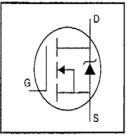
PD-95136

# International **IGR** Rectifier

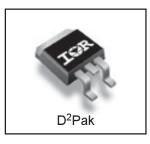
HEXFET<sup>®</sup> Power MOSFET

- Surface Mount
- Available in Tape & Reel
- Dynamic dv/dt Rating
- Repetitive Avalanche Rated
- Fast Switching
- Ease of Paralleling
- Simple Drive Requirements


Absolute Maximum Ratings

• Lead-Free

#### Description


Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The SMD-220 is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The SMD-220 is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application.



# IRF840SPbF





|                                        | Parameter                                                               | Max.                  | Units |  |
|----------------------------------------|-------------------------------------------------------------------------|-----------------------|-------|--|
| Ip @ Tc = 25°C                         | Continuous Drain Current, VGS @ 10 V                                    | 8.0                   |       |  |
| lp @ Tc = 100°C                        | T <sub>C</sub> = 100°C Continuous Drain Current, V <sub>GS</sub> @ 10 V |                       | A     |  |
| IDM                                    | Pulsed Drain Current ①                                                  | 32                    |       |  |
| Pp @ Tc = 25°C                         | Power Dissipation                                                       | 125                   | w     |  |
| P <sub>D</sub> @ T <sub>A</sub> = 25°C | Power Dissipation (PCB Mount)**                                         | 3.1                   |       |  |
|                                        | Linear Derating Factor                                                  | 1.0                   | w/∘c  |  |
|                                        | Linear Derating Factor (PCB Mount)**                                    | 0.025                 |       |  |
| V <sub>GS</sub>                        | Gate-to-Source Voltage                                                  | ±20                   | V     |  |
| EAS                                    | Single Pulse Avalanche Energy ②                                         | 510                   | mJ    |  |
| IAB                                    | Avalanche Current ①                                                     | 8.0                   | A     |  |
| EAR                                    | Repetitive Avalanche Energy ①                                           | 13                    | mJ    |  |
| dv/dt                                  | Peak Diode Recovery dv/dt ③                                             | 3.5                   | V/ns  |  |
| TJ, TSTG                               | Junction and Storage Temperature Range                                  | -55 to +150           | ∘C    |  |
|                                        | Soldering Temperature, for 10 seconds                                   | 300 (1.6mm from case) |       |  |

#### Thermal Resistance

|                  | Parameter                         | Min. | Тур. | Max. | Units |
|------------------|-----------------------------------|------|------|------|-------|
| Rejc             | Junction-to-Case                  |      |      | 1.0  |       |
| Reja             | Junction-to-Ambient (PCB mount)** |      | -    | 40   | °C/W  |
| R <sub>BJA</sub> | Junction-to-Ambient               | _    |      | 62   |       |

\*\* When mounted on 1" square PCB (FR-4 or G-10 Material).

For recommended footprint and soldering techniques refer to application note #AN-994.

05/10/04 www.vishay.com

Document Number: 91071

|               | Parameter                            | Min. | Typ. | Max. | Units | Test Conditions                                                   |  |
|---------------|--------------------------------------|------|------|------|-------|-------------------------------------------------------------------|--|
| V(BR)DSS      | Drain-to-Source Breakdown Voltage    | 500  |      |      | V     | V <sub>GS</sub> =0V, I <sub>D</sub> = 250µA                       |  |
| ΔV(BR)DSS/ΔTJ | Breakdown Voltage Temp. Coefficient  | _    | 0.78 |      | V/°C  | Reference to 25°C, ID= 1mA                                        |  |
| RDS(on)       | Static Drain-to-Source On-Resistance |      |      | 0.85 | Ω     | VGS=10V, ID=4.8A ④                                                |  |
| VGS(th)       | Gate Threshold Voltage               | 2.0  | —    | 4.0  | V     | V <sub>DS</sub> =V <sub>GS</sub> , I <sub>D</sub> = 250µA         |  |
| g1s           | Forward Transconductance             | 4.9  |      |      | S     | V <sub>DS</sub> =50V, I <sub>D</sub> =4.8A ④                      |  |
|               | Drain to Course Lookage Current      | -    |      | 25   |       | V <sub>DS</sub> =500V, V <sub>GS</sub> =0V                        |  |
| DSS           | Drain-to-Source Leakage Current      | -    | -    | 250  | μA    | V <sub>DS</sub> =400V, V <sub>GS</sub> =0V, T <sub>J</sub> =125°C |  |
| lass          | Gate-to-Source Forward Leakage       | _    | -    | 100  | nA    | V <sub>GS</sub> =20V                                              |  |
| lgss          | Gate-to-Source Reverse Leakage       | -    | —    | -100 |       | V <sub>GS</sub> =-20V                                             |  |
| Qg            | Total Gate Charge                    | -    | —    | 63   |       | I <sub>D</sub> =8.0A                                              |  |
| Qgs           | Gate-to-Source Charge                | —    | _    | 9.3  | nC    | V <sub>DS</sub> =400V                                             |  |
| Qgd           | Gate-to-Drain ("Miller") Charge      | _    |      | 32   |       | V <sub>GS</sub> =10V See Fig. 6 and 13 ④                          |  |
| td(on)        | Turn-On Delay Time                   |      | 14   | _    |       | V <sub>DD</sub> =250V                                             |  |
| tr            | Rise Time                            | -    | 23   | -    | ns    | I <sub>D</sub> =8.0A                                              |  |
| to(off)       | Turn-Off Delay Time                  | -    | 49   | -    | 113   | R <sub>G</sub> =9.1Ω                                              |  |
| tı            | Fall Time                            |      | 20   |      |       | R <sub>D</sub> =31Ω See Figure 10 ④                               |  |
| Lo            | Internal Drain Inductance            | _    | 4.5  | _    | nH    | Between lead,<br>6 mm (0.25in.)                                   |  |
| Ls            | Internal Source Inductance           | -    | 7.5  | -    |       | from package<br>and center of<br>die contact                      |  |
| Ciss          | Input Capacitance                    | -    | 1300 |      |       | V <sub>GS</sub> =0V                                               |  |
| Coss          | Output Capacitance                   |      | 310  | -    | pF    | V <sub>DS</sub> = 25V                                             |  |
| Crss          | Reverse Transfer Capacitance         | _    | 120  | -    |       | f=1.0MHz See Figure 5                                             |  |

#### Electrical Characteristics @ T<sub>J</sub> = 25°C (unless otherwise specified)

#### Source-Drain Ratings and Characteristics

|                 | Parameter                                 | Min.                                                                 | Тур. | Max. | Units | Test Conditions                         |
|-----------------|-------------------------------------------|----------------------------------------------------------------------|------|------|-------|-----------------------------------------|
| ls              | Continuous Source Current<br>(Body Diode) | -                                                                    | _    | 8.0  |       | MOSFET symbol showing the               |
| I <sub>SM</sub> | Pulsed Source Current<br>(Body Diode) ①   |                                                                      | _    | 32   | A     | integral reverse<br>p-n junction diode. |
| Vsd             | Diode Forward Voltage                     | -                                                                    | -    | 2.0  | V     | T_=25°C, Is=8.0A, VGS=0V @              |
| trr             | Reverse Recovery Time                     | _                                                                    | 460  | 970  | ns    | T_J=25°C, IF=8.0A                       |
| Qrr             | Reverse Recovery Charge                   |                                                                      | 4.2  | 8.9  | μC    | di/dt=100A/µs ⊛                         |
| ton             | Forward Turn-On Time                      | Intrinsic turn-on time is neglegible (turn-on is dominated by Ls+LD) |      |      |       |                                         |

#### Notes:

 Repetitive rating; pulse width limited by max. junction temperature (See Figure 11) ③ I<sub>SD</sub>≤8.0A, di/dt≤100A/µs, V<sub>DD</sub>≤V<sub>(BR)DSS</sub>, T<sub>J</sub>≤150°C

② V<sub>DD</sub>=50V, starting T<sub>J</sub>=25°C, L=14mH R<sub>G</sub>=25Ω, I<sub>AS</sub>=8.0A (See Figure 12) ④ Pulse width  $\leq$  300 µs; duty cycle  $\leq$ 2%.

Document Number: 91071

k

# International **ICPR** Rectifier

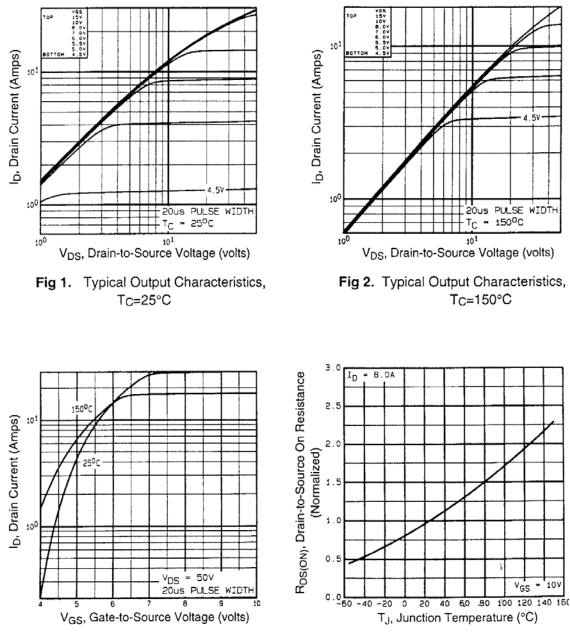
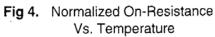
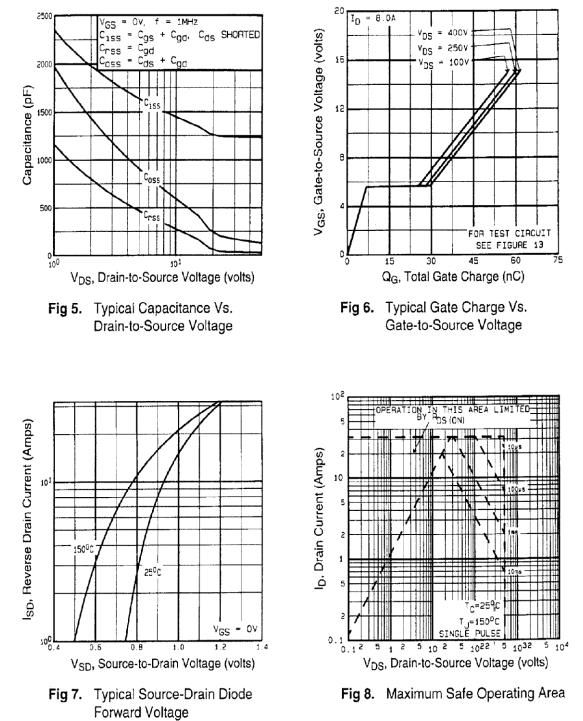





Fig 3. Typical Transfer Characteristics



Document Number: 91071

International



Document Number: 91071



8.0

1D, Drain Current (Amps)

0.0L 25

50

75

100

T<sub>C</sub>, Case Temperature (°C)

Fig 9. Maximum Drain Current Vs. Case Temperature

125

150



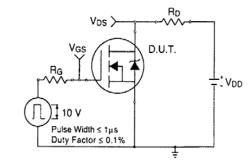



Fig 10a. Switching Time Test Circuit

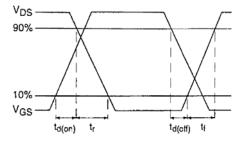



Fig 10b. Switching Time Waveforms

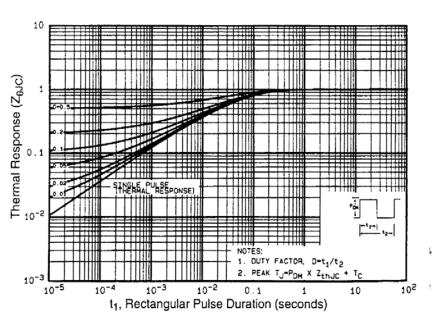



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Document Number: 91071

# International

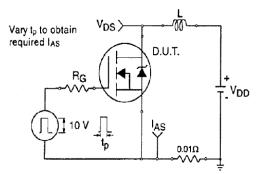



Fig 12a. Unclamped Inductive Test Circuit

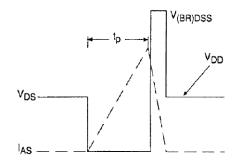



Fig 12b. Unclamped Inductive Waveforms

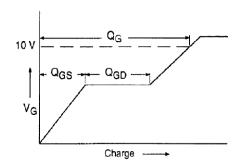
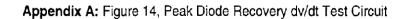




Fig 13a. Basic Gate Charge Waveform



Document Number: 91071

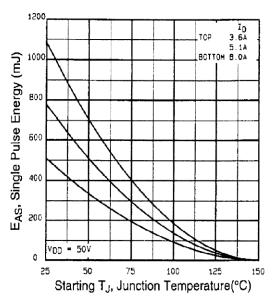



Fig 12c. Maximum Avalanche Energy Vs. Drain Current

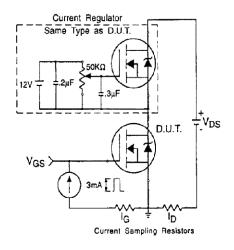
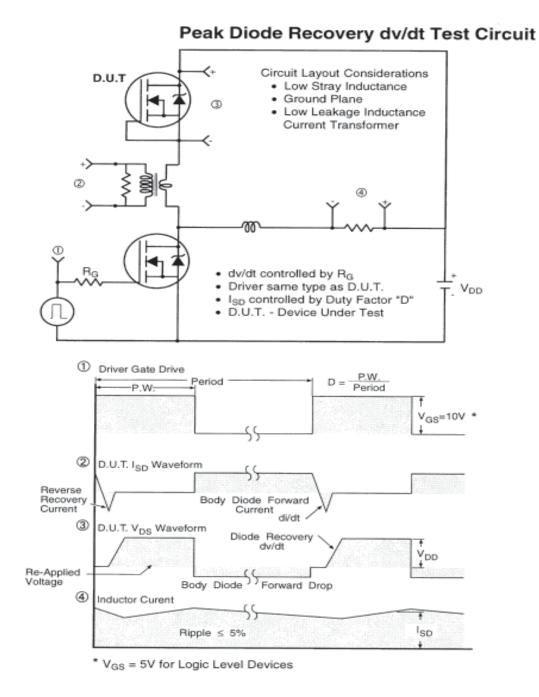
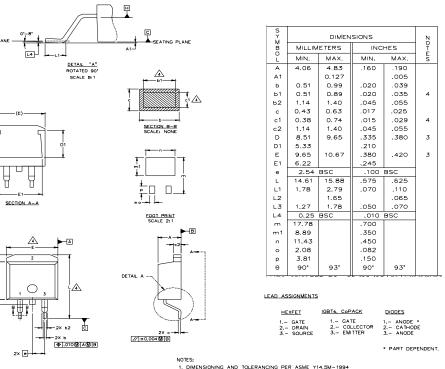



Fig 13b. Gate Charge Test Circuit

.





Fig 14. For N-Channel HEXFETS

Document Number: 91071

#### D<sup>2</sup>Pak Package Outline

ŕ

Dimensions are shown in millimeters (inches)



2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]

3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

A. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

5. CONTROLLING DIMENSION; INCH.

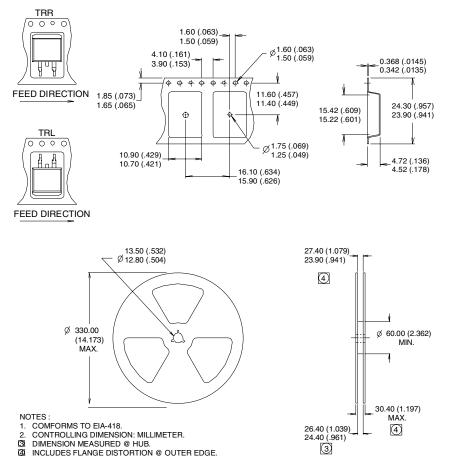
#### D<sup>2</sup>Pak Part Marking Information (Lead-Free)

╘┰╼┰═

EXAMPLE: THIS IS AN IRF530S WITH LOT CODE 8024 ASSEMBLED ON WW 02, 2000 INTERNATIONAL RECTIFIER LOGO F530S IN THE ASSEMBLY LINE "L" **TOR** 0021 DATE CODE Note: "P" in assembly line position indicates "Lead-Free" 80 24 YEAR 0 = 2000 ASSEMBLY H ł WEEK 02 LOT CODE LINE L OR PART NUMBER INTERNATIONAL RECTIFIER F 530S LOGO TOR PO02 DATE CODE 80 P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL) YEAR 0 = 2000 ASSEMBLY LOT CODE ł П Å WEEK 02 A = ASSEMBLY SITE CODE

Document Number: 91071

www.vishay.com 8


PART NUMBER

International **TOR** Rectifier

International

### D<sup>2</sup>Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)



Data and specifications subject to change without notice.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 05/04

> www.vishay.com 9

Document Number: 91071



Vishay

#### Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier<sup>®</sup>, IR<sup>®</sup>, the IR logo, HEXFET<sup>®</sup>, HEXSense<sup>®</sup>, HEXDIP<sup>®</sup>, DOL<sup>®</sup>, INTERO<sup>®</sup>, and POWIRTRAIN<sup>®</sup> are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.