PD - 94988

International

IRFBC40LCPbF

 $V_{DSS} = 600V$

 $R_{DS(on)} = 1.2\Omega$

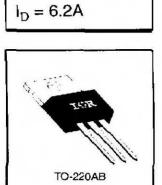
HEXFET® Power MOSFET

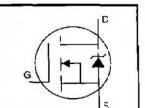
- Ultra Low Gate Charge
- Reduced Gate Drive Requirement
- Enhanced 30V Vgs Rating
- Reduced Ciss, Coss, Crss
- Extremely High Frequency Operation
- Repetitive Avalanche Rated

Absolute Maximum Ratings

• Lead-Free

Description


This new series of Low Charge HEXFETs achieve significantly lower gate charge over conventional MOSFETs. Utilizing the new LCDMOS technology, the device improvements are achieved without added product cost, allowing for reduced gate drive requirements and total system savings. In addition, reduced switching losses and improved efficiency are achievable in a variety of high frequency applications. Frequencies of a few MHz at high current are possible us ng the new Low Charge MOSFETs.


These device improvements combined with the proven ruggedness and reliability that are characteristic of HEXFETs offer the designer a new standard in power transistors for switching applications.

	Parameter	Nax.	Units
ID @ TC = 25°C	Continuous Drain Current, VGs @ 10 V	6.2	
ID @ Tc = 100°C	Continuous Drain Current, VGs @ 10 V	3.9	A
אסו	Pulsed Drain Current ①	25	
Pp @ Tc = 25°C	Power Dissipation	125	W
	Linear Derating Factor	1.0	WAC
VGS	Gate-to-Source Voltage ±30		' v
EAS	Single Pulse Ava anche Energy @	530	mJ
IAA	Avalanche Current ①	6.2	A
EAR	Repetitive Avalanche Energy ①	13	mJ
dv/d1	Peak Diode Recovery dv/dt 3	3.0	
Tj Tstg	Operating Junction and Storage Temperature Range	-55 to +1 5 0	°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw	10 lbf+in (1.1 N+m)	

Thermal Resistance

·····	Parameter	Min.	Тур.	Max.	Units
Reac	Junction-to-Case	-		1.0	
Recs	Case-to-Sink, Flat, Greased Surface	. –	0.50		_ ∘c∕w
REJA	Junction-to-Ambient	-	-	62	

	Parameter	Min.	Typ.	Max.	Units	Test Conditions	
V(BR)OSS	Drain-to-Source Breakdown Voltage	600	-		V	V ₉₅ =0V, I _D = 250µA	
AV (BR)DSS/ATJ	Breakdown Voltage Temp. Ccefficient	. –	0.70	_	V/ºC	, Reference to 25°C, Io= 1mA	
RDS(an)	Static Drain-to-Source On-Resistance	. –	1 _	1.2	Ω	VGS=10V, Io=3.7A @	
VGS(th)	Gate Threshold Vo tage	2.0		4.0	. V	VDS=VGS, 12= 250µA	
91.	Forward Transconductance	3.7	—	-	S	V _{DS} =100V, I _D =3.7A ④	
-		—		100	μA	Vps=600V, Vgs=0V	
loss	Drain-to-Source Leakage Current	-		500		Vps=480V, Vgs=0V, Tj=125%	
IGSS	Gate-to-Source Forward Leakage	-		100	- nA	V _{GS} =20V	
	Gate-to-Source Reverse Leakage	I		-100		V _{GS} =-20V	
0,	Total Gate Charge	-		39	5	Ic=6.2A	
Q _{gs}	Gate to Source Charge	-	_	.0	nC	VDS=360V	
Q _{gc}	Gate-to-Drain : "Miller") Charge		1 -	•9	-3 	V3s=10V See Fig. 6 and 13 3	
tdion	Turn-On Delay Time		12	_		VDD=30CV	
tr	Rise Time	_	20		ns	I ⊵ ≖6.2A	
td:04)	Tum-Off Delay Time	-	27			¹ R _G =9.1Ω	
t ₁	Fall Time		17	i —	·	R _D =47Ω See Figure 10 €	
Lo	Internal Drain Inductance		4.5	_	- nH	Between lead, 6 mm (0.25in.)	
Ls	Internal Source Inductance	-	7.5		- 110	and center of die contact	
Ciss	Input Capacitance		1100	. –	-	VGS=0V	
Coss	Output Capacitance		140		٥F	Vos= 25V	
Crss	Reverse Transter Capacitance		15			f=1 0MHz See Figure 5	

Electrical Characteristics @ TJ = 25°C (unless otherwise specified)

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Test Conditions	
ls	(Body Diode)	: -	-	6.2	A	showing the	
ISM	Puised Source Current (Body Diode) ①	-	_	25		integral reverse	
Vsp	Diode Forward Voltage			1.5	V	TJ=25°C, IS=6.2A, VGS=0V @	
tr.	Reverse Recovery Time	-	440	660	ns	Tj=25°C, I⊧=6.2A	
Qrr	Reverse Recovery Charge	-	2.1	3.2	μC	di/dt=100A/µs ⊛	
ton	Forward Turn-On Time	1 ntrinsi	c turn-or	time is	neglegit	le (turn-on is dominated by Ls+Lo	

Notes:

- Repetitive rating; pulse width limited by max, junction temperature (See Figure 11)
- ② V_{DD}=50V. starting T_=25°C, L=25mH Rg=25Ω, IAS=6.2A (See Figure 12)
- ③ IsD≤6.2A, di/dt≤80A/µs, VDD≤V(BR/DSS. TJ≤150°C
- (4) Pulse width \leq 300 μ s; duty cycle \leq 2%

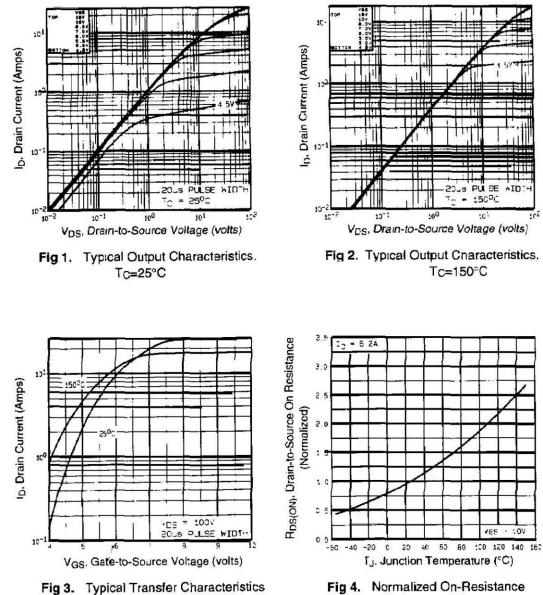
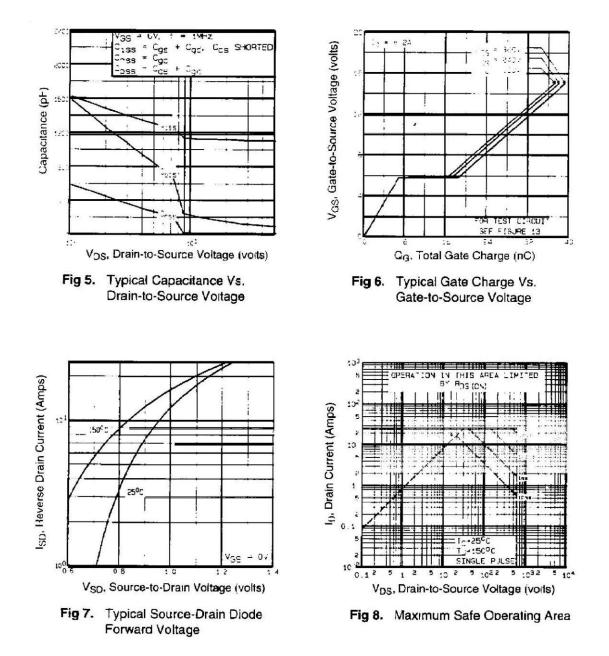



Fig 4. Normalized On-Resistance Vs. Temperature

www.vishay.com 3

International

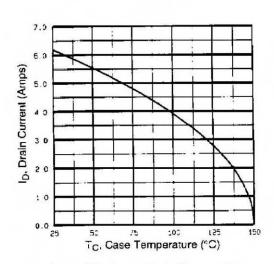


Fig 9. Maximum Drain Current Vs. Case Temperature

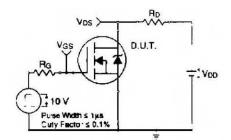


Fig 10a. Switching Time Test Circuit

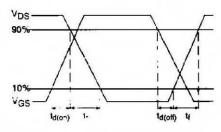
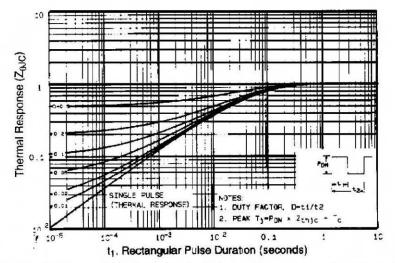



Fig 10b. Switching Time Waveforms

International

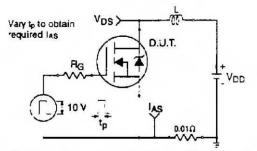


Fig 12a. Unclamped Inductive Test Circuit

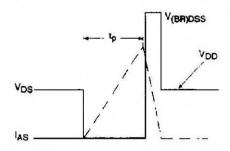


Fig 12b. Unclamped Inductive Waveforms

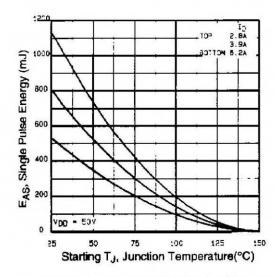


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

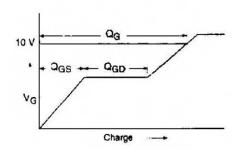


Fig 13a. Basic Gate Charge Waveform

Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit Appendix B: Package Outline Mechanical Drawing

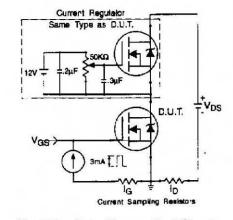
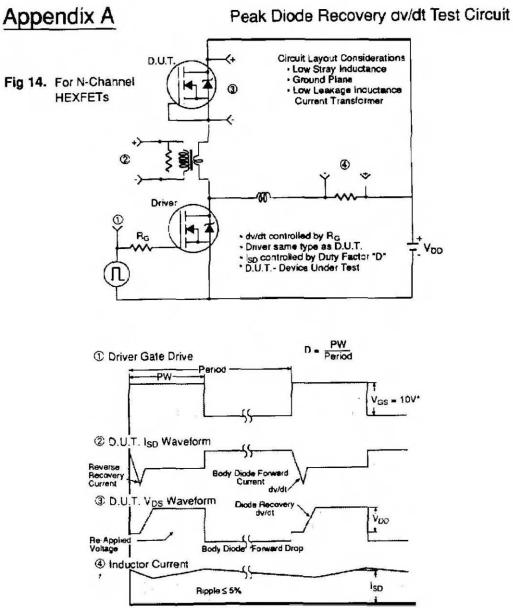
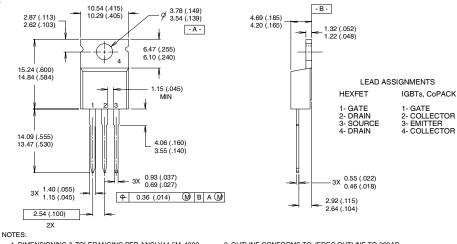



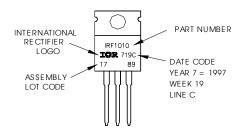
Fig 13b. Gate Charge Test Circuit



* VGS = 5V for Logic Level Devices

International

TO-220AB Package Outline


Dimensions are shown in millimeters (inches)

1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C" Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 02/04

> www.vishay.com 8

Document Number: 91114

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.