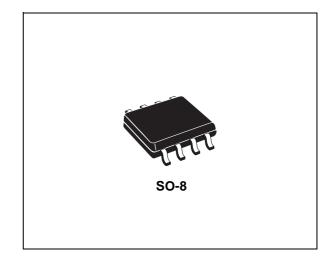
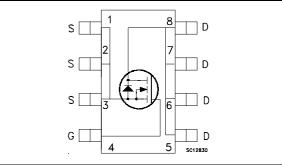


N-CHANNEL 30V - 0.015 Ω - 9A SO-8 LOW GATE CHARGE STripFET™ II POWER MOSFET

ТҮРЕ	V _{DSS}	R _{DS(on)}	ID
STS9NF30L	30 V	<0.020 Ω	9 A


- TYPICAL $R_{DS}(on) = 0.020 \Omega @ 5 V$
- TYPICAL Qg = 9.5 nC @ 4.5 V
- OPTIMAL R_{DS}(on) x Qg TRADE-OFF
- CONDUCTION LOSSES REDUCED
- SWITCHING LOSSES REDUCED

DESCRIPTION


This application specific Power MOSFET is the second generation of STMicroelectronis unique "Single Feature SizeTM" strip-based process. The resulting transistor shows the best trade-off between on-resistance and gate charge. When used as high and low side in buck regulators, it gives the best performance in terms of both conduction and switching losses. This is extremely important for motherboards where fast switching and high efficiency are of paramount importance.

APPLICATIONS

 SPECIFICALLY DESIGNED AND OPTIMISED FOR HIGH EFFICIENCY CPU CORE DC/DC CONVERTERS FOR MOBILE PC_S

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	30	V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	30	V
V _{GS}	Gate- source Voltage	± 18	V
I _D	Drain Current (continuous) at $T_C = 25^{\circ}C$	9	A
ID	Drain Current (continuous) at T _C = 100°C	5.7	A
I _{DM} (●)	Drain Current (pulsed)	36	A
P _{tot}	Total Dissipation at $T_C = 25^{\circ}C$	2.5	W

(•) Pulse width limited by safe operating area.

December 2002

THERMAL DATA

Rthj-amb (*)Thermal Resistance Junction-ambient Max Tj Maximum Operating Junction Temperature Max T _{stg} Storage Temperature Max	50 150 -55 to 150	W\Q° °C °C
--	-------------------------	------------------

(*) When mounted on FR-4 board with 0.5 in² pad of Cu.

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \text{ °C}$ unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _(BR) DSS	Drain-source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0	30			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T _C = 125°C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 18 V			±100	nA

ON (*)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	1			V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V V _{GS} = 5 V	I _D = 4.5 A I _D = 4.5 A		0.015 0.020	0.020 0.035	Ω Ω

DYNAMIC

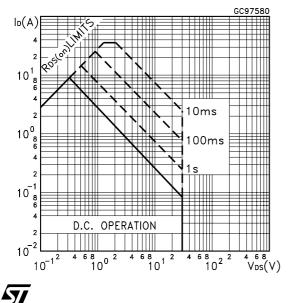
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	V_{DS} =15 V I_D = 4.5 A		13		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		730 265 60		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

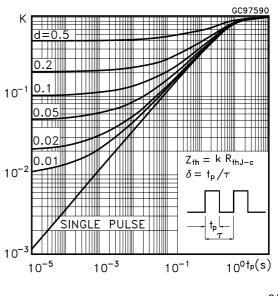
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time			15 80		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V_{DD} = 24 V I _D = 9 A V _{GS} = 4.5 V (see test circuit, Figure 2)		9.5 3 4	12.5	nC nC nC

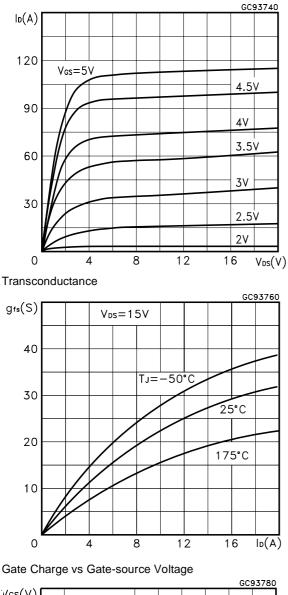
SWITCHING OFF

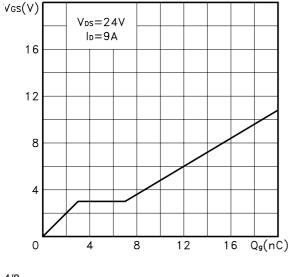

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	$V_{DD} = 15 V$ R _G = 4.7 Ω , (Resistive Load)	I _D = 4.5 A V _{GS} = 4.5 V , Figure 3)		38 24		ns ns

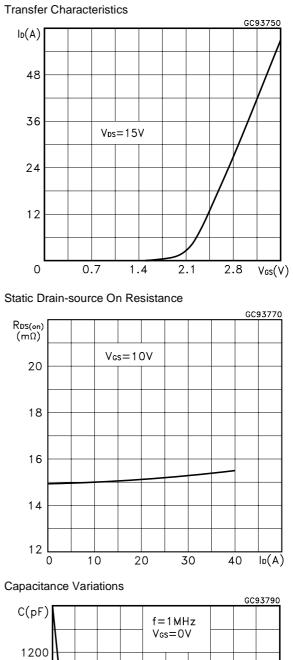
SOURCE DRAIN DIODE

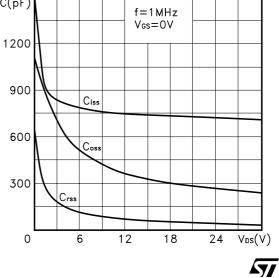

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (●)	Source-drain Current Source-drain Current (pulsed)					9 36	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 9 A	$V_{GS} = 0$			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 9 A$ $V_{DD} = 20 V$ (see test circu	di/dt = 100A/µs T _j = 150°C uit, Figure 3)		38 30 1.6		ns nC A

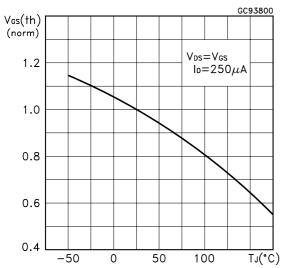
(*)Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
(•)Pulse width limited by safe operating area.

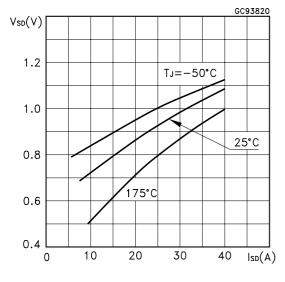

Safe Operating Area

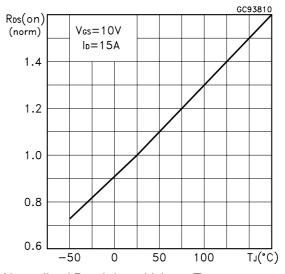



Thermal Impedance

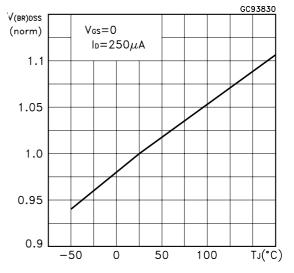



Output Characteristics





Normalized Gate Threshold Voltage vs Temperature


Source-drain Diode Forward Characteristics

Thermal Impedance

Normalized Breakdown Voltage Temperature.

57

Fig. 1: Switching Times Test Circuits For Resistive Load

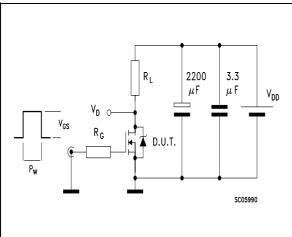
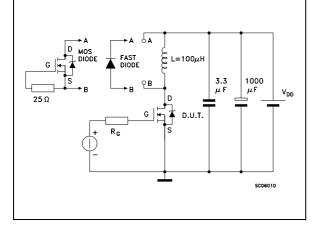
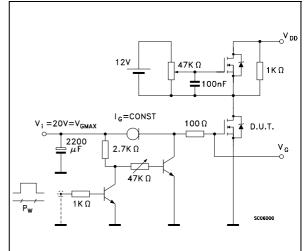
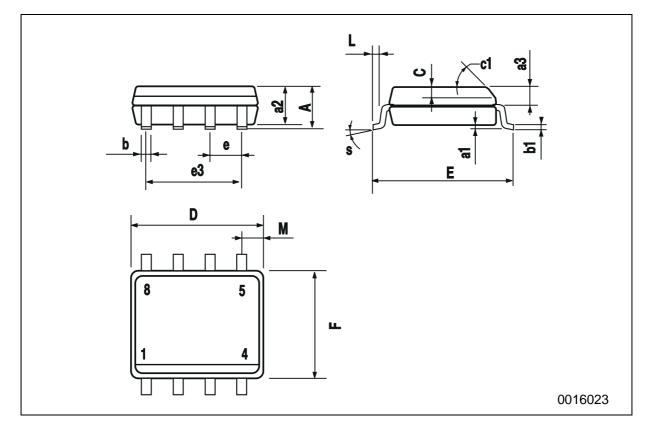




Fig. 3: Test Circuit For Diode Recovery Behaviour


Fig. 2: Gate Charge test Circuit

57

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			1.75			0.068	
a1	0.1		0.25	0.003		0.009	
a2			1.65			0.064	
a3	0.65		0.85	0.025		0.033	
b	0.35		0.48	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.019	
c1			45	(typ.)			
D	4.8		5.0	0.188		0.196	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		3.81			0.150		
F	3.8		4.0	0.14		0.157	
L	0.4		1.27	0.015		0.050	
М			0.6			0.023	
S			8 (r	nax.)			

SO-8 MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

8/8