XC9572XV High-performance CPLD

Product Specification

Note: This product is being discontinued. You cannot order parts after May 14, 2008. Xilinx recommends replacing XC9572XV devices with equivalent XC9572XL devices in all designs as soon as possible. Recommended replacements are pin compatible, however require a V_{cc} change to 3.3 V , and a recompile of the design file. In addition, there is no 1.8 V I/O support. See XCN07010 for details regarding this discontinuation, including device replacement recomendations for the XC9572XV CPLD.

Features

- 72 macrocells with 1,600 usable gates
- Available in small footprint packages
- 44-pin VQFP (34 user I/O pins)
- 100-pin TQFP (72-user I/O pins)
- Optimized for high-performance 2.5 V systems
- Low power operation
- Multi-voltage operation
- Advanced system features
- In-system programmable
- Superior pin-locking and routability with

Fast CONNECT ${ }^{\text {TM }}$ II switch matrix

- Extra wide 54-input Function Blocks
- Up to 90 product-terms per macrocell with individual product-term allocation
- Local clock inversion with three global and one product-term clocks
- Individual output enable per output pin
- Input hysteresis on all user and boundary-scan pin inputs
- Bus-hold ciruitry on all user pin inputs
- Full IEEE Standard 1149.1 boundary-scan (JTAG)
- Fast concurrent programming
- Slew rate control on individual outputs
- Enhanced data security features
- Excellent quality and reliability
- 20 year data retention
- ESD protection exceeding 2,000V

Description

The XC9572XV is a 2.5 V CPLD targeted for high-performance, low-voltage applications in leading-edge communications and computing systems. It is comprised of four 54 V 18 Function Blocks, providing 1,600 usable gates with propagation delays of 5 ns .

Power Estimation

Power dissipation in CPLDs can vary substantially depending on the system frequency, design application and output loading. To help reduce power dissipation, each macrocell
in a XC9500XV device may be configured for low-power mode (from the default high-performance mode). In addition, unused product-terms and macrocells are automatically deactivated by the software to further conserve power. For a general estimate of I_{CC}, the following equation may be used:

$$
\mathrm{P}_{\text {TOTAL }}=\mathrm{P}_{\text {INT }}+\mathrm{P}_{\mathrm{IO}}=\mathrm{I}_{\mathrm{CCINT}} \times \mathrm{V}_{\mathrm{CCINT}}+\mathrm{P}_{\mathrm{IO}}
$$

Separating internal and I / O power here is convenient because XC9500XV CPLDs also separate the corresponding power pins. P_{10} is a strong function of the load capacitance driven, so it is handled by $\mathrm{I}=\mathrm{CVf}$. $\mathrm{I}_{\mathrm{CCINT}}$ is another situation that reflects the actual design considered and the internal switching speeds. An estimation expression for ${ }^{\text {CCINT }}$ (taken from simulation) is:
$\mathrm{I}_{\mathrm{CCINT}}(\mathrm{mA})=\mathrm{MC}_{\mathrm{HS}}\left(0.122 \times \mathrm{PT}_{\mathrm{HS}}+0.238\right)+\mathrm{MC}_{\mathrm{LP}}(0.042 \mathrm{x}$ $\left.\mathrm{PT}_{\mathrm{LP}}+0.171\right)+0.04\left(\mathrm{MC}_{\mathrm{HS}}+\mathrm{MC}_{\mathrm{LP}}\right) \times \mathrm{f}_{\mathrm{MAX}} \times \mathrm{MC}_{\text {TOG }}$ where:
$M C_{H S}=\#$ macrocells used in high speed mode
$M C_{L P}=\#$ macrocells used in low power mode
$\mathrm{PT}_{\mathrm{HS}}=$ average p-terms used per high speed macrocell
$\mathrm{PT}_{\mathrm{LP}}=$ average p-terms used over low power macrocell
$\mathrm{f}_{\mathrm{MAX}}=$ max clocking frequency in the device
$M C_{\text {TOG }}=\%$ macrocells toggling on each clock (12% is
frequently a good estimate

This calculation was derived from laboratory measurements of an XC9500XV part filled with 16-bit counters and allowing a single output (the LSB) to be enabled. The actual I_{Cc} value varies with the design application and should be verified during normal system operation. Figure 1 shows the above estimation in a graphical form. For a more detailed discussion of power consumption in this device, see Xilinx application note XAPP361, "Planning for High Speed XC9500XV Designs."

Figure 1: Typical ICC vs. Frequency for XC9572XV

Figure 2: XC9572XV Architecture (Function Block outputs (indicated by the bold line) drive the I/O Blocks directly)

Supported I/O Standards

Table 1: IOSTANDARD Options

IOSTANDARD	$\mathbf{V}_{\text {CCIO }}$
LVTTL	3.3 V
LVCMOS2	2.5 V
X25TO18	1.8 V

The XC9572XV CPLD features both LVCMOS and LVTTL I/O implementations. See Table 1 for I/O standard voltages.

The LVTTL I/O standard is a general purpose EIA/JEDEC standard for 3.3 V applications that use an LVTTL input buffer and Push-Pull output buffer. The LVCMOS2 standard is used in 2.5 V applications.
XC9500XV CPLDs are also 1.8 V I/O compatible. The X25TO18 setting is provided for generating 1.8 V compatible outputs from a CPLD normally operating in a 2.5 V environment. The default I/O Standard for pads without IOSTANDARD attributes is LVTTL for XC9500XV devices.

Absolute Maximum Ratings

Symbol	Description	Value	Units
V_{CC}	Supply voltage relative to GND	-0.5 to 2.7	V
$\mathrm{~V}_{\mathrm{CCIO}}$	Supply voltage for output drivers	-0.5 to 3.6	V
$\mathrm{~V}_{\text {IN }}$	Input voltage relative to GND(1)	-0.5 to 3.6	V
$\mathrm{~V}_{\mathrm{TS}}$	Voltage applied to 3-state output ${ }^{(1)}$	-0.5 to 3.6	V
$\mathrm{~T}_{\mathrm{STG}}$	Storage temperature (ambient)	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{J}	Junction temperature	+150	${ }^{\circ} \mathrm{C}$

Notes:

1. Maximum DC undershoot below GND must be limited to either 0.5 V or 10 mA , whichever is easier to achieve. During transitions, the device pins may undershoot to -2.0 V or overshoot to +3.6 V , provided this over- or undershoot lasts less than 10 ns and with the forcing current being limited to 200 mA .
2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.
3. For solder specifications, see Xilinx Packaging .

Recommended Operation Conditions

Symbol	Parameter	Min	Max	Units	
$\mathrm{V}_{\mathrm{CCINT}}$	Supply voltage for internal logic and input buffers	Commercial $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	2.37	2.62	V
	Industrial $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	2.37	2.62		
	Supply voltage for output drivers for 3.3V operation	3.0	3.6	V	
	Supply voltage for output drivers for 2.5V operation	2.37	2.62	V	
	Supply voltage for output drivers for 1.8V operation	1.71	1.89	V	
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage	0	0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	1.7	3.6	V	
$\mathrm{~V}_{\mathrm{O}}$	Output voltage	0	$\mathrm{~V}_{\mathrm{CCIO}}$	V	

Quality and Reliability Characteristics

Symbol	Parameter	Min	Max	Units
T_{DR}	Data retention	20	-	Years
N_{PE}	Program/Erase cycles (endurance)	1,000	-	Cycles
$\mathrm{V}_{\mathrm{ESD}}$	Electrostatic Discharge (ESD)	2,000	-	Volts

DC Characteristics (Over Recommended Operating Conditions)

Symbol	Parameter	Test Conditions	Min	Max	Units
V_{OH}	Output high voltage for 3.3V outputs	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4	-	V
	Output high voltage for 2.5 V outputs	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	2.0	-	V
	Output high voltage for 1.8 V outputs	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	90\% V ${ }_{\text {CCIO }}$	-	V
V_{OL}	Output low voltage for 3.3 V outputs	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	-	0.4	V
	Output low voltage for 2.5 V outputs	$\mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$	-	0.4	V
	Output low voltage for 1.8 V outputs	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	-	0.4	V
$\mathrm{I}_{\text {IL }}$	Input leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.62 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCIO}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{GND} \text { or } 3.6 \mathrm{~V} \end{aligned}$	-	± 10	$\mu \mathrm{A}$
I_{H}	Input high-Z leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.62 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCIO}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{GND} \text { or } 3.6 \mathrm{~V} \end{aligned}$	-	± 10	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}} \min <\mathrm{V}_{\text {IN }}<3.6 \mathrm{~V}$	-	± 150	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	I/O capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	-	10	pF
I_{CC}	Operating Supply Current (low power mode, active)	$\begin{aligned} & V_{1}=G N D, \text { No load } \\ & f=1.0 \mathrm{MHz} \end{aligned}$	14		mA

AC Characteristics

Symbol	Parameter	XC9572XV-5		XC9572XV-7		Units
		Min	Max	Min	Max	
T_{PD}	I/O to output valid	-	5.0	-	7.5	ns
$\mathrm{T}_{\text {SU }}$	I/O setup time before GCK	3.5	-	4.8	-	ns
T_{H}	I/O hold time after GCK	0	-	0	-	ns
T_{CO}	GCK to output valid	-	3.5	-	4.5	ns
$\mathrm{f}_{\text {SYSTEM }}$	Multiple FB internal operating frequency	-	222.2	-	125.0	MHz
$\mathrm{T}_{\text {PSU }}$	I/O setup time before p-term clock input	1.0	-	1.6	-	ns
T_{PH}	I/O hold time after p-term clock input	2.5	-	3.2	-	ns
$\mathrm{T}_{\mathrm{PCO}}$	P-term clock output valid	-	6.0	-	7.7	ns
ToE	GTS to output valid	-	4.0	-	5.0	ns
$\mathrm{T}_{\text {OD }}$	GTS to output disable	-	4.0	-	5.0	ns
$\mathrm{T}_{\text {POE }}$	Product term OE to output enabled	-	7.0	-	9.5	ns
$\mathrm{T}_{\text {POD }}$	Product term OE to output disabled	-	7.0	-	9.5	ns
$\mathrm{T}_{\text {AO }}$	GSR to output valid	-	10.0	-	12.0	ns
$\mathrm{T}_{\text {PAO }}$	P-term S/R to output valid	-	10.7	-	12.6	ns
$\mathrm{T}_{\text {WLH }}$	GCK pulse width (High or Low)	2.2	-	4.0	-	ns
$\mathrm{T}_{\text {PLH }}$	P-term clock pulse width (High or Low)	5.0	-	6.5	-	ns
$\mathrm{T}_{\text {APRPW }}$	Asynchronous preset/reset pulse width (High or Low)	5.0	-	6.5	-	ns

Internal Timing Parameters

Figure 3: AC Load Circuit

Symbol	Parameter	XC9572XV-5		XC9572XV-7		Units
		Min	Max	Min	Max	
Buffer Delays						
$\mathrm{T}_{\text {IN }}$	Input buffer delay	-	2.0	-	2.3	ns
$\mathrm{T}_{\text {GCK }}$	GCK buffer delay	-	1.2	-	1.5	ns
TGSR	GSR buffer delay	-	2.0	-	3.1	ns
T GTS	GTS buffer delay	-	4.0	-	5.0	ns
$\mathrm{T}_{\text {OUT }}$	Output buffer delay	-	2.1	-	2.5	ns
$\mathrm{T}_{\text {EN }}$	Output buffer enable/disable delay	-	0	-	0	ns
Product Term Control Delays						
T PTCK	Product term clock delay	-	1.7	-	2.4	ns
TPTSR	Product term set/reset delay	-	0.7	-	1.4	ns
$\mathrm{T}_{\text {PTTS }}$	Product term 3-state delay	-	5.0	-	7.2	ns
Internal Register and Combinatorial Delays						
T PDI	Combinatorial logic propagation delay	-	0.2	-	1.3	ns
$\mathrm{T}_{\text {SUI }}$	Register setup time	2.0	-	2.6	-	ns
T_{HI}	Register hold time	1.5	-	2.2	-	ns
TECSU	Register clock enable setup time	2.0	-	2.6	-	ns
$\mathrm{T}_{\text {ECHO }}$	Register clock enable hold time	1.5	-	2.2	-	ns
$\mathrm{T}_{\text {COI }}$	Register clock to output valid time	-	0.2	-	0.5	ns
$\mathrm{T}_{\text {AOI }}$	Register async. S/R to output delay	-	5.9	-	6.4	ns
$\mathrm{T}_{\text {RAI }}$	Register async. S/R recover before clock	5.0		7.5		ns
TLOGI	Internal logic delay	-	0.7	-	1.4	ns
TLOGILP	Internal low power logic delay	-	5.7	-	6.4	ns
Feedback Delays						
T_{F}	Fast CONNECT II feedback delay	-	1.6	-	3.5	ns
Time Adders						
$\mathrm{T}_{\text {PTA }}$	Incremental product term allocator delay	-	0.7	-	0.8	ns
TPTA2	Adjacent macrocell p-term allocator delay	-	0.3	-	0.3	ns
TSLEW	Slew-rate limited delay	-	3.0	-	4.0	ns

XC9572XV I/O Pins

Function Block	Macrocell	VQ44	TQ100	BScan Order	Function Block	Macrocell	VQ44	TQ100	BScan Order
1	1	-	16	213	3	1	-	41	105
1	2	39	13	210	3	2	5	32	102
1	3	-	18	207	3	3	-	49	99
1	4	-	20	204	3	4	-	50	96
1	5	40	14	201	3	5	6	35	93
1	6	41	15	198	3	6	-	53	90
1	7	-	25	195	3	7	-	54	87
1	8	42	17	192	3	8	7	37	84
1	9	$43^{(1)}$	$22^{(1)}$	189	3	9	8	42	81
1	10	-	28	186	3	10	-	60	78
1	11	$44^{(1)}$	$23^{(1)}$	183	3	11	12	52	75
1	12	-	33	180	3	12	-	61	72
1	13	-	36	177	3	13	-	63	69
1	14	$1^{(1)}$	$27^{(1)}$	174	3	14	13	55	66
1	15	2	29	171	3	15	14	56	63
1	16	-	39	168	3	16	18	64	60
1	17	3	30	165	3	17	16	58	57
1	18	-	40	162	3	18	-	59	54
2	1	-	87	159	4	1	-	65	51
2	2	29	94	156	4	2	19	67	48
2	3	-	91	153	4	3	-	71	45
2	4	-	93	150	4	4	-	72	42
2	5	30	95	147	4	5	20	68	39
2	6	31	96	144	4	6	-	76	36
2	7	-	$3^{(2)}$	141	4	7	-	77	33
2	8	32	97	138	4	8	21	70	30
2	9	33(1)	99(1)	135	4	9	-	66	27
2	10	-	1	132	4	10	-	81	24
2	11	$34^{(1)}$	$4^{(1)}$	129	4	11	22	74	21
2	12	-	6	126	4	12	-	82	18
2	13	-	8	123	4	13	-	85	15
2	14	36 ${ }^{(3)}$	9(3)	120	4	14	23	78	12
2	15	37	11	117	4	15	27	89	9
2	16	-	10	114	4	16	-	86	6
2	17	38	12	111	4	17	28	90	3
2	18	-	92	108	4	18	-	79	0

Notes:

1. Global control pin.
2. GTS1 for TQ100
3. GTS1 for VQ44

XC9572XV Global, JTAG and Power Pins

Pin Type	VQ44	TQ100
I/O/GCK1	43	22
I/O/GCK2	44	23
I/O/GCK3	1	27
I/O/GTS1	36	3
I/O/GTS2	34	4
I/O/GSR	33	99
TCK	11	48
TDI	9	45
TDO	24	47
TMS	10	$5,57,98$
V $_{\text {CCINT }} 2.5 \mathrm{~V}$	26	$26,38,51,88$
$\mathrm{~V}_{\text {CcIo }} 1.8 / 2.5 \mathrm{~V} / 3.3 \mathrm{~V}$	$4,17,25$	$21,31,44,62,69,75$,
GND		84,100
No Connects	-	$7,19,24,34,43,46$,

Device Part Marking and Ordering Combination Information

Notes:

1. Due to the small size of chip scale packages, part marking on these packages does not follow the above sample and the complete part number cannot be included in the marking. Part marking on chip scale packages by line:

Line $1=X$ (Xilinx logo), then truncated part number (no XC), i.e., 95xxxXV.

- Line 2 = Not related to device part number.
- Line 3 = Not related to device part number.
- Line 4 = Package code, speed, operating temperature, three digits not related to device part number. Package code: C1 = CS48.

Device Ordering and Part Marking Number	Speed (pin-to-pin delay)	Pkg. Symbol	No. of Pins	Package Type	Operating Range
XC9572XV-5VQ44C	5 ns	VQ44	44-pin	Quad Flat Pack (VQFP)	C
XC9572XV-5TQ100C	5 ns	TQ100	100-pin	Thin Quad Flat Pack (TQFP)	C
XC9572XV-7VQ44C	7.5 ns	VQ44	$44-$ pin	Quad Flat Pack (VQFP)	C
XC9572XV-7TQ100C	7.5 ns	TQ100	100-pin	Thin Quad Flat Pack (TQFP)	C
XC9572XV-7VQ44I	7.5 ns	VQ44	$44-\mathrm{pin}$	Quad Flat Pack (VQFP)	I
XC9572XV-7TQ100I	7.5 ns	TQ100	100-pin	Thin Quad Flat Pack (TQFP)	I

Notes:

1. $\mathrm{C}=$ Commercial: $\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C} ; \mathrm{I}=$ Industrial: $\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$
2. Some packages available in Pb -free option. See Xilinx Packaging for more information.

Revision History

Date	Revision No.	Description
02/01/00	1.1	Initial Xilinx release. Advance information specification.
01/29/01	2.0	Added -4 performance specification and VQ44 pagkage. Deleted VQ64 package. Updated I $\mathrm{Icc}_{\mathrm{cc}}$ vs. Frequency Figure 1.
05/15/01	2.1	Updated I_{CC} formula, Recommended Operation Conditions, -4 and -5 AC Characteristics and Internal Timing Parameters
08/27/01	2.2	Changed $\mathrm{V}_{\mathrm{CCIO}} 3.3 \mathrm{~V}$ from 3.13 to 3.0 (min), 3.46 to 3.60 (max); DC characteristics: I_{L} - added "low" current, I_{IH} - changed to "Input leakage high current"; Internal Timing: -5 $\mathrm{T}_{\mathrm{AOI}}$ from 6.5 to 5.9.
05/31/02	2.3	Updated I_{CC} equation on page 1. Updated Component Availability Chart. Changed to Preliminary. Added second test condition and max measurement to $I_{I H}$ DC Characteristics. Added Part Marking Information to Ordering Information. Removed the -4 device.
06/18/03	2.4	Updated $\mathrm{T}_{\text {soL }}$ from 260 to $220^{\circ} \mathrm{C}$. Updated Device Part Marking.
08/21/03	2.5	Updated Package Device Marking Pin 1 orientation.
04/15/05	2.6	Added $\mathrm{T}_{\text {APRPW }}$ specification to AC Characteristics. Added IOSTANDARD information.
01/16/06	2.7	Removed PC44 and CS48 packages as per XCN05020.
06/25/07	3.0	Notice of discontinuance.

