incorporates an analog multiplexer with a Sigma-Delta ADC, on-chip programmable gain amplifier and digital filtering intended for the measurement of wide dynamic range, low frequency signals such as those in weigh-scale, strain-gauge, pressure transducer or temperature measurement applications. The AD7709 offers 16-bit resolution. The AD 7709 can be configured as 2 fully differential input channels or as 4 pseudo differential input channels referenced to AINCOM. The channel is buffered and can be programmed for one of 8 input ranges from $\pm 20 \mathrm{mV}$ to $\pm 2.56 \mathrm{~V}$. Buffering the input channel means that the part can handle significant source impedances on the analog input and that R, C filtering (for noise rejection or RFI reduction) can be placed on the analog inputs if required. These input channels are intended to convert signals directly from sensors without the need for external signal conditioning. Other functions contained on-chip that augment the operation of the ADC include software configurable current sources, switchable reference inputs and low side power switches.

The ADC employs a sigma-delta conversion technique to realize up to 16 -bits of no missing codes performance. The sigma-delta modulator converts the sampled input signal into a digital pulse train whose duty cycle contains the digital information. A Sinc ${ }^{3}$ programmable low pass filter is then employed to decimate the modulator output data stream to give a valid data conversion result at programmable output rates from $5.35 \mathrm{~Hz}(186.77 \mathrm{mS})$ to 105.03 Hz (9.52 mS). A Chopping scheme is also employed to minimize ADC channel offset errors. A block diagram of the ADC input channel is shown in Figure 3 below.

Figure3. AD7709 ADC ChannelBlock Diagram

ADC NOISE PERFORMANCE

Tables I and II below show the output rms noise and output peak-to-peak resolution in bits (rounded to the nearest 0.5 LSB) for some typical output update rates. The numbers are typical and generated at a differential input voltage of OV. The output update rate is selected via the SF7-SF0 bits in the Filter Register. It is important to note that the peak-to-peak resolution figures represent the resolution for which there will be no code flicker within a six-sigma limit. T he output noise comes from two sources. The first is the electrical noise in the semiconductor devices (device noise) used in the implementation of the modulator. Secondly, when the analog input is converted into the digital domain, quantization noise is added. The device noise is at a low level and is independant of frequency. The quantization noise starts at an even lower level but rises rapidly with increasing frequency to become the dominant noise source.T he numbers in the tables are given for the bipolar input ranges. F or the unipolar ranges the rms noise numbers will be the same as the bipolar range but the peak to peak resolution is now based on half the signal range which effectively means loosing 1 bit of resolution.

Table I. Typical Output RMS Noise vs. Input Range and Update Rate for AD 7709 Output RMS Noise in $\mu \mathrm{V}$

SF Word	Data Update Rate (Hz)	$\pm \mathbf{2 0 m V}$	$\pm 40 \mathrm{mV}$	$\pm 80 \mathrm{mV}$	Input Ra $\pm 160 \mathrm{mV}$	ange $\pm 320 \mathrm{mV}$	$\pm 640 \mathrm{mV}$	$\pm 1.24 \mathrm{~V}$	$\pm 2.56 \mathrm{~V}$
13	105.3	1.50	1.50	1.60	1.75	3.50	4.50	6.70	11.75
69	19.79	0.60	0.65	0.65	0.65	0.65	0.95	1.40	2.30
255	5.35	0.35	0.35	0.37	0.37	0.37	0.51	0.82	1.25

Table II. Peak-to-Peak Resolution vs. Input Range and Update Rate for AD7709 Peak-to-Peak Resolution in Bits

SF Word	Data Update Rate (Hz)	$\pm 20 \mathrm{mV}$	$\pm 40 \mathrm{mV}$	$\pm 80 \mathrm{mV}$	Input Range $\pm 160 \mathrm{mV} \pm 320 \mathrm{mV}$	$\pm 640 \mathrm{mV}$	$\pm 1.24 \mathrm{~V}$	$\pm \mathbf{2 . 5 6 V}$
13	105.3	12	13	14	1515	15.5	16	16
69	19.79	13	14	15	1616	16	16	16
255	5.35	14	15	16	1616	16	16	16

AD7709 ON-CHIP REGISTERS

Both the AD7709 is controlled and configured via 4 on-chip registers as shown in figure 4 and described in more detail in the following section. In the following descriptions, SET implies a logic 1 state and CLEARED implies a logic 0 state unless otherwise stated.

Figure 4. AD7709 On-ChipRegisters

AD7709

Communications Register- ($\mathrm{Al}, \mathrm{AO}=\mathbf{0 , 0}$):

The Communications Register is an 8 -bit write-only register. All communications to the part must start with a write operation to the Communications Register. The data written to the Communications Register determines whether the next operation is a read or write operation, the type of read operation and to which register this operation takes place. For read or write operations, once the subsequent read or write operation to the selected register is complete, the interface returns to where it expects a write operation to the Communications Register. This is the default state of the interface, and on power-up or after a RESET, the AD7709 is in this default state waiting for a write operation to the Communications Register. In situations where the interface sequence is lost, a write operation of at least 32 serial clock cycles with DIN high, returns the AD7709 to this default state by resetting the part. Table III outlines the bit designations for the Communications Register. CRO through CR7 indicate the bit location, CR denoting the bits are in the Communications Register. CR7 denotes the first bit of the data stream.

CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
$\overline{\mathrm{W} \overline{E N}(0)}$	R/ $\overline{\mathrm{V}}(0)$	STBY(0)	OSCPD (0)	$\mathbf{0 (0)}$	$\mathbf{0 (0)}$	A1(0)	A(0)

Table III. Communications Register Bit Designations

Bit Location	Bit Mnemonic	Description
CR7	$\overline{\mathrm{W}} \overline{\mathrm{E}} \overline{\mathrm{N}}$	Write Enable Bit. A 0 must be written to this bit so the write operation to the Communications Register actually takes place. If a 1 is written to this bit, the part will not clock on to subsequent bits in the register. It will stay at this bit location until a 0 is written to this bit. Once a 0 is written to the WEN bit, the next seven bits will be loaded to the Communications Register.
CR6	$\mathrm{R} / \overline{\mathrm{W}}$	A zero in this bit location indicates that the next operation will be a write to a specified register. A one in this position indicates that the next operation will be a read from the designated register.
CR5	ST BY	Standby bit indication. Set when its required to put the AD7709 in low power mode. Clear to power up the AD7709.
CR 4	OSCPD	Oscillator Power Down Bit. If this bit is set, then placing the AD 7709 in standby mode will stop the crystal oscillator reducing the power drawn by these parts to a minimum. The oscillator will require 500 ms to begin oscillating when the ADC is taken out of standby mode. If this bit is cleared the oscillator is not shut off when the ADC is put into standby mode and will not require the 500 ms start-up time when the ADC is taken out of standby.
CR3	0	This bit must be programmed with a logic 0 for correct operation.
CR2	0	This bit must be programmed with a logic 0 for correct operation.
CR1-CR0	A1-A0	Register Address Bits. These address bits are used to address the AD7709's registers and are outlined in table IV.

Table IV. AD7709 Register Selection Table

A1	A0	Register
0	0	Communications register during a write operation.
0	0	Status Register register during a read operation.
0	1	Configuration Register
1	0	Filter register
1	1	ADC Data Register

Status Register - (A1,A0=0,0; Power-On-Reset = 00Hex):

The ADC Status Register is an 8-bit read-only register. To access the ADC Status Register, the user must write to the Communications Register selecting the next operation to be a read and load bits A1-A0 with 0,0 . Table V outlines the bit designations for the Status Register. SRO through SR7 indicate the bit location, SR denoting the bits are in the Status Register. SR7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
RDY(0)	$\mathbf{O (0)}$	$\mathbf{O (0)}$	$\mathbf{O (0)}$	ERR (0)	$\mathbf{O (0)}$	STBY(0)	LOCK(0)

TableV. Status Register Bit Designations

Bit Location	Bit Mnemonic	Description
SR 7	RDY	Ready bit for the ADC Set when data is transferred to the ADC data register. The RDY bit is cleared automatically a period of time before the data register is updated with a new conversion result or after the ADC data register has been read.
SR6	0	Bit is automatically cleared. Reserved for future use
SR5	0	This bit is automatically cleared. Reserved for future use
SR4	0	This bit is automatically cleared. Reserved for future use
SR3	ERR	ADC Error Bit. This qualifying bit is set at the same at the RDY bit. When Set it indicates that the result written to the ADC data register has been clamped to all zeros or all ones. Error sources include Overrange and loss of lock. This bit is Cleared at the same time as the RDY bit.
SR2	0	This bit is automatically cleared. Reserved for future use
SR1	ST BY	Standby bit indication. When Set it indicates that the AD 7709 is in low power mode. Cleared when the ADC is powerd up.
SR0	LOCK	PLL lock status bit. This bit is SET if the PLL has locked onto the 32kHz crystal oscillator clock. The ADC will not start conversion till this bit has been set. If the LOCK bit subsequently goes low the ERR bit will be set.

Configuration Register(CONFIG) :(A1,A0=0,1; Power-On-Reset $=\mathbf{0 0 0 0 0 0 H} \mathbf{~ e x})$

The CONFIG Register is a 24-bit register from which data can either be read or to which data can be written. This register is used to select the input channel and configure the input range, excitation current sources and I/O port.T able XIII outlines the bit designations for this register. CONFIG 24 through CONFIGO indicate the bit location, CONFIG denoting the bits are in the Configuration Register. CONFIG24 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit. A write to the CONFIG register has immediate effect and does not reset the the ADCs. Thus, if a current source is switched while the ADC is converting the user will have to wait for the fullsettling time of the sinc^3 filter before getting a fully settled output. This equates to 4 outputs.

AD7709

CONFIG 23	CONFIG 22	CONFIG 21	CONFIG 20	CONFIG 19	CONFIG 18	CONFIG 17	CONFIG 16
PSW1(0)	PSW2(0)	I3EN1 (0)	I3EN1(0)	I2EN1(0)	I2E NO(0)	IIE N1(0)	IIE NO(0)
CONFIG 15	CONFIG 14	CONFIG 13	CONFIG 12	CONFIG11	CONFIG 10	CONFIG 9	CONFIG 8
P4DIG(0)	P3DIG(0)	P2EN(0)	P1EN(0)	P4DAT(0)	P3DAT(0)	P2DAT(0)	P1DAT(0)
CONFIG 7	CONFIG 6	CONFIG 5	CONFIG 4	CONFIG 3	CONFIG 2	CONFIG 1	CONFIG 0
REFSEL(0)	CH2(0)	CH1(0)	CHO(O)	UNI(0)	RN2(0)	RN1(0)	RNO(0)

Table VI. Configuration Register B it Designations

Bit	Bit	
Location	Mnemonic	Description
CONFIG 23	PSW 1	Power Switch 1 Control bit. Set by user to enable Power switch P1 to PWRGND. Cleared by user to enable use as a standard I/O pin. When ADC is in standby mode the power switches are open.
CONFIG 22	PSW 2	Power Switch 2 Control bit. Set by user to enable Power switch P2 to PWRGND. Cleared by user to enable use as a standard I/O pin. When ADC is in standby mode the power switches are open.
CONFIG 21	I3EN 1	Current Source Enable Bits. Used in conjunction with bit ISENO to determine the function of current source I3
CONFIG 20	I3EN0	Current Source Enable Bits. Used in conjunction with bit I3EN 1 to determine the function of current source I3
CONFIG 19	I2EN 1	Current Source Enable Bits. Used in conjunction with bit I2ENO to determine the function of current source 12
CONFIG 18	I2EN0	Current Source Enable Bits. Used in conjunction with bit I2EN 1 to determine the function of current source 12
CONFIG 17	I1EN 1	Current Source Enable Bits. Used in conjunction with bit IIENO to determine the function of current source I3
CONFIG 16	I1EN 0	Current Source Enable Bits. Used in conjunction with bit IIEN1 to determine the function of current source 13
CONFIG 15	P4DIG	Digital Input Enable Set by user to enable P4 as a digital input Cleared by user to configure as pin P4/AIN 4 as analog input.

CONFIG 14	P3DIG	Digital Input Enable Set by user to enable P3 as a digital input Cleared by user to configure as pin P3/AIN3 as analog input. The default configuration is analog input.
CONFIG 13	P2EN	P2 digital output enable bit. Set by user to enable P2 as a regular digital output pin. Cleared by user to tristate P2 output. PSW2 takes presedance over P2EN.
CONFIG 12	P1EN	P1 digital output enable bit. Set by user to enable P1 as a regular digital output pin. Cleared by user to tristate P1 output. PSW 1 takes presedance over P1EN.
CONFIG 11	P4DAT	Digital input port data bit. P4DAT is read only and will return a 0 if P4DIG=0. If P4 is enabled as a digital input then the read back value indicates the status of pin P4.
CONFIG 10	P 3D AT	Digital input port data bit. P3DAT is read only and will return a 0 if P3DIG $=0$. If P3 is enabled as a digital input then the read back value indicates the status of pin P3.
CONFIG 9	P2DAT	Digital output port data bit. P2 is digital output only. When the port is active as an output ($\mathrm{P} 2 \mathrm{EN}=1$), then the value written to the this data bit appears at the output port. Reading P2DAT will return what was last written to the P2DAT bit on the AD7709.
CONFIG8	P1DAT	Digital output port data bit. P1 is digital output only. When the port is active as an output ($\mathrm{P} 1 \mathrm{EN}=1$), then the value written to the this data bit appears at the output port. Reading P1DAT will return what was last written to the P1DAT bit on the AD7709.
CONFIG 7	REFSEL	ADC reference input select. Cleared by user to select REFIN1(+) and REFIN1(-) as the ADC reference. Set by user to select REFIN2(+) and REFIN2(-) as the ADC reference.
CONFIG6	CH2	ADC Input Channel Selection bit. Used in conjunction with CH 1 and CHO as shown in the analog input selection table.
CONFIG 5	CH 1	ADC Input Channel Selection bit. U sed in conjunction with CH 2 and CHO as shown in the analog input selection table.
CONFIG4	CHO	ADC Input Channel Selection bit. Used in conjunction with CH 2 and CH 2 as shown in the analog input selection table.
CH2	CH1	CHO Positivelnput Negativelnput Buffer
0	0	0 AIN1 AINCOM Positive Analog Input
0	0	1 AIN2 AINCOM Positive Analog Input
0	1	0 AIN3 AINCOM Positive Analog Input
0	1	1 AlN 1 AINCOM Positive Analog Input
1	0	0 AIN1 AIN2 Positive and Negative Analog Inputs
1	0	1 AIN3 AIN4 Positive and Negative Analog Inputs
1	1	$0 \quad$ AINCOM AINCOM Positive and Negative Analog Inputs
The final column indicates if the analog inputs are buffered or unbuffered. This determines the common mode input range on each input. If the input is unbuffered (AINCOM) the common mode input includes GND.		
CONFIG3	U N I	U nipolar/Bipolar Operation Selection Bit. Set by user to enable unipolar operation with straight binary output coding i.e. zero differential input will result in 0000hex output and a fullscale differential input will result in FFFF Hex output. Cleared by user to enable pseudo bipolar operation and offset binary coding, negative fullscale differential input will result in an output code of 0000 Hex , zero differential input will result in an output code of 8000 Hex and a positive fullscale differential input will result in an output code of FFFF Hex.

Filter Register: (A1,A0=1,0; Power-On-Reset = 00Hex)

The Filter Register is an 8-bit register from which data can either be read or to which data can be written. This register determines the amount of averaging performed by the sinc filter. Table VII outlines the bit designations for the Filter Register. FR7 through FRO indicate the bit location, FR denoting the bits are in the Filter Register. FR7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit. The number in this register is used to set the decimation factor and thus the output update rate for the ADCs. The filter register cannot be written to by the user while the ADC is active. The update rate is used for the ADC is calculated as follows:

$$
f_{\mathrm{adc}}=\frac{1}{3} \times \frac{1}{8 . S F} \times \mathrm{f}_{\mathrm{mod}}
$$

Where: \quad fadc $=\quad$ ADC Output Update Rate fmod $=\quad$ M odulator Clock Frequency $=32.768 \mathrm{KHz}$ (M ain and Aux ADC) SF = Decimal Value written to SF Register

FR 7	FR 6	FR 5	FR 4	FR 3	FR 2	FR 1	FR 0
$\mathbf{S F 7 (0)}$	SF6(1)	SF5(0)	SF4(0)	SF3(0)	SF2(1)	SF1(0)	SF0(1)

Table VII. Filter Register Bit Designations

The allowable range for $S F$ is 13 dec to 255 dec . Examples of $S F$ values and corresponding conversion rate ($\mathrm{f}_{\text {adc }}$) and time ($\mathrm{t}_{\text {adc }}$) are shown in table XII below. It should also be noted that both ADC input channels are chopped to minimise offset errors. This means that the time for a single conversion or the time to the first conversion result is $2 X t_{\text {adc }}$.

$\mathbf{S F}$ (dec)	$\mathbf{S F}$ (hex)	$\mathbf{f}_{\text {adc }}(\mathbf{H z})$	$\mathbf{t}_{\text {adc }}(\mathbf{m s})$
13	$0 D$	105.3	9.52
69	45	19.79	50.34
255	FF	5.35	186.77

Table XII. Update Rate Vs SF Word.

ADC Data Result Register (DATA):(A1,A0=1,1; Power-On-Reset =00000H ex)

The conversion result for the selected ADC channel is stored in the ADC data register (DATA). This register is 16-bits wide. This is a read only register. On completion of a read from this register the RDY bit in the status register is cleared.

CONFIGURING THE AD7709

On the AD7709 there are only four user accessable registers and these are configured via the serial interface. Communication with any of these registers is initiated by firstly writing to the Communications Register. The AD7709 starts converting after a power up without the requiring any register to be written to. The defaults conditions are used and the AD7709 operates at a 20 Hz update rate offering 50 and 60 Hz rejection.
Figure 5 outlines a flow diagram of the sequence used to configure the registers on the AD 7709 following a power-up. The flowchart shows two methods of determining when its valid to read the data register. The first method is hardware polling of the RDY pin and the second method involves software interrogation of bits in the status and mode registers. The flowchart details all the necessary programming steps required to initialize the ADC and read data from the selected ADC channel following a power-on or reset.T he steps can be broken down as follows:

1. Configure and initialize the microcontroller or microprocessor serial port.
2. Initialize the AD7709 by configuring the following registers:
a)FILTER registers which determines the update rate. The AD7709 must be put into standby mode before writing to the filter register.
b) CONFIGURATION register to select the input channel to be converted, its input range and reference. This register is also used to configure the internal current sources, power switches and I/O port.
Both of these operations consist of a write to the communications register to specify the next operation as a write to a specified register. Data is then written to this register. When each sequence is complete the ADC defaults to waiting for another write to the communications register to specify the next operation.
3) When configuration is complete the user needs to determine when its valid to read the data from the data register. This is accomplished by either polling the RDY pin (hardware polling) or by interrogating the bits in the STATUS register (software polling). Both are shown in the following flowchart.

Figure 5. Flowchart for Configuring and reading from AD7709

