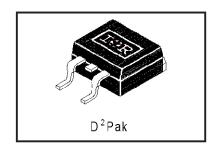


HEXFET® Power MOSFET


Applications

- Switch Mode Power Supply (SMPS)
- Uninterruptable Power Supply
- High speed power switching
- Lead-Free

Benefits

- Low Gate Charge Qg results in Simple Drive Requirement
- Improved Gate, Avalanche and dynamic dv/dt Ruggedness
- Fully Characterized Capacitance and Avalanche Voltage and Current
- Effective Coss Specified (See AN 1001)

V _{DSS}	Rds(on) max	Ι _D
600V	1.2 Ω	6.2A

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V⊚	6.2	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V®	3.9	Α
I _{DM}	Pulsed Drain Current ①⑥	25	
P _D @T _C = 25°C	Power Dissipation	125	W
	Linear Derating Factor	1.0	W/°C
V _{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt ③ ⑥	6.0	V/ns
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		~⊂
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Typical SMPS Topology:

Single transistor Forward

Notes ① through ⑤ are on page 9

Static @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{iBR)DSS}	Drain-to-Source Breakdown Voltage	600			V	$V_{SS} = 0V, I_D = 250 \mu A$
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient		0.66		V/°C	Reference to 25°C, I⊃ = 1mA®
R _{DS(on)}	Static Drain-to-Source On-Resistance			1.2	Ω	$V_{SS} = 10V, I_D = 3.7A$ ①
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	V _{⊃S} = V _{GS} , I _D = 250µA
I _{DSS}	Drain-to-Source Leakage Current			25	μА	V _{⊃S} = 600V, V _{GS} = 0V
				250	μΑ	$V_{\rm DS} = 480 \text{V}, V_{\rm GS} = 0 \text{V}, T_{\rm J} = 125 ^{\circ} \text{C}$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{○S} = 30V
	Gate-to-Source Reverse Leakage			-100] ''^]	V _{GS} = -30V

Dynamic @ T_J = 25°C (unless otherwise specified)

•	<u> </u>		•	,		
	Parameter	Min.	Тур.	Мах.	Units	Conditions
9 fs	Forward Transconductance	3.4			S	$V_{DS} = 50V, I_D = 3.7A$
Qg	Total Gate Charge			42		I _D = 6.2A
Qgs	Gate-to-Source Charge			10	nC	V _{DS} = 480V
Qgd	Gate-to-Drain ("Miller") Charge			20	_	V_{GS} = 10V, See Fig. 6 and 13 \oplus
t _{d(or)}	Turn-On Delay Time		13			V _{DD} = 300V
t _r	Rise Time		23		ns -	I _□ = 6.2A
$t_{d(off)}$	Turn-Off Delay Time		31		110	$R_G = 9.1\Omega$
tf	Fall Time		18		_	$R_D = 47\Omega$, See Fig. 10 ④
Ciss	Input Capacitance		1036			V _{GS} = 0V
Coss	Output Capacitance		136			V _{DS} = 25V
Crss	Reverse Transfer Capacitance		7.0		рF	f = 1.0MHz, See Fig. 5
Cass	Output Capacitance		1487	—–		$V_{GS} = 0V$. $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		36			$V_{GS} = 0V$. $V_{DS} = 480V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance		48		-	V _{GS} = 0V. V _{DS} = 0V to 480V ③

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy②		570	mJ
I _{AR}	Avalanche Current①		6.2	Α
E _{AR}	Repetiti∨e Avalanche Energy⊕		13	mJ

Thermal Resistance

	Parameter	Тур.	Max.	Units
ReJC	Junction-to-Case		1.0	°C/W
R _{0.JA}	Junction-to-Ambient (PCB Mounted, steady-state)*		40	1

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Is	Continuous Source Current					MOSFET symbol ✓ ✓ □		
	(Body Diode)			6.2	A	showing the		
I _{SM}	Pulsed Source Current				25	25		integral reverse
	(Body Diode) ①		—– 25		p-n junction diode.			
V _{SD}	Diode Forward Voltage			1.5	V	$T_J = 25^{\circ}C$, $I_S = 6.2A$, $V_{GS} = 0V$ \oplus		
trr	Reverse Recovery Time		431	647	ns	T _J = 25°C, I _F = 6.2A		
Qrr	Reverse RecoveryCharge		1.8	2.8	μC	di/dt = 100A/µs ⊕		
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L_S + L_D)						

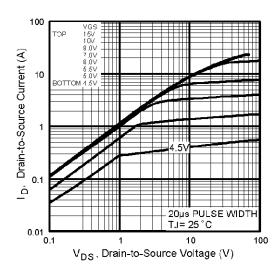
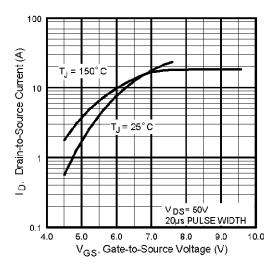
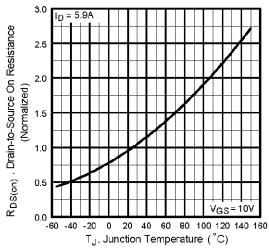
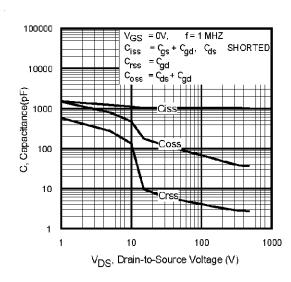


Fig 1. Typical Output Characteristics,

Fig 2. Typical Output Characteristics,

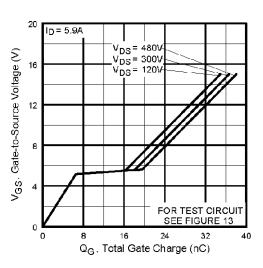

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

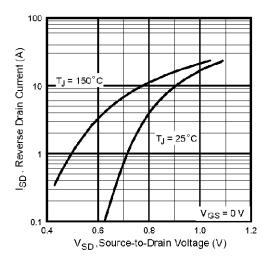
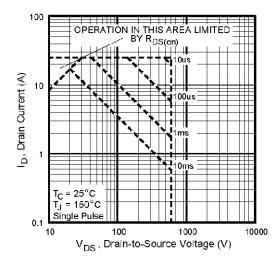



Fig 7. Typical Source-Drain Diode Forward Voltage

rig 8. iviaximum Sale Operating Area

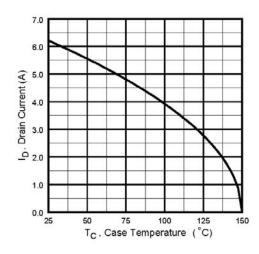


Fig 9. Maximum Drain Current Vs. Case Temperature

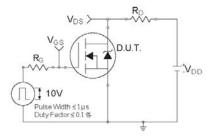


Fig 10a. Switching Time Test Circuit

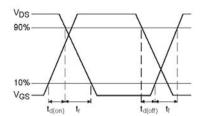


Fig 10b. Switching Time Waveforms

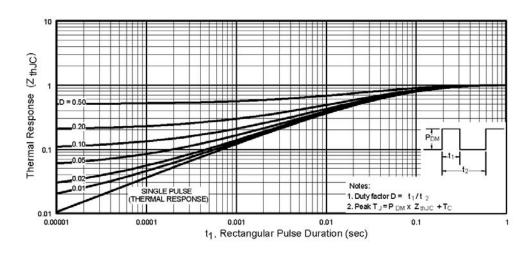


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Document Number: 91113

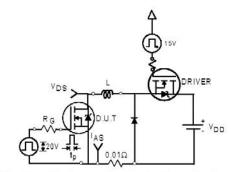


Fig 12a. Unclamped Inductive Test Circuit

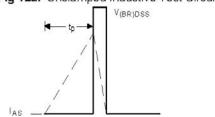


Fig 12b. | Unclamped Inductive Waveforms

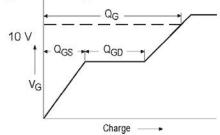


Fig 13a. Basic Gate Charge Waveform

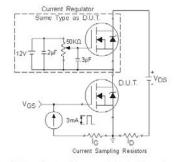
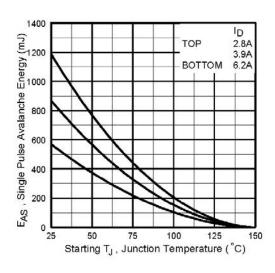



Fig 13b. Gate Charge Test Circuit

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

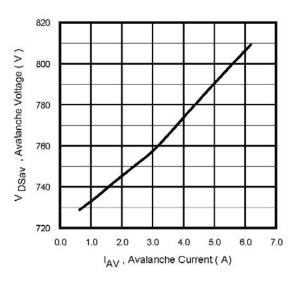
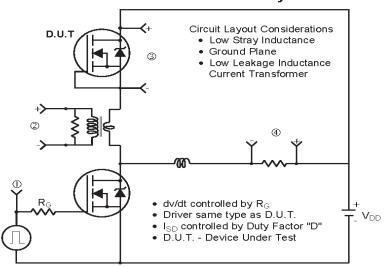



Fig 12d. Typical Drain-to-Source Voltage Vs. Avalanche Current

Peak Diode Recovery dv/dt Test Circuit

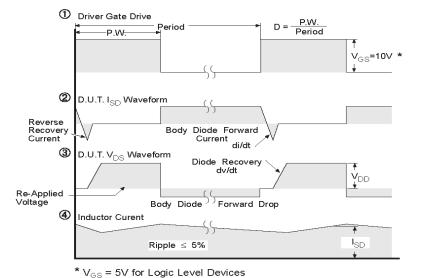
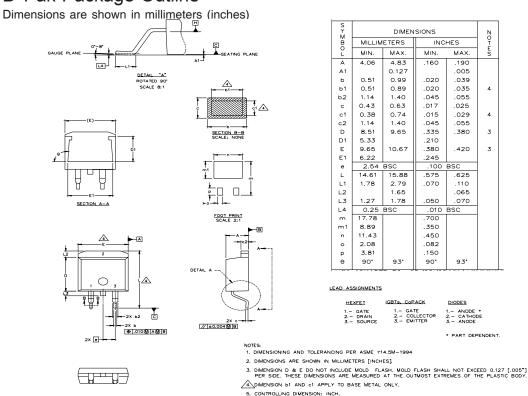
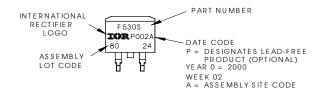
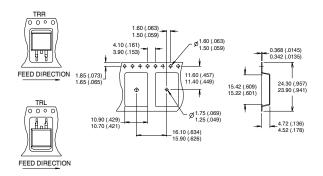
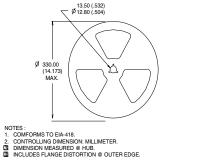
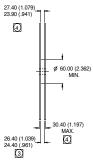



Fig 14. For N-Channel HEXFETS


D²Pak Package Outline


D²Pak Part Marking Information (Lead-Free)





D²Pak Tape & Reel Infomation

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- 2 Starting T_J = 25°C, L = 29.6mH $R_{\odot} = 25\Omega$, $I_{A\odot} = 6.2A$. (See Figure 12)
- $||_{\rm GD} \leq 6.2 A, \; di/dt \leq 88 A / \mu s, \; V_{\rm DD} \leq V_{\rm (BR)DSG}, \\ T_{\rm J} \leq 150 ^{\circ} C$
- 9 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- ⑤ Coss eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}
- © Uses IRFBC40A data and test conditions
- * When mounted on FR-4 board using minimum recommended footprint. For recommended footprint and soldering techniques refer to application note #AN-994.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

07/04

Document Number: 91113 www.vishay.com

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products. Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier®, IR®, the IR logo, HEXFET®, HEXSense®, HEXDIP®, DOL®, INTERO®, and POWIRTRAIN® are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com Revision: 12-Mar-07