

AIS226DS

MEMS inertial sensor 2-axis, low g accelerometer with digital output

Preliminary Data

Features

- 3.3 V single supply operation
- 1.8 V compatible IOs
- SPI digital output interface^(a)
- 14 bit resolution
- Interrupt activated by motion
- Programmable interrupt threshold
- Embedded self-test
- High shock survivability
- ECOPACK[®] compliant
- Extended temperature range -40 °C to +105 °C

Description

The AIS226DS is a two axes digital output accelerometer that includes a sensing element and an IC interface able to take the information from the sensing element and to provide the measured acceleration signals to the external world through an SPI serial interface.

The sensing element, capable of detecting the acceleration, is manufactured using a dedicated process developed by ST to produce inertial sensors and actuators in silicon.

The IC interface instead is manufactured using a CMOS process that allows high level of integration to design a dedicated circuit which is factory trimmed to better match the sensing element characteristics.

The AIS226DS has a user selectable full scale of $\pm 2 \ g, \pm 6 \ g$ and it is capable of measuring acceleration over a bandwidth of 640 Hz for all axes. The device bandwidth may be selected accordingly to the application requirements. The self-test capability allows the user to check the functioning of the system.

The device is available in plastic SOIC package 300mils reverse frame forming for EMI reduction and it is specified over a temperature range extending from -40 $^{\circ}$ C to +105 $^{\circ}$ C.

The AIS226DS may be used in non-safety automotive applications, such as:

- Anti-theft systems and inertial navigation
- Motion activated functions
- Vibration monitoring and compensation
- Tilt measurements
- Black boxes, event recorders

a. I²C interface is also available.

Order code	Operating temperature range [° C]	Package	Packing
AIS226DS	-40 to +105	SO16W	Tray
AIS226DSTR	-40 to +105	SO16W	Tape and reel

November 2008

1/8

1 Block diagram and pin description

1.1 Block diagram

Figure 1. Block diagram

1.2 SO16W pin description

Pin#	Name	Function
1	SDI/	SPI serial data input (SDI)
	SDO	3-wire Interface Serial Data Output (SDO)
2	SDO	SPI serial data output
3	RDY/INT	Data ready/inertial wake-up and free-fall interrupt
4	GND	0 V supply
5	Reserved	Either leave unconnected or connect to GND
6	Vdd	Power supply
7	GND	0 V supply
8	GND	0 V supply
9	Reserved	Connect to Vdd
10	Vdd	Power supply
11	Reserved	Either leave unconnected or connect to Vdd_IO
12	GND	0 V supply
13	СК	Optional external clock, if not used either leave unconnected or connect to GND
14	CS	Chip select (logic 0: SPI enabled, logic 1: SPI disabled)
15	SPC	SPI serial port clock
16	Vdd_IO	Power supply for I/O pads

Table 2.Pin description

2 Mechanical and electrical specifications

2.1 Mechanical characteristics

Table 3.	Mechanical characteristics @ Vdd = 3.3 V, T = -40 °C to 105 °C unless otherwise
	noted ⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
FS	Measurement range	FS bit set to 0		±2.0		g	
		FS bit set to 1		±6.0			
Dres	Device resolution	Full-scale = $\pm 2 g$ T = 25 °C, ODR1=40 Hz		1.0		- mg	
		Full-scale = $\pm 2 g$ T = 25 °C, ODR2=160 Hz		2.0			
		Full-scale = $\pm 2 g$ T = 25 °C, ODR3 = 640 Hz		3.9			
		Full-scale = $\pm 2 g$ T = 25 °C, ODR4 = 2560 Hz		15.6			
So	Sensitivity	Full-scale = $\pm 2 g$ 14 bit representation		4096		L Ch /a	
		Full-scale = $\pm 6 g$ 14 bit representation ⁽²⁾		1360		LOD/Y	
TCSo	Sensitivity change vs temperature	Full-scale = $\pm 2 g$		0.025		%/°C	
Off	Zero-g level offset accuracy ^{(3),(4)}	Full-scale = $\pm 2 g$	TBD		TBD	ma	
On		Full-scale = $\pm 6 g^{(2)}$	TBD		TBD	ing	
TCOff	Zero-g level change vs temperature	Max delta from 25 °C		TBD		mg/°C	
NL	Non linearity ⁽²⁾	Best fit straight line Full-scale = $\pm 2 g$ ODR = 40 Hz		±2		% FS	
CrAx	Cross axis ⁽²⁾			±3		%	
V _{st}	Calf test sutput shappes ⁽⁵⁾ . ⁽⁶⁾	Full-scale= $\pm 2 g$		840		LSb	
	Gen-test output change ????	Full-scale= $\pm 6 g$		280		LSb	
BW	System bandwidth			ODRx/4		Hz	
T _{OP}	Operating temperature range		-40		+105	°C	

1. The product is factory calibrated at 3.3 V. Operation over 3.6 V might affect the reliability of the device

2. Guaranteed by design

3. Zero-g level offset value after MSL3 preconditioning

4. Offset can be eliminated by enabling the built-in high pass filter (HPF)

Self test output changes with the power supply. "Self-test output change" is defined as OUTPUT[LSb]_(Self-test bit on CTRL_REG1=1) - OUTPUT[LSb]_(Self-test bit on CTRL_REG1=0). 1LSb = 1g/4096 at 14 bit representation, 2 g Full-scale

6. Output data reach 99% of final value after 5/ODR when enabling Self-test mode due to device filtering

2.2 Electrical characteristics

Table 4.	Electrical characteristics @ Vdd=3.3 V, T = -4	10 °C to 105 °C unless otherwise noted ⁽¹⁾
----------	--	---

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vdd	Supply voltage		3.0	3.3	3.6	V
Vdd_IO	I/O pads supply voltage ⁽²⁾		1.71		Vdd	V
ldd	Supply current	Vdd = 3.3 V		0.6		mA
lddPdn	Current consumption in Power-down mode			2		μΑ
ODR1	Output data rate 1	Dec factor = 512		40		
ODR2	Output data rate 2	Dec factor = 128		160		⊔ -7
ODR3	Output data rate 3	Dec factor = 32		640		112
ODR4	Output data rate 4	Dec factor = 8		2560		
BW	System bandwidth ⁽³⁾			ODRx/4		Hz
Ton	Turn-on time ⁽⁴⁾			5/ODRx		s
T _{OP}	Operating temperature range		-40		+105	°C

1. The product is factory calibrated at 3.3 V. Operation over 3.6 V might affect the reliability of the device

2. Guaranteed by design

3. Digital filter -3 dB frequency

4. Time to obtain valid data after exiting power-down mode

57

3 Package information

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK[®] is an ST trademark.

ECOPACK[®] specifications are available at: <u>www.st.com</u>.

Figure 3. SO16W mechanical data and package dimensions

4 Revision history

Table 5. Document revision history

Date	Revision	Changes
13-Nov-2008	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

