INTERNATIONAL RECTIFIER

IQR

T-39-19

HEXFET® TRANSISTORS

P-CHANNEL 50 VOLT POWER MOSFETs

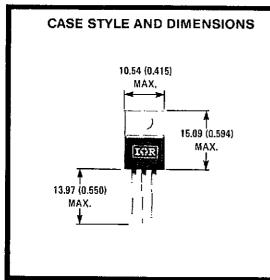
IRF9Z20 IRF9Z22

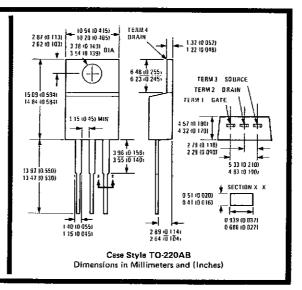
-50 Volt, 0.28 Ohm, HEXFET TO-220AB Plastic Package

The HEXFET® technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry and unique processing of the HEXFET design achieve very low on-state resistance combined with high transconductance and extreme device ruggedness.

The P-Channel HEXFETs are designed for application which require the convenience of reverse polarity operation. They retain all of the features of the more common N-Channel HEXFETs such as voltage control, very fast switching, ease of paralleling, and excellent temperature stability.

P-Channel HEXFETs are Intended for use in power stages where complementary symmetry with N-Channel devices offers circuit simplification. They are also very useful in drive stages because of the circuit versatility offered by the reverse polarity connection. Applications include motor control, audio amplifiers, switched mode converters, control circuits and pulse amplifiers.


Product Summary


· · · · · · · · · · · · · · · · · · ·									
Part Number	VDS	RDS(on)	ĺD						
IRF9Z20	-50V	0.28Ω	-9.7A						
IRF9Z22	-50V	0.33Ω	-8.9A						

Features:

- P-Channel Versatility
- Compact Plastic Package
- Fast Switching
- Low Drive Current
- Ease of Paralleling
- Excellent Temperature Stability

C-379

Document Number: 90121

www.vishay.com C-379

IRF9Z20, IRF9Z22 Devices

lle D 4855452 0008631 5

INTERNATIONAL RECTIFIER

T-39-19

Absolute Maximum Ratings

	Parameter	IRF9Z20	IRF9Z22	Unite
V _{DS}	Drain - Source Voltage ①	-60	-60	
V _{DGR}	Drein - Gate Voltage (R _{GS} = 20 KΩ) ①	-50	-50	٧
ID @ TC = 25°C	Continuous Drain Current	-9.7	-8.9	A
ID @ TC = 100°C	Continuous Drain Current	6.1	-Б.6	Α
IDM	Pulsed Drain Current @	-39	-36	A
V _{GS}	Gate - Source Voltage	±=	20	V
PD @ TC = 25°C	Max, Power Dissipation	4	10	W
	Unear Derating Factor	0.	32	W/K ®
1LM	Inductive Current, Clamped	-39 (Sea Fig. 14)) L = 100μH −36	A
1 _L	Unclamped Inductive Current (Avalanche Current) ③		ig. 15) 2.2	A
T _J T _{stg}	Operating Junction and Storage Temperature Range	-55	to 150	°C
	Lead Temperature	300 (0,063 In. (1.6m)	m) from case for 10s)	°C

Electrical Characteristics @ T_C = 25°C (Unless Otherwise Specified)

	Parameter	Type	Min,	Тур.	Max.	Units	Test Conditions
BVDSS	Drain - Source Breakdown Voltage	IRF9Z20	-50	_	-	V	V _{GS} = 0V
		IRF9Z22					$I_D = -250 \mu\text{A}$
V _{GS(th)}	Gate Threshold Voltage	ALL	-2.0	-	-4.0	٧	V _{DS} = V _{GS} , I _D = -260 μA
Igss	Gate-Source Leakage Forward	ALL	_	_	-500	nΑ	V _{GS} = -20V
GSS	Gate-Source Leakage Reverse	ALL	_	~	500	nΑ	V _{GS} = 20V
DSS	Zero Gate Voltage Drain Current	ALL	_	_	-250	μA	V _{DS} = Max. Rating, V _{GS} = 0V
		ALL	_		-1000	μА	V _{DS} = Mex. Rating × 0.8, V _{GS} = 0V, T _C = 125°C
l _{D(on)}	On-State Drain Current @	1RF9Z20	-9.7	-	_	A	V _{DS} > I _{D(on)} × R _{DS(on)max} , V _{GS} = -10V
		IRF9Z22	-6.9			À	VDS > ID(on) ^ INDS(on)max. VGS = -10V
Rps(on)	Static Drain-Source On-State Resistance @	IRF9Z20	-	0.20	0.28	Ω	$V_{GS} = -10V$, $I_{D} = -5.6A$
		IRF9Z22	_	0.28	0.33	Ω	
9fs	Forward Transconductance	ALL	2.3	3.5	-	S(U)	V _{DS} = 2 × V _{GS} , I _{DS} = -5.6A
Ciss	Input Capacitance	ALL	_	480		pF	$V_{GS} = 0V$, $V_{DS} = -25V$, $f = 1.0 \text{ MHz}$
Coss	Output Capacitance	ALL		320		pF	See Fig. 10
Crss	Reverse Transfer Capacitance	ALL	-	58		рF	l
td(on)	Turn-On Delay Time	ALL	-	8.2	12	ns	$V_{DD} = -25V$, $I_{D} \approx -9.7A$, $R_{G} = 18\Omega$, $R_{D} = 2.4\Omega$
t _r	Rise Time	ALL	-	57	86	ns	See Fig. 16
tdloff	Turn-Off Celay Time	ALL	_	12	18	ns	(MOSFET switching times are essentially independent of
tf	Feil Time	ALL		25	38	ns	operating temperature.)
Q _g	Total Gate Charge (Gete-Source Plus Gate-Drain)	ALL	-	17	28	nC	V _{GS} = -10V, I _D = -9.7A, V _{DS} = 0.8 Max. Rating. See Fig. 17 for test circuit. (Gate charge is essentially independent of operating temperature.)
ags	Gate-Source Charge	ALL		4.1	6.2	пС	
Q _{qd}	Gete-Drain ("Miller") Charge	ALL	—	6.7	8.6	пС	1
Lo	Internal Drain Inductance	ALL		4.5	_	nH	Measured from the drain lead, 6mm (0.25 in.) from package to center of die. Madified MOSFET symbol showing the Internal Inductances.
LS	Internal Source Inductance	ALL	_	7.5	-	пH	Measured from the source lead, from (0.25 in.) from package to source bonding pad.

Thermal Resistance

RuhJC	Junction-to-Case	ALL	1	-	3.1	KW®	
RihCS	Case-to-Sink	ALL	_	1.0	-	κw®	Mounting surface flat, smooth, and greased.
R _{thJA}	Junction-to-Ambient	ALL	-		80	KW®	Typical socket mount

C-380

Document Number: 90121

IRF9Z20, IRF9Z22 Devices

INTERNATIONAL RECTIFIER

T-39-19

Source-Drain Diode Ratings and Characteristics

ls	Continuous Source Current	IRF9Z20	-		-9.7	Α	Modified MOSFET symbol showing the integral reverse
	(Body Diode)	IRF9Z20	_		8.9	Α	PN junction rectifier.
Ism	Pulse Source Current	IRF9Z22			-39	A	
	(Body Diode) ③	IRF9Z22		-	-36	А] — — — — — — — — — — — — — — — — — — —
VSD	Diode Forward Voltage ②	ALL	-	-	-6.3	V	$T_C = 25^{\circ}C$, $t_S = -9.7A$, $V_{GS} = 0V$
t _{rr}	Reverse Recovery Time	ALL	56	110	280	ns	T _J = 25°C, I _F = -9.7A, dipkft = 100A/µs
ann	Reverse Recovered Charge	ALL	0.17	0.34	0.85	μC	T _J = 25°C, I _F = -9.7A, diplit = 100A/µs
ton	Forward Turn-on Time	ALL	ALL Intrinsic turn on time is negligible. Turn on speed is substantially controlled by Ls + Lp				

OT_J = 25°C to 150°C ®K/W = °C/W

@ Repetitive Rating: Pulse width limited by max. junction temperature. See Translent Thermal Impedance Curve (Fig. 5). ③ @ $V_{dd} = -25V$, $T_{J} = 25^{\circ}C$ $L = 100 \ \mu H$, $R_{G} = 25\Omega$

 Pulse Test: Pulse width ≤ 300 μs, Outy Cycle ≤ 2%

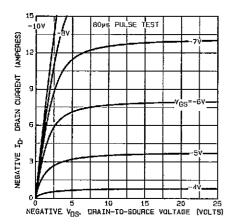


Fig. 1 — Typical Output Characteristics

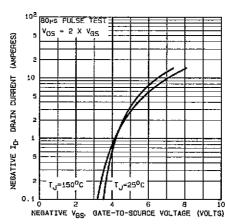


Fig. 2 — Typical Transfer Characteristics

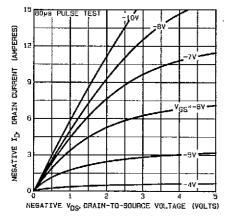


Fig. 3 — Typical Saturation Characteristics

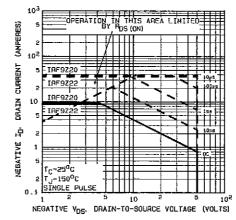


Fig. 4 — Maximum Safe Operating Area

C-381

Document Number: 90121

www.vishay.com C-381

INTERNATIONAL RECTIFIER

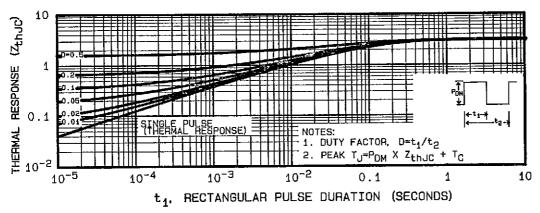


Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

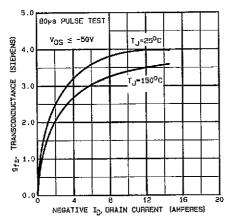


Fig. 6 — Typical Transconductance Vs. Drain Current

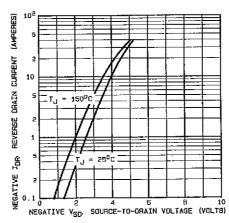


Fig. 7 — Typical Source-Drain Diode Forward Voltage

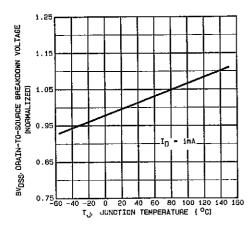


Fig. 8 — Breakdown Voltage Vs. Temperature

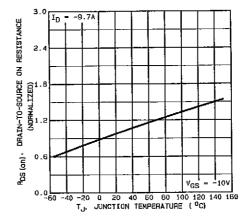


Fig. 9 — Normalized On-Resistance Vs. Temperature

C-382

11E D 4855452 0008634 0

INTERNATIONAL RECTIFIER

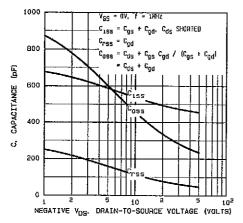


Fig. 10 — Typical Capacitance Vs. Drain-to-Source Voltage

IRF9Z20, IRF9Z22 Devices

T-39-19

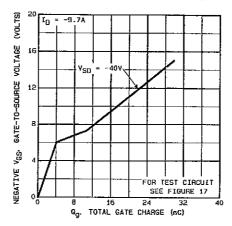


Fig. 11 — Typical Gate Charge Vs. Gate-to-Source Voltage

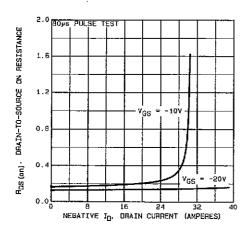


Fig. 12 — Typical On-Resistance Vs. Drain Current

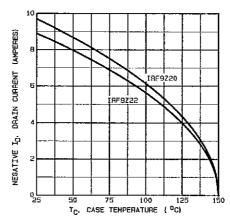


Fig. 13 -- Maximum Drain Current Vs. Case Temperature

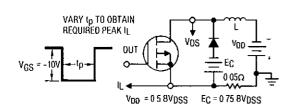


Fig. 14a — Clamped Inductive Test Circuit

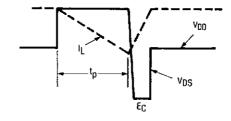
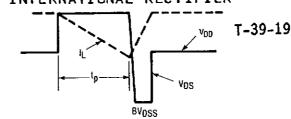


Fig. 14b — Clamped Inductive Waveforms

Document Number: 90121

C-383


www.vishay.com C-383

IRF9Z20, IRF9Z22 Devices

VANY I_P TO OBTAIN REQUIRED PEAK I_L

11E D 4855452 0008635 2

0 05Ω

Fig. 15a — Unclamped Inductive Test Circuit

Fig. 15b — Unclamped Inductive Load **Test Waveforms**

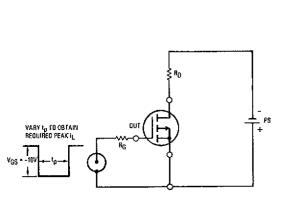


Fig. 16 - Switching Time Test Circuit

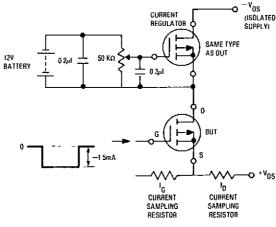
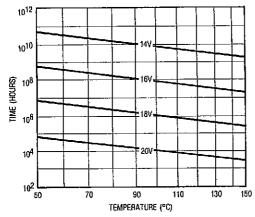
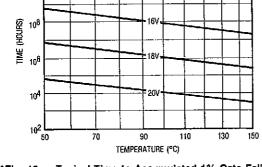




Fig. 17 — Gate Charge Test Circuit

10 RANDOM FAILURE RATE (FIT) 60% ÜCL PER 1000 HRS 90% UCL 99% UCL 20 FIT's æ 0.001 10 ____0.0001 150 130 110 TEMPERATURE (°C)

*Fig. 19 — Typical High Temperature Reverse Bias (HTRB) Failure Rate *Fig. 18 - Typical Time to Accumulated 1% Gate Fallure

*The data shown in correct as of April 15, 1987. This information is updated on a quarterly basis; for the latest reliability data, please contact your local IR field office.

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com
Revision: 12-Mar-07 1