

#### STW54NM65N

# N-channel 600 V, 0.054 $\Omega$ - 50 A - TO-247 second generation MDmesh<sup>TM</sup> Power MOSFET

Preliminary Data

#### **Features**

| Туре       | V <sub>DSS</sub><br>(@Tjmax) | R <sub>DS(on)</sub><br>max | I <sub>D</sub> |
|------------|------------------------------|----------------------------|----------------|
| STW54NM65N | 710 V                        | < 0.065 Ω                  | 50 A           |

- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance

#### **Application**

■ Switching applications

#### **Description**

This series of devices is designed using the second generation of MDmesh™ technology. This revolutionary Power MOSFET associates a new vertical structure to the Company's strip layout to yield one of the world's lowest on-resistance and gate charge. It is therefore suitable for the most demanding high efficiency converters.

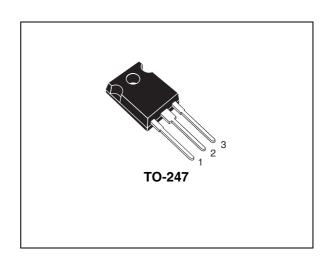



Figure 1. Internal schematic diagram

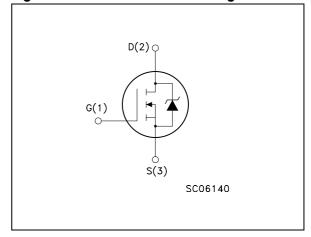



Table 1. Device summary

| Order code | Marking | Package | Packaging |
|------------|---------|---------|-----------|
| STW54NM65N | 54NM65N | TO-247  | Tube      |

Contents STW54NM65N

## **Contents**

| 1 | Electrical ratings         | 3 |
|---|----------------------------|---|
| 2 | Electrical characteristics | 4 |
| 3 | Test circuit               | 6 |
| 4 | Package mechanical data    | 7 |
| 5 | Revision history           | 9 |

STW54NM65N Electrical ratings

# 1 Electrical ratings

Table 2. Absolute maximum ratings

| Symbol                         | Parameter                                            | Value      | Unit |
|--------------------------------|------------------------------------------------------|------------|------|
| V <sub>DS</sub>                | Drain-source voltage (V <sub>GS</sub> = 0)           | 650        | V    |
| V <sub>GS</sub>                | Gate- source voltage                                 | ± 25       | ٧    |
| I <sub>D</sub>                 | Drain current (continuous) at T <sub>C</sub> = 25°C  | 50         | Α    |
| I <sub>D</sub>                 | Drain current (continuous) at T <sub>C</sub> = 100°C | 31.5       | Α    |
| I <sub>DM</sub> <sup>(1)</sup> | Drain current (pulsed)                               | 200        | Α    |
| P <sub>TOT</sub>               | Total dissipation at T <sub>C</sub> = 25°C           | 350        | W    |
| dv/dt (2)                      | Peak diode recovery voltage slope                    | 15         | V/ns |
| T <sub>stg</sub>               | Storage temperature                                  | -55 to 150 | °C   |
| Tj                             | Max. operating junction temperature                  | 150        | °C   |

<sup>1.</sup> Pulse width limited by safe operating area

Table 3. Thermal data

| Symbol         | Parameter                                      | Value | Unit |
|----------------|------------------------------------------------|-------|------|
| Rthj-case      | Thermal resistance junction-case max           | 0.36  | °C/W |
| Rthj-amb       | Thermal resistance junction-ambient max        | 50    | °C/W |
| T <sub>I</sub> | Maximum lead temperature for soldering purpose | 300   | °C   |

Table 4. Avalanche characteristics

| Symbol          | Parameter                                                                                | Value | Unit |
|-----------------|------------------------------------------------------------------------------------------|-------|------|
| I <sub>AS</sub> | Avalanche current, repetitive or not-repetitive (pulse width limited by $T_{j}$ max)     | TBD   | А    |
| E <sub>AS</sub> | Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AS}$ , $V_{DD} = 50$ V) | TBD   | mJ   |

<sup>2.</sup>  $I_{SD} \leq$  50 A, di/dt  $\leq$  400 A/ $\mu$ s,  $V_{DD}$  = 80%  $V_{(BR)DSS}$ 

Electrical characteristics STW54NM65N

#### 2 Electrical characteristics

(T<sub>CASE</sub>=25°C unless otherwise specified)

Table 5. On/off states

| Symbol               | Parameter                                                | Test conditions                                                       | Min. | Тур.  | Max.     | Unit                     |
|----------------------|----------------------------------------------------------|-----------------------------------------------------------------------|------|-------|----------|--------------------------|
| V <sub>(BR)DSS</sub> | Drain-source<br>breakdown voltage                        | $I_D = 1 \text{mA}, V_{GS} = 0$                                       | 650  |       |          | V                        |
| dv/dt (1)            | Drain source voltage slope                               | $V_{DD}$ = 520 V, $I_{D}$ = 50 A, $V_{GS}$ =10 V                      |      | TBD   |          | V/ns                     |
| I <sub>DSS</sub>     | Zero gate voltage<br>drain current (V <sub>GS</sub> = 0) | V <sub>DS</sub> = Max rating<br>V <sub>DS</sub> = Max rating, @125 °C |      |       | 1<br>100 | μ <b>Α</b><br>μ <b>Α</b> |
| I <sub>GSS</sub>     | Gate-body leakage current (V <sub>DS</sub> = 0)          | V <sub>GS</sub> = ± 20 V                                              |      |       | 100      | nA                       |
| V <sub>GS(th)</sub>  | Gate threshold voltage                                   | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                                  | 2    | 3     | 4        | V                        |
| R <sub>DS(on)</sub>  | Static drain-source on resistance                        | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 25 A                         |      | 0.054 | 0.065    | Ω                        |

<sup>1.</sup> Characteristic value at turn off on inductive load

Table 6. Dynamic

| Symbol                                                   | Parameter                                                         | Test conditions                                                         | Min. | Тур.              | Max. | Unit           |
|----------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|------|-------------------|------|----------------|
| 9 <sub>fs</sub> <sup>(1)</sup>                           | Forward transconductance                                          | V <sub>DS</sub> =15 V <sub>,</sub> I <sub>D</sub> = 25 A                |      | TBD               |      | S              |
| C <sub>iss</sub><br>C <sub>oss</sub><br>C <sub>rss</sub> | Input capacitance Output capacitance Reverse transfer capacitance | $V_{DS} = 50 \text{ V, f} = 1 \text{ MHz,}$<br>$V_{GS} = 0$             |      | 6000<br>320<br>35 |      | pF<br>pF<br>pF |
| Coss eq. (2)                                             | Equivalent output capacitance                                     | $V_{GS} = 0$ , $V_{DS} = 0$ to 520 V                                    |      | TBD               |      | pF             |
| Q <sub>g</sub><br>Q <sub>gs</sub><br>Q <sub>gd</sub>     | Total gate charge<br>Gate-source charge<br>Gate-drain charge      | $V_{DD}$ = 520 V, $I_{D}$ = 50 A,<br>$V_{GS}$ = 10 V,<br>(see Figure 4) |      | 185<br>TBD<br>TBD |      | nC<br>nC<br>nC |
| R <sub>g</sub>                                           | Gate input resistance                                             | f=1 MHz gate DC bias=0<br>Test signal level = 20 mV<br>open drain       |      | 1.3               |      | Ω              |

<sup>1.</sup> Pulsed: Pulse duration = 300  $\mu$ s, duty cycle 1.5 %

<sup>2.</sup>  $C_{oss\ eq.}$  is defined as a constant equivalent capacitance giving the same charging time as  $C_{oss}$  when  $V_{DS}$  increases from 0 to 80%  $V_{DS}$ 

Table 7. Switching times

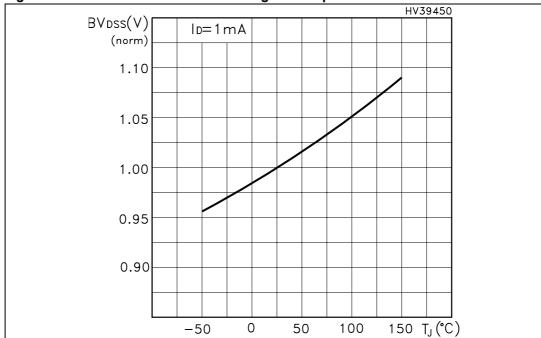

| Symbol              | Parameter           | Test conditions                                | Min. | Тур. | Max. | Unit |
|---------------------|---------------------|------------------------------------------------|------|------|------|------|
| t <sub>d(on)</sub>  | Turn-on delay time  | V <sub>DD</sub> = 325 V, I <sub>D</sub> = 25 A |      | TBD  |      | ns   |
| t <sub>r</sub>      | Rise time           | $R_{G} = 4.7 \Omega V_{GS} = 10 V$             |      | TBD  |      | ns   |
| t <sub>d(off)</sub> | Turn-off delay time | (see Figure 3)                                 |      | TBD  |      | ns   |
| t <sub>f</sub>      | Fall time           | (See Figure 5)                                 |      | TBD  |      | ns   |

Table 8. Source drain diode

| Symbol                                                 | Parameter                                                              | Test conditions                                                                               | Min | Тур.              | Max       | Unit          |
|--------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----|-------------------|-----------|---------------|
| I <sub>SD</sub>                                        | Source-drain current Source-drain current (pulsed)                     |                                                                                               |     |                   | 50<br>200 | A<br>A        |
| V <sub>SD</sub> <sup>(2)</sup>                         | Forward on voltage                                                     | $I_{SD} = 25 \text{ A}, V_{GS} = 0$                                                           |     |                   | 1.3       | V             |
| t <sub>rr</sub><br>Q <sub>rr</sub><br>I <sub>RRM</sub> | Reverse recovery time Reverse recovery charge Reverse recovery current | $I_{SD}$ = 50 A, di/dt = 100 A/ $\mu$ s<br>$V_{DD}$ = 100 V<br>(see Figure 5)                 |     | TBD<br>TBD<br>TBD |           | ns<br>μC<br>A |
| t <sub>rr</sub><br>Q <sub>rr</sub><br>I <sub>RRM</sub> | Reverse recovery time Reverse recovery charge Reverse recovery current | $I_{SD}$ = 50 A, di/dt = 100 A/ $\mu$ s<br>$V_{DD}$ = 100 V, $T_j$ = 150 °C<br>(see Figure 5) |     | TBD<br>TBD<br>TBD |           | ns<br>μC<br>A |

- 1. Pulse width limited by safe operating area
- 2. Pulsed: Pulse duration = 300  $\mu$ s, duty cycle 1.5 %

Figure 2. Normalized breakdown voltage vs temperature



477

Test circuit STW54NM65N

#### 3 Test circuit

Figure 3. Switching times test circuit for resistive load

Figure 4. Gate charge test circuit

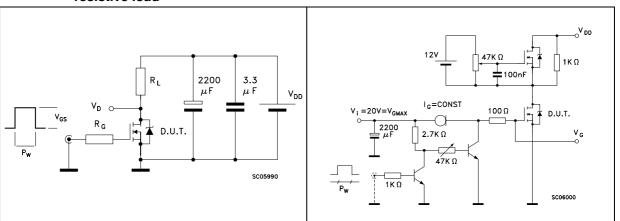



Figure 5. Test circuit for inductive load switching and diode recovery times

Figure 6. Unclamped Inductive load test circuit

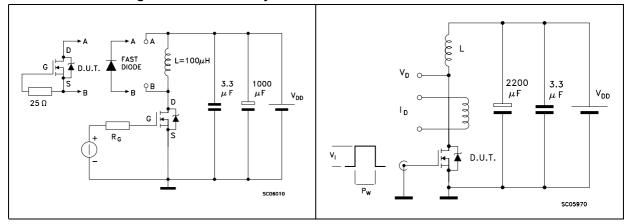
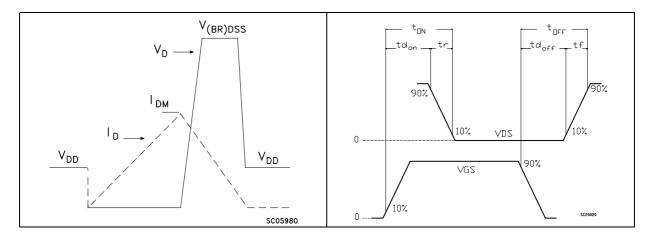
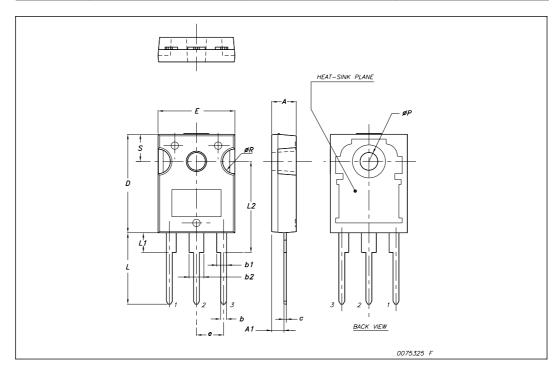




Figure 7. Unclamped inductive waveform

Figure 8. Switching time waveform



47/


## 4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: <a href="https://www.st.com">www.st.com</a>

**47/** 

#### **TO-247 Mechanical data**

| Dim.   |       | mm.   |       |
|--------|-------|-------|-------|
| Dilli. | Min.  | Тур   | Max.  |
| Α      | 4.85  |       | 5.15  |
| A1     | 2.20  |       | 2.60  |
| b      | 1.0   |       | 1.40  |
| b1     | 2.0   |       | 2.40  |
| b2     | 3.0   |       | 3.40  |
| С      | 0.40  |       | 0.80  |
| D      | 19.85 |       | 20.15 |
| E      | 15.45 |       | 15.75 |
| е      |       | 5.45  |       |
| L      | 14.20 |       | 14.80 |
| L1     | 3.70  |       | 4.30  |
| L2     |       | 18.50 |       |
| øΡ     | 3.55  |       | 3.65  |
| øR     | 4.50  |       | 5.50  |
| S      |       | 5.50  |       |



STW54NM65N Revision history

# 5 Revision history

Table 9. Document revision history

| Date        | Revision | Changes         |
|-------------|----------|-----------------|
| 24-Jul-2008 | 1        | Initial release |

9/10

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577