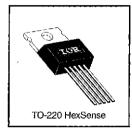


HEXFET® Power MOSFET

- Dynamic dv/dt Rating
- Repetitive Avalanche Rated
- Current Sense
- Fast Switching
- · Ease of Paralleling
- Simple Drive Requirements



Description

Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The HEXSense device provides an accurate fraction of the drain current through the additional two leads to be used for control or protection of the device. These devices exhibit similar electrical and thermal characteristics as their IRF-series equivalent part numbers. The provision of a kelvin source connection effectively eliminates problems of common source inductance when the HEXSense is used as a fast, high-current switch in non current-sensing applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
ID @ Tc = 25°C	Continuous Drain Current, VGS @ 10 V	18	
Ip @ Tc = 100°C	Continuous Drain Current, VGS @ 10 V	11	Α
I _{DM}	Pulsed Drain Current ①	72	
P _D @ T _C = 25°C	Power Dissipation	125	W
	Linear Derating Factor	1.0	W/°C
V _{GS}	Gate-to-Source Voltage	±20	V
Eas	Single Pulse Avalanche Energy ②	430	mJ
I _{AR}	Avalanche Current ①	18	Α
EAR	Repetitive Avalanche Energy ①	13	rnJ
dv/dt	Peak Diode Recovery dv/dt ©	5.0	V/ns
TJ	Operating Junction and	-55 to +150	
Targ	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1 N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
Raic .	Junction-to-Case			1.0	
Recs	Case-to-Sink, Flat, Greased Surface	_	0.50	_	°C/W
RAJA	Junction-to-Ambient	-		62	Ì

Document Number: 90034

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	200		_	V	V _{GS} =0V, I _D = 250μA
AV _{(BR)DSS} /AT _J	Breakdown Voltage Temp. Coefficient	=	0.29		V/°C	Reference to 25°C, ID= 1mA
Ros(on)	Static Drain-to-Source On-Resistance	L	Ι	0.18	Ω	V _{GS} =10V, I _D =11A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	V _{DS} =V _{GS} , I _D = 250μA
g ts	Forward Transconductance	6.5			S	V _{DS} =50V, l _D =11A ②
loss	Drain-to-Source Leakage Current		. –	25	μА	V _{DS} =200V, V _{GS} =0V
IDSS	Diant-to-Source Leakage Current	_	_	250	μм	V _{DS} =160V, V _{GS} =0V, T _J =125°C
1	Gate-to-Source Forward Leakage	_		100	nA	V _{GS} =20V
IGSS	Gate-to-Source Reverse Leakage	L —		-100	I IIA	V _{GS} =-20V
Q_g	Total Gate Charge	—	_	70		I _D =18A
Qgs	Gate-to-Source Charge	_		13	nC	V _{DS} =160V
Qgd	Gate-to-Drain ("Miller") Charge	l - <u>_</u>		39		V _{GS} =10V @
t _{d(on)}	Turn-On Delay Time	<u> </u>	14			V _{DD} =100V
tr	Rìse Time	<u> </u>	_51		ns	I _D =18A
t _{d(off)}	Turn-Off Delay Time	<u> </u>	45		1.0	R _G =9.1Ω
t _f	Fall Time	—	36	_		R _D =3.2Ω @
L _D	Internal Drain Inductance	_	4.5	1	nH	Between lead, 6 mm (0.25in.) from package
Ls	Internal Source Inductance	-	7.5	+	, IIII	from package and center of die contact
Ciss	Input Capacitance		1300	_		V _{GS} =0V
Coss	Output Capacitance		430	_	рF	V _{DS} = 25V
Crss	Reverse Transfer Capacitance	_	130	-		f=1.0MHz
<u>r</u>	Current Sensing Ratio	2600		2880	_	I _D =18A, V _{GS} =10V
Coss	Output Capacitance of Sensing Cells		9.0		рF	V _{GS} =0V, V _{DS} = 25V, f=1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
ls	Continuous Source Current (Body Diode)		_	18	A	MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①	_	_	72	Α.	integral reverse G C C C C C C C C C C C C C C C C C C
V _{SD}	Diode Forward Voltage	_	_	2.0	V	TJ=25°C, IS=18A, VGS=0V @
tr:	Reverse Recovery Time	—	300	610	ns	TJ=25°C, I⊨=18A
Qп	Reverse Recovery Charge		3.4	7.1	μC	di/dt=100A/μs ④
ton	Forward Turn-On Time	Intrinsi	Intrinsic turn-on time is neglegible (turn-on is dominated by Ls+Lp)			

Notes:

- Repetitive rating; pulse width limited by max, junction temperature
- ③ I_{SD}≤18A, di/dt≤150A/µs, V_{DD}≤V_{(BR)DSS}, T.i≤150°C
- ② V_{DD} =50V, starting T_J =25°C, L=2.0mH R_G =25 Ω , I_{AS} =18A
- ④ Pulse width ≤ 300 μs; duty cycle ≤2%.



Fig 1. Typical Output Characteristics, T_C=25°C

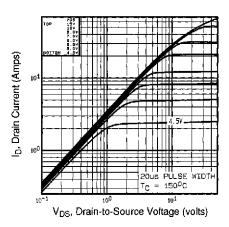


Fig 2. Typical Output Characteristics, Tc=150°C

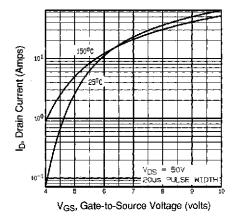


Fig 3. Typical Transfer Characteristics

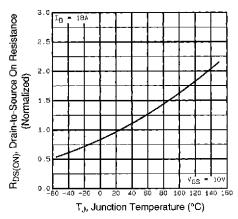


Fig 4. Normalized On-Resistance Vs. Temperature

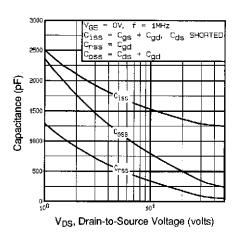


Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

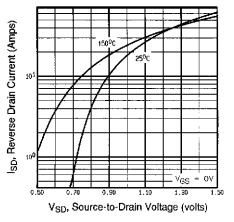


Fig 7. Typical Source-Drain Diode Forward Voltage



Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

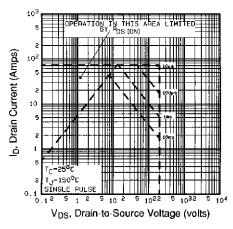


Fig 8. Maximum Safe Operating Area

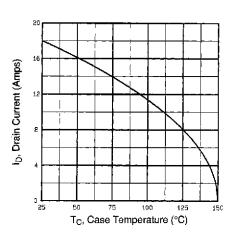


Fig 9. Maximum Drain Current Vs. Case Temperature



Fig 10a. Switching Time Test Circuit

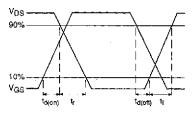


Fig 10b. Switching Time Waveforms

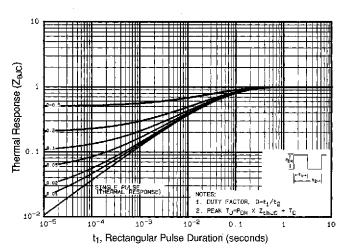


Fig 11. Maximum Effective Transient Thermai Impedance, Junction-to-Case

Document Number: 90034

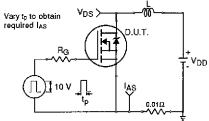


Fig 12a. Unclamped Inductive Test Circuit

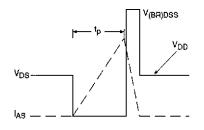


Fig 12b. Unclamped Inductive Waveforms

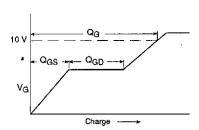


Fig 13a. Basic Gate Charge Waveform

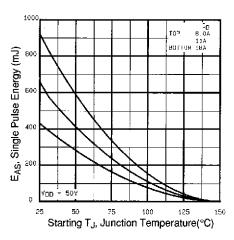


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

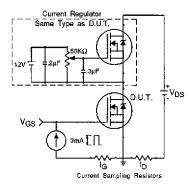


Fig 13b. Gate Charge Test Circuit

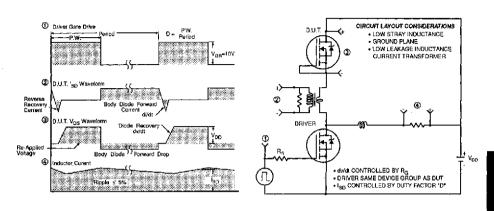


Fig 14. Peak Diode Recovery dv/dt Test Circuit

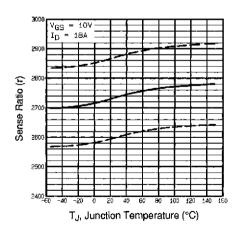


Fig 15. Typical HEXSense Ratio Vs. Junction Temperature

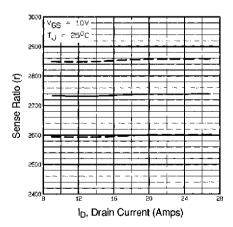


Fig 16. Typical HEXSense Ratio Vs. Drain Current

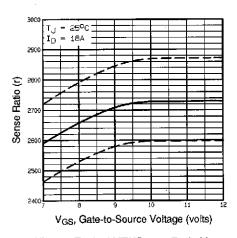
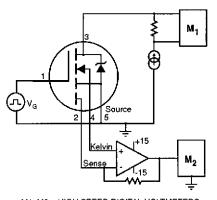



Fig 17. Typical HEXSense Ratio Vs. Gate Voltage

M1, M2 = HIGH SPEED DIGITAL VOLTMETERS

Fig 18. HEXSense Ratio Test Circuit

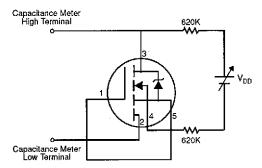


Fig 19. HEXSense Sensing Cell Output Capacitance Test Circuit

Appendix B: Package Outline Mechanical Drawing - See page 1510

Appendix C: Part Marking Information - See page 1517

International Rectifier

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products. Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier®, IR®, the IR logo, HEXFET®, HEXSense®, HEXDIP®, DOL®, INTERO®, and POWIRTRAIN® are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com Revision: 12-Mar-07