ADC1175

8-Bit, 20MHz, 60mW A/D Converter

General Description

The ADC1175 is a low power, 20 Msps analog-to-digital converter that digitizes signals to 8 bits while consuming just 60 mW of power (typ). The ADC1175 uses a unique architecture that achieves 7.5 Effective Bits. Output formatting is straight binary coding.
The excellent DC and AC characteristics of this device, together with its low power consumption and +5 V single supply operation, make it ideally suited for many video, imaging and communications applications, including use in portable equipment. Furthermore, the ADC1175 is resistant to latch-up and the outputs are short-circuit proof. The top and bottom of the ADC1175's reference ladder is available for connections, enabling a wide range of input possibilities.
The ADC1175 is offered in a TSSOP. It is designed to operate over the commercial temperature range of $-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

Features

- Internal Sample-and-Hold Function
- Single +5 V Operation
- Internal Reference Bias Resistors
- Industry Standard Pinout
- TRI-STATE Outputs

Key Specifications

- Resolution	8 Bits
- Maximum Sampling Frequency	20 Msps (min)
- DNL	0.75 LSB (max)
- ENOB	7.5 Bits (typ)
- Guaranteed No Missing Codes	
Power Consumption (excluding $\mathrm{I}_{\text {REF }}$)	60 mW (typ)

Applications

- Video Digitization
- Digital Still Cameras
- Personal Computer Video Cameras
- CCD Imaging
- Electro-Optics

Pin Configuration

Ordering Information

Order Code	Temperature	Description
ADC1175CIJM ${ }^{*}$	$-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	SOIC (EIAJ)
ADC1175CIJMX	$-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	SOIC (EIAJ) (tape \& reel)
ADC1175CIMTC	$-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	TSSOP
ADC1175CIMTCX	$-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	TSSOP (tape \& reel)
ADC1175EVAL ${ }^{*}$		Evaluation Board

* Discontinured in the SOIC (EIAJ) package. The Evaluation Board is also discontinued. Shown for reference only.

Block Diagram

Pin Descriptions and Equivalent Circuits

$\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Equivalent Circuit	Description
19	$\mathrm{V}_{\text {IN }}$		Analog signal input. Conversion range is V_{RB} to V_{RT}.
16	$\mathrm{V}_{\text {RTS }}$		Reference Top Bias with internal pull-up resistor. Short this pin to V_{RT} to self bias the reference ladder.
17	$\mathrm{V}_{\text {RT }}$		Analog Input that is the high (top) side of the reference ladder of the ADC . Nominal range is 1.0 V to $\mathrm{AV}_{\mathrm{DD}}$. Voltage on V_{RT} and V_{RB} inputs define the V_{IN} conversion range. Bypass well. See Section 2.0 for more information.
23	$V_{\text {RB }}$		Analog Input that is the low (bottom) side of the reference ladder of the ADC. Nominal range is 0 V to 4.0 V . Voltage on V_{RT} and V_{RB} inputs define the V_{IN} conversion range. Bypass well. See Section 2.0 for more information.
22	$\mathrm{V}_{\text {RBS }}$		Reference Bottom Bias with internal pull down resistor. Short to V_{RB} to self bias the reference ladder.
1	$\overline{\mathrm{OE}}$		CMOS/TTL compatible Digital input that, when low, enables the digital outputs of the ADC1175. When high, the outputs are in a high impedance state.
12	CLK		CMOS/TTL compatible digital clock Input. $\mathrm{V}_{\text {IN }}$ is sampled on the falling edge of CLK input.

| Pin | Symbol | | Description |
| :--- | :--- | :--- | :--- | :--- |

Absolute Maximum Ratings (Notes 1, 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
$A V_{D D}, D V_{D D}$
6.5 V

Voltage on Any Pin
$\mathrm{V}_{\mathrm{RT}}, \mathrm{V}_{\mathrm{RB}}$
CLK, OE Voltage
Digital Output Voltage
Input Current (Note 3)
Package Input Current
(Note 3)
Package Dissipation at $25^{\circ} \mathrm{C}$
$\pm 50 \mathrm{~mA}$
(Note 4)
ESD Susceptibility (Note 5)
Human Body Model
2000V
200 V
Soldering Temp., Infrared, 10 sec .
(Note 6)
$300^{\circ} \mathrm{C}$
Storage Temperature

Operating Ratings
(Notes 1, 2)
Operating Temperature Range
Supply voltage ($A V_{D D}, \mathrm{DV}_{\mathrm{DD}}$)
$-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$
+4.75 V to +5.25 V
$<0.5 \mathrm{~V}$
0 V to 100 mV
$<0.5 \mathrm{~V}$
1.0 V to V_{DD}

0 V to 4.0 V
1 V to 2.8 V
$V_{R B}$ to $V_{R T}$

Converter Electrical Characteristics

The following specifications apply for $\mathrm{AV}_{\mathrm{DD}}=\mathrm{DV}_{\mathrm{DD}}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \overline{\mathrm{OE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}}=+2.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}=0.6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{f}_{\mathrm{CLK}}=20 \mathrm{MHz}$ at 50% duty cycle. Boldface limits apply for $T_{A}=T_{\text {min }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=25^{\circ} \mathrm{C}$ (Notes 7, 8)

Symbol	Parameter	Conditions	Typical (Note 9)	Limits (Note 9)	Units
DC Accuracy					
INL	Integral Non Linearity	$\mathrm{f}_{\mathrm{CLK}}=20 \mathrm{MHz}$	± 0.5	± 1.3	LSB (max)
INL	Integral Non Linearity	$\mathrm{f}_{\text {CLK }}=30 \mathrm{MHz}$	± 1.0		LSB (max)
DNL	Differential Non Linearity	$\mathrm{f}_{\text {CLK }}=20 \mathrm{MHz}$	± 0.35	± 0.75	LSB (max)
DNL	Differential Non Linearity	$\mathrm{f}_{\mathrm{CLK}}=30 \mathrm{MHz}$	± 1.0		LSB (max)
	Missing Codes			0	(max)
$\mathrm{E}_{\text {OT }}$	Top Offset		-24		mV
$\mathrm{E}_{\text {OB }}$	Bottom Offset		+37		mV

Video Accuracy

DP	Differential Phase Error	$\mathrm{f}_{\text {in }}=4.43 \mathrm{MHz}$ sine wave, $\mathrm{f}_{\mathrm{CLK}}=17.7 \mathrm{MHz}$	0.5	Degree
DG	Differential Gain Error	$\mathrm{f}_{\text {in }}=4.43 \mathrm{MHz}$ sine wave, $\mathrm{f}_{\mathrm{CLK}}=17.7 \mathrm{MHz}$	0.4	$\%$

Analog Input and Reference Characteristics

$\mathrm{V}_{\text {IN }}$	Input Range			2.0	$\begin{aligned} & \mathrm{V}_{\mathrm{RB}} \\ & \mathrm{~V}_{\mathrm{RT}} \end{aligned}$	V (min) V (max)
			(CLK LOW)	4		
$\mathrm{Cl}^{\text {N }}$	IN	$\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}+0.7 \mathrm{Vms}$	(CLK HIGH)	11		
$\mathrm{R}_{\text {IN }}$	$\mathrm{R}_{\text {IN }}$ Input Resistance			>1		$\mathrm{M} \Omega$
BW	Analog Input Bandwidth			120		MHz
R_{RT}	Top Reference Resistor			360		Ω
$\mathrm{R}_{\text {REF }}$	Reference Ladder Resistance	V_{RT} to V_{RB}		300	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	$\begin{aligned} & \Omega(\min) \\ & \Omega(\max) \end{aligned}$
$\mathrm{R}_{\text {RB }}$	Bottom Reference Resistor			90		Ω
$\mathrm{I}_{\text {REF }}$	Reference Ladder Current	$\mathrm{V}_{\mathrm{RT}}=\mathrm{V}_{\mathrm{RTS}}, \mathrm{V}_{\mathrm{RB}}=\mathrm{V}_{\mathrm{RBS}}$		7	$\begin{aligned} & 4.8 \\ & 9.3 \end{aligned}$	$\begin{aligned} & \mathrm{mA}(\min) \\ & \mathrm{mA}(\max) \end{aligned}$
		$\mathrm{V}_{\mathrm{RT}}=\mathrm{V}_{\mathrm{RTS}}, \mathrm{V}_{\mathrm{RB}}=\mathrm{AV}^{\text {SS }}$		8	$\begin{gathered} \hline 5.4 \\ 10.5 \end{gathered}$	$\begin{aligned} & \mathrm{mA}(\min) \\ & \mathrm{mA}(\max) \end{aligned}$

Symbol	Parameter	Conditions	Typical (Note 9)	Limits (Note 9)	Units
$\mathrm{V}_{\text {RT }}$	Reference Top Self Bias Voltage	V_{RT} connected to $\mathrm{V}_{\text {RTS }}$ V_{RB} connected to $\mathrm{V}_{\mathrm{RBS}}$	2.6		V
$\mathrm{V}_{\text {RB }}$	Reference Bottom Self Bias Voltage	V_{RT} connected to $\mathrm{V}_{\text {RTS }}$ V_{RB} connected to $\mathrm{V}_{\mathrm{RBS}}$	0.6	$\begin{aligned} & 0.55 \\ & 0.65 \end{aligned}$	$\begin{aligned} & V=(\min) \\ & V(\max) \end{aligned}$
$\mathrm{V}_{\text {RTS }}{ }^{-}$	Voltage Delta	$\mathrm{V}_{\text {RT }}$ connected to $\mathrm{V}_{\text {RTS }}$, V_{RB} connected to $\mathrm{V}_{\mathrm{RBS}}$	2	$\begin{aligned} & 1.89 \\ & 2.15 \end{aligned}$	$\mathrm{V}(\mathrm{~min})$ V (max)
$\mathrm{V}_{\text {RBS }}$	Voltage Delta	$\mathrm{V}_{\text {RT }}$ connected to $\mathrm{V}_{\text {RTS }}$, V_{RB} connected to $\mathrm{AV}_{\mathrm{SS}}$	2.3		V
$\mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\text {RB }}$	Reference Voltage Delta		2	$\begin{aligned} & \hline 1.0 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}(\min) \\ & \mathrm{V}(\max) \end{aligned}$

Power Supply Characteristics

$1 \mathrm{~A}_{\text {DD }}$	Analog Supply Current	$D V_{D D}=A V_{\text {DD }}=5.25 \mathrm{~V}$	9.5		mA
$\underline{\mathrm{ID}}$	Digital Supply Current	$\mathrm{DV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DD}}=5.25 \mathrm{~V}$	2.5		mA
$\begin{aligned} & \mathrm{IAV} \mathrm{DD}^{+} \\ & \mathrm{IDV}_{\mathrm{DD}} \end{aligned}$	Total Operating Current	$\mathrm{DV}_{\mathrm{DD}} \mathrm{AV}_{\mathrm{DD}}=5.25 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=20 \mathrm{MHz}$	12	17	mA (max)
		$\mathrm{DV}_{\mathrm{DD}} \mathrm{AV}_{\text {DD }}=5.25 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=30 \mathrm{MHz}$	13		
		$\begin{array}{\|l} \hline \mathrm{DV}_{\mathrm{DD}}=\mathrm{AV} \mathrm{DD}=5.25 \mathrm{~V}, \mathrm{CLK} \text { Low } \\ (\text { Note 10) } \\ \hline \end{array}$	9.6		mA
	Power Consumption	$\mathrm{DV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DD}}=5.25 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=20 \mathrm{MHz}$	60	85	mW (max)
		$\mathrm{DV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DD}}=5.25 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=30 \mathrm{MHz}$	65		mW

CLK, OE Digital Input Characteristics

V_{IH}	Logical High Input Voltage	$\mathrm{DV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DD}}=+5.25 \mathrm{~V}$		$\mathbf{3 . 0}$	$\mathrm{~V}(\mathrm{~min})$
V_{IL}	Logical Low Input Voltage	$\mathrm{DV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DD}}=+5.25 \mathrm{~V}$		$\mathbf{1 . 0}$	$\mathrm{~V}(\mathrm{max})$
I_{IH}	Logical High Input Current	$\mathrm{V}_{\mathrm{IH}}=\mathrm{DV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DD}}=+5.25 \mathrm{~V}$	5		$\mu \mathrm{~A}$
I_{IL}	Logic Low Input Current	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{DV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DD}}=+5.25 \mathrm{~V}$	-5		$\mu \mathrm{~A}$
C_{IN}	Logic Input Capacitance		5	pF	

Digital Output Characteristics

${ }^{\text {IOH}}$	High Level Output Current	$\mathrm{DV}_{\mathrm{DD}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$		-1.1	mA (max)
I_{OL}	Low Level Output Current	$\mathrm{DV}_{\mathrm{DD}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		1.6	$\mathrm{mA}(\mathrm{min})$
$\begin{aligned} & \mathrm{I}_{\mathrm{OZH}}, \\ & \mathrm{I}_{\mathrm{OZL}} \end{aligned}$	Tri-State® Leakage Current	$\begin{aligned} & \mathrm{DV} \mathrm{DD}_{\mathrm{DD}}=5.25 \mathrm{~V} \\ & \mathrm{OE}=\mathrm{DV} \mathrm{DD}, \mathrm{~V}_{\mathrm{OL}} \\ & =0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{OH}}=\mathrm{DV} \mathrm{~V}_{\mathrm{DD}} \end{aligned}$	± 20		$\mu \mathrm{A}$

AC Electrical Characteristics

$\mathrm{f}_{\mathrm{C} 1}$	Maximum Conversion Rate		30	20	MHz (min)
$\mathrm{f}_{\mathrm{C} 2}$	Minimum Conversion Rate		1		MHz
t_{OD}	Output Delay	CLK rise to data rising	19.5		ns
		CLK rise to data falling	16		ns
	Pipeline Delay (Latency)		2.5		Clock Cycles
t_{DS}	Sampling (Aperture) Delay	CLK low to acquisition of data	3		ns
t_{AJ}	Aperture Jitter		30		ps rms
t_{OH}	Output Hold Time	CLK high to data invalid	10		ns
$\mathrm{t}_{\text {EN }}$	$\overline{\text { OE Low to Data Valid }}$	Loaded as in Figure 2	11		ns
$\mathrm{t}_{\text {DIS }}$	$\overline{\text { OE High to High Z State }}$	Loaded as in Figure 2	15		ns
ENOB	Effective Number of Bits	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=1.31 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FS}-2 \mathrm{LSB} \\ & \mathrm{f}_{\mathrm{IN}}=4.43 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FS}-2 \mathrm{LSB} \\ & \mathrm{f}_{\mathrm{IN}}=9.9 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FS}-2 \mathrm{LSB} \\ & \mathrm{f}_{\mathrm{IN}}=4.43 \mathrm{MHz}, \mathrm{f}_{\mathrm{CLK}}=30 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.3 \\ & 7.2 \\ & 6.5 \end{aligned}$	7.0	Bits (min)

Symbol	Parameter	Conditions	Typical (Note 9)	Limits (Note 9)	Units
SINAD	Signal-to- Noise \& Distortion	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=1.31 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FS}-2 \mathrm{LSB} \\ & \mathrm{f}_{\mathrm{IN}}=4.43 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FS}-2 \mathrm{LSB} \\ & \mathrm{f}_{\mathrm{IN}}=9.9 \mathrm{MHz}, \mathrm{~V}_{\text {IN }}=\mathrm{FS}-2 \mathrm{LSB} \\ & \mathrm{f}_{\mathrm{IN}}=4.43 \mathrm{MHz}, \mathrm{f}_{\mathrm{CLK}}=30 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 46.9 \\ & 45.7 \\ & 45.1 \\ & 40.9 \end{aligned}$	43	$\mathrm{dB}(\mathrm{min})$
SNR	Signal-to- Noise Ratio	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=1.31 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FS}-2 \mathrm{LSB} \\ & \mathrm{f}_{\mathrm{IN}}=4.43 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FS}-2 \mathrm{LSB} \\ & \mathrm{f}_{\mathrm{IN}}=9.9 \mathrm{MHz}, \mathrm{~V}_{\text {IN }}=\mathrm{FS}-2 \mathrm{LSB} \\ & \mathrm{f}_{\mathrm{IN}}=4.43 \mathrm{MHz}, \mathrm{f}_{\mathrm{CLK}}=30 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \hline 47.6 \\ 46 \\ 46.1 \\ 42.1 \end{gathered}$	44	$\mathrm{dB}(\mathrm{min})$
SFDR	Spurious Free Dynamic Range	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=1.31 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FS}-2 \mathrm{LSB} \\ & \mathrm{f}_{\mathrm{IN}}=4.43 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FS}-2 \mathrm{LSB} \\ & \mathrm{f}_{\mathrm{IN}}=9.9 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FS}-2 \mathrm{LSB} \\ & \mathrm{f}_{\mathrm{IN}}=4.43 \mathrm{MHz}, \mathrm{f}_{\mathrm{CLK}}=30 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 56 \\ & 58 \\ & 53 \\ & 47 \end{aligned}$		dB
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=1.31 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FS}-2 \mathrm{LSB} \\ & \mathrm{f}_{\mathrm{IN}}=4.43 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FS}-2 \mathrm{LSB} \\ & \mathrm{f}_{\mathrm{IN}}=9.9 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FS}-2 \mathrm{LSB} \\ & \mathrm{f}_{\mathrm{IN}}=4.43 \mathrm{MHz}, \mathrm{f}_{\mathrm{CLK}}=30 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & -55 \\ & -57 \\ & -52 \\ & -47 \end{aligned}$		dB

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: All voltages are measured with respect to $G N D=A V_{S S}=D V_{S S}=0 V$, unless otherwise specified.
Note 3: When the input voltage at any pin exceeds the power supplies (that is, less than $A V_{S S}$ or $D V_{S S}$, or greater than $A V_{D D}$ or $D V_{D D}$), the current at that pin should be limited to 25 mA . The 50 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 25 mA to two.
Note 4: The absolute maximum junction temperatures ($T_{J} \max$) for this device is $150^{\circ} \mathrm{C}$. The maximum allowable power dissipation is dictated by T_{J} max, the junction-to-ambient thermal resistance $\theta_{J A}$, and the ambient temperature, T_{A}, and can be calculated using the formula $P_{D} M A X=\left(T_{J} \max -T_{A}\right) / \theta_{J A}$. The values for maximum power dissipation listed above will be reached only when the ADC1175 is operated in a severe fault condition (e.g. when input or output pins are driven beyond the power supply voltages, or the power supply polarity is reversed). Obviously, such conditions should always be avoided.
Note 5: Human body model is 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor. Machine model is 220 pF discharged through ZERO Ω.
Note 6: See AN-450, "Surface Mounting Methods and Their Effect on Product Reliability", or the section entitled "Surface Mount" found in any post 1986 National Semiconductor Linear Data Book, for other methods of soldering surface mount devices.
Note 7: The analog inputs are protected as shown below. Input voltage magnitudes up to 6.5 V or to 500 mV below GND will not damage this device. However, errors in the A / D conversion can occur if the input goes above $V_{D D}$ or below $G N D$ by more than 50 mV . As an example, if $A V_{D D}$ is $4.75 V_{D C}$, the full-scale input voltage must be $\leq 4.80 \mathrm{~V}_{\mathrm{DC}}$ to ensure accurate conversions.

Note 8: To guarantee accuracy, it is required that $A V_{D D}$ and $D V_{D D}$ be well bypassed. Each supply pin must be decoupled with separate bypass capacitors.
Note 9: Typical figures are at $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and represent most likely parametric norms. Test limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 10: At least two clock cycles must be presented to the ADC1175 after power up. See Section 4.0 for details.

Typical Performance Characteristics

INL vs. Temp at $\mathbf{f}_{\text {CLK }}$

10009220

SNR vs. Temp at $\mathrm{f}_{\text {CLK }}$

0009222

THD vs. Temp

10009223

DNL vs. Temp at $\mathrm{f}_{\text {cLK }}$

10009221

10009233
THD vs. Temp

10009232

SINAD and ENOB vs. Clock Duty Cycle

SFDR vs. Temp and f_{IN}

SINAD/ENOB vs. Temp

SFDR vs. Temp and $f_{\text {IN }}$

10009229

Differential Gain vs. Temperature

Specification Definitions

ANALOG INPUT BANDWIDTH is a measure of the frequency at which the reconstructed output fundamental drops 3 dB below its low frequency value for a full scale input. The test is performed with $f_{I N}$ equal to 100 kHz plus integer multiples of $f_{\text {CLK }}$. The input frequency at which the output is -3 dB relative to the low frequency input signal is the full power bandwidth.
APERTURE JITTER is the time uncertainty of the sampling point ($t_{D S}$), or the range of variation in the sampling delay.
BOTTOM OFFSET is the difference between the input voltage that just causes the output code to transition to the first code and the negative reference voltage. Bottom offset is defined as $\mathrm{E}_{\mathrm{OB}}=\mathrm{V}_{\mathrm{ZT}}-\mathrm{V}_{\mathrm{RB}}$, where V_{ZT} is the first code transition input voltage. Note that this is different from the normal Zero Scale Error.
DIFFERENTIAL GAIN ERROR is the percentage difference between the output amplitudes of a high frequency reconstructed sine wave at two different d.c. levels.
DIFFERENTIAL NON-LINEARITY (DNL) is the measure of the maximum deviation from the ideal step size of 1 LSB.
DIFFERENTIAL PHASE ERROR is the difference in the output phase of a reconstructed small signal sine wave at two different d.c. levels.
EFFECTIVE NUMBER OF BITS (ENOB, or EFFECTIVE BITS) is another method of specifying Signal-to-Noise and Distortion Ratio, or SINAD. ENOB is defined as (SINAD 1.76) / 6.02 and says that the converter is equivalent to a perfect ADC of this (ENOB) number of bits.
INTEGRAL NON-LINEARITY (INL) is a measure of the deviation of each individual code from a line drawn from zero scale ($1 / 2 \mathrm{LSB}$ below the first code transition) through positive full scale ($1 / 2$ LSB above the last code transition). The deviation of any given code from this straight line is measured from the center of that code value. The end point test method is used. OUTPUT DELAY is the time delay after the rising edge of the input clock before the data update is present at the output pins.

Spectral Response at $\mathrm{f}_{\mathrm{CLK}}=20$ MSPS

OUTPUT HOLD TIME is the length of time that the output data is valid after the rise of the input clock.
PIPELINE DELAY (LATENCY) is the number of clock cycles between initiation of conversion and when that data is presented to the output stage. Data for any give sample is available the Pipeline Delay plus the Output Delay after that sample is taken. New data is available at every clock cycle, but the data lags the conversion by the pipeline delay.
SAMPLING (APERTURE) DELAY is that time required after the fall of the clock input for the sampling switch to open. The Sample/Hold circuit effectively stops capturing the input signal and goes into the "hold" mode $t_{\text {DS }}$ after the clock goes low.
SIGNAL TO NOISE RATIO (SNR) is the ratio of the rms value of the input signal to the rms value of the other spectral components below one-half the sampling frequency, not including harmonics or d.c.
SIGNAL TO NOISE PLUS DISTORTION (S/(N+D) or SINAD) is the ratio of the rms value of the input signal to the rms value of all of the other spectral components below half the clock frequency, including harmonics but excluding d.c.
SPURIOUS FREE DYNAMIC RANGE (SFDR) is the difference, expressed in dB , between the rms values of the input signal and the peak spurious signal, where a spurious signal is any signal present in the output spectrum that is not present at the input.
TOP OFFSET is the difference between the positive reference voltage and the input voltage that just causes the output code to transition to full scale and is defined as $\mathrm{E}_{\mathrm{OT}}=\mathrm{V}_{\mathrm{FT}}$ V_{RT}. Where V_{FT} is the full scale transition input voltage. Note that this is different from the normal Full Scale Error.
TOTAL HARMONIC DISTORTION (THD) is the ratio of the rms total of the first six harmonic components, to the rms value of the input signal.

Timing Diagram

FIGURE 1. ADC1175 Timing Diagram

FIGURE 2. $t_{E N}, t_{\text {DIS }}$ Test Circuit

Functional Description

The ADC1175 uses a new, unique architecture to achieve 7.2 effective bits at and maintains superior dynamic performance up to $1 / 2$ the clock frequency.
The analog signal at $\mathrm{V}_{\text {IN }}$ that is within the voltage range set by V_{RT} and V_{RB} are digitized to eight bits at up to 30 MSPS. Input voltages below V_{RB} will cause the output word to consist of all zeroes. Input voltages above V_{RT} will cause the output word to consist of all ones. V_{RT} has a range of 1.0 Volt to the analog supply voltage, $A V_{D D}$, while V_{RB} has a range of 0 to 4.0 Volts. V_{RT} should always be between 1.0 Volt and 2.8 Volts more positive than $V_{R B}$.
If $V_{R T}$ and $V_{R T S}$ are connected together and $V_{R B}$ and $V_{R B S}$ are connected together, the nominal values of V_{RT} and V_{RB} are 2.6 V and 0.6 V , respectively. If V_{RT} and $\mathrm{V}_{\text {RTS }}$ are connected together and $V_{R B}$ is grounded, the nominal value of $V_{R T}$ is 2.3 V .

Data is acquired at the falling edge of the clock and the digital equivalent of the data is available at the digital outputs 2.5 clock cycles plus $t_{\text {OD }}$ later. The ADC1175 will convert as long as the clock signal is present at pin 12. The Output Enable pin $\overline{\mathrm{OE}}$, when low, enables the output pins. The digital outputs are in the high impedance state when the $\overline{\mathrm{OE}}$ pin is high.

Applications Information

1.0 THE ANALOG INPUT

The analog input of the ADC1175 is a switch followed by an integrator. The input capacitance changes with the clock level , appearing as 4 pF when the clock is low, and 11 pF when the clock is high. Since a dynamic capacitance is more difficult to drive than a fixed capacitance, choose an amplifier that can drive this type of load. The LMH6702, LMH6609, LM6152, LM6154, LM6181 and LM6182 have been found to be excellent devices for driving the ADC1175. Do not drive the input beyond the supply rails. Figure 3 shows an example of an input circuit using the LMH6702.
Driving the analog input with input signals up to $2.8 \mathrm{~V}_{\text {P-p }}$ will result in normal behavior where signals above V_{RT} will result in a code of FFh and input voltages below V_{RB} will result in an output code of zero. Input signals above $2.8 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ may result in odd behavior where the output code is not FFh when the input exceeds V_{RT}.

2.0 REFERENCE INPUTS

The reference inputs V_{RT} (Reference Top) and V_{RB} (Reference Bottom) are the top and bottom of the reference ladder.

Input signals between these two voltages will be digitized to 8 bits. External voltages applied to the reference input pins should be within the range specified in the Operating Ratings table (1.0 V to $A V_{D D}$ for $V_{R T}$ and $0 V$ to ($A V_{D D}-1.0 \mathrm{~V}$) for $\mathrm{V}_{R B}$). Any device used to drive the reference pins should be able to source sufficient current into the V_{RT} pin and sink sufficient current from the V_{RB} pin.
The reference ladder can be self-biased by connecting V_{RT} to $\mathrm{V}_{\mathrm{RTS}}$ and connecting V_{RB} to $\mathrm{V}_{\mathrm{RBS}}$ to provide top and bottom reference voltages of approximately 2.6 V and 0.6 V , respectively, with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$. This connection is shown in Figure 3. If V_{RT} and $\mathrm{V}_{\mathrm{RTS}}$ are tied together, but V_{RB} is tied to analog ground, a top reference voltage of approximately 2.3 V is generated. The top and bottom of the ladder should be bypassed with $10 \mu \mathrm{~F}$ tantalum capacitors located close to the reference pins.
The reference self-bias circuit of Figure 3 is very simple and performance is adequate for many applications. Superior performance can generally be achieved by driving the reference pins with a low impedance source.
By forcing a little current into or out of the top and bottom of the ladder, as shown in Figure 4, the top and bottom reference voltages can be trimmed and performance improved over the self-bias method of Figure 3. The resistive divider at the amplifier inputs can be replaced with potentiometers. The LMC662 amplifier shown was chosen for its low offset voltage and low cost. Note that a negative power supply is needed for these amplifiers if their outputs are required to go slightly negative to force the required reference voltages.
If reference voltages are desired that are more than a few tens of millivolts from the self-bias values, the circuit of Figure 5 will allow forcing the reference voltages to whatever levels are desired. This circuit provides the best performance because of the low source impedance of the transistors. Note that the $V_{\text {RTS }}$ and $V_{\text {RBS }}$ pins are left floating.
V_{RT} can be anywhere between $\mathrm{V}_{\mathrm{RB}}+1.0 \mathrm{~V}$ and the analog supply voltage, and $V_{R B}$ can be anywhere between ground and 1.0 V below V_{RT}. To minimize noise effects and ensure accurate conversions, the total reference voltage range (V_{RT} $-\mathrm{V}_{\mathrm{RB}}$) should be a minimum of 1.0 V and a maximum of about 2.8 V . If V_{RB} is not required to be below about +700 mV , the -5 V points in Figure 5 can be returned to ground and the negative supply eliminated.

FIGURE 3. Simple, Low Component Count, Self -Bias Reference application. Because of resistor tolerances, the reference voltages can vary by as much as 6%. Choose an amplifier that can drive a dynamic capacitance (see text).

FIGURE 4. Better defining the ADC Reference Voltage. Self-bias is still used, but the reference voltages are trimmed by providing a small trim current with the operational amplifiers.

FIGURE 5. Driving the reference to force desired values requires driving with a low impedance source, provided by the transistors. Note that pins 16 and 22 are not connected.

3.0 POWER SUPPLY CONSIDERATIONS

Many A/D converters draw sufficient transient current to corrupt their own power supplies if not adequately bypassed. A $10 \mu \mathrm{~F}$ tantalum or aluminum electrolytic capacitor should be placed within an inch (2.5 centimeters) of the A/D power pins, with a $0.1 \mu \mathrm{~F}$ ceramic chip capacitor placed as close as possible to the converter's power supply pins. Leadless chip capacitors are preferred because they have low lead inductance.
While a single voltage source should be used for the analog and digital supplies of the ADC1175, these supply pins should be well isolated from each other to prevent any digital noise from being coupled to the analog power pins. A wideband choke, such as the JW Miller FB20010-3B, is recommended between the analog and digital supply lines, with a ceramic capacitor close to the analog supply pin. Avoid inductive components in the analog supply line.
The converter digital supply should not be the supply that is used for other digital circuitry on the board. It should be the same supply used for the A/D analog supply.

As is the case with all high speed converters, the ADC1175 should be assumed to have little a.c. power supply rejection, especially when self-biasing is used by connecting V_{RT} and $\mathrm{V}_{\text {RTS }}$ together.
No pin should ever have a voltage on it that is in excess of the supply voltages or below ground, not even on a transient basis. This can be a problem upon application of power to a circuit. Be sure that the supplies to circuits driving the CLK, $\overline{\mathrm{OE}}$, analog input and reference pins do not come up any faster than does the voltage at the ADC1175 power pins. Pins 11 and 13 are both labeled $\mathrm{DV}_{\mathrm{DD}}$. Pin 11 is the supply point for the digital core of the ADC, where pin 13 is used only to provide power to the ADC output drivers. As such, pin 11 may be connected to a voltage source that is less than the +5 V used for $\mathrm{AV} \mathrm{V}_{\mathrm{DD}}$ and $\mathrm{DV} \mathrm{V}_{\mathrm{DD}}$ to ease interfacing to low voltage devices. Pin 11 should never exceed the pin 13 potential by more than 0.5 V .

4.0 THE ADC1175 CLOCK

Although the ADC1175 is tested and its performance is guaranteed with a 20 MHz clock, it typically will function with clock frequencies from 1 MHz to 30 MHz .
If continuous conversions are not required, power consumption can be reduced somewhat by stopping the clock at a logic low when the ADC1175 is not being used. This reduces the current drain in the ADC1175's digital circuitry from a typical value of 2.5 mA to about $100 \mu \mathrm{~A}$.
Note that powering up the ADC1175 without the clock running may not save power, as it will result in an increased current flow (by as much as 170\%) in the reference ladder. In some cases, this may increase the ladder current above the specified limit. Toggling the clock twice at 1 MHz or higher and returning it to the low state will eliminate the excess ladder current.
An alternative power-saving technique is to power up the ADC1175 with the clock active, then halt the clock in the low state after two or more clock cycles. Stopping the clock in the high state is not recommended as a power-saving technique.

5.0 LAYOUT AND GROUNDING

Proper grounding and proper routing of all signals is essential to ensure accurate conversion. Separate analog and digital ground planes that are connected beneath the ADC1175 may be used, but best EMI practices require a single ground plane. However, it is important to keep analog signal lines away from digital signal lines and away from power supply currents. This latter requirement requires the careful separation and placement of power planes. The use of power traces rather than one or more power planes is not recommended as higher frequencies are not well filtered with lumped capacitances. To filter higher frequency noise components it is necessary to have sufficient capacitance between the power and ground planes.
If separate analog and digital ground planes are used, the analog and digital grounds may be in the same layer, but should be separated from each other. If separate analog and digital ground layers are used, they should never overlap each other.
Capacitive coupling between a typically noisy digital ground plane and the sensitive analog circuitry can lead to poor performance that may seem impossible to isolate and remedy. The solution is to keep the analog circuity well separated from the digital circuitry.
Digital circuits create substantial supply and ground current transients. The logic noise thus generated could have significant impact upon system noise performance. The best logic family to use in systems with A/D converters is one which employs non-saturating transistor designs, or has low noise characteristics, such as the $74 \mathrm{HC}(\mathrm{T})$ and 74AC(T)Q families. The worst noise generators are logic families that draw the largest supply current transients during clock or signal edges, like the 74 F and the 74AC(T) families. In general, slower logic families will produce less high frequency noise than do high speed logic families.
Since digital switching transients are composed largely of high frequency components, total ground plane copper weight will have little effect upon the logic-generated noise. This is because of the skin effect. Total surface area is more important than is total ground plane volume.
An effective way to control ground noise is by using a single, solid ground plane, splitting the power plane into analog and digital areas and having power and ground planes in adjacent board layers. There should be no traces within either the
power or the ground layers of the board. The analog and digital power planes should reside in the same board layer so that they can not overlap each other. The analog and digital power planes define the analog and digital areas of the board. Generally, analog and digital lines should cross each other at 90 degrees to avoid getting digital noise into the analog path. In high frequency systems, however, avoid crossing analog and digital lines altogether. Clock lines should be isolated from ALL other lines, analog and digital. Even the generally accepted 90 degree crossing should be avoided as even a little coupling can cause problems at high frequencies. Best performance at high frequencies and at high resolution is obtained with a straight signal path.
Be especially careful with the layout of inductors. Mutual inductance can change the characteristics of the circuit in which they are used. Inductors should not be placed side by side, not even with just a small part of their bodies being beside each other.
The analog input should be isolated from noisy signal traces to avoid coupling of spurious signals into the input. Any external component (e.g., a filter capacitor) connected between the converter's input and ground should be connected to a very clean point in the ground return.

6.0 DYNAMIC PERFORMANCE

The ADC1175 is a.c. tested and its dynamic performance is guaranteed. To meet the published specifications, the clock source driving the CLK input must be free of jitter. For best a.c. performance, isolating the ADC clock from any digital circuitry should be done with adequate buffers, as with a clock tree. See Figure 6.

10009217

FIGURE 6. Isolating the ADC clock from Digital Circuitry.

It is good practice to keep the ADC clock line as short as possible and to keep it well away from any other signals. Other signals can introduce jitter into the clock signal.

7.0 COMMON APPLICATION PITFALLS

Driving the inputs (analog or digital) beyond the power supply rails. For proper operation, all inputs should not go more than 50 mV below the ground pins or 50 mV above the supply pins. Exceeding these limits on even a transient basis can cause faulty or erratic operation. It is not uncommon for high speed digital circuits to exhibit undershoot that goes more than a volt below ground due to improper line termination. A resistor of 50Ω to 100Ω in series with the offending digital input, located close to the signal source, will usually eliminate the problem.
Care should be taken not to overdrive the inputs of the ADC1175. Such practice may lead to conversion inaccuracies and even to device damage.
Attempting to drive a high capacitance digital data bus. The more capacitance the output drivers must charge for
each conversion, the more instantaneous digital current is required from $\mathrm{DV}_{\mathrm{DD}}$ and DGND. These large charging current spikes can couple into the analog section, degrading dynamic performance. Buffering the digital data outputs (with an 74AC541, for example) may be necessary if the data bus to be driven is heavily loaded. Dynamic performance can also be improved by adding 47Ω to 100Ω series resistors at each digital output, reducing the energy coupled back into the converter output pins.

Using an inadequate amplifier to drive the analog input. As explained in Section 1.0, the capacitance seen at the input alternates between 4 pF and 11 pF with the clock. This dynamic capacitance is more difficult to drive than is a fixed capacitance, and should be considered when choosing a driving device. The LMH6702, LMH6609, LM6152, LM6154 LM6181 and LM6182 have been found to be excellent devices for driving the ADC1175 analog input
Driving the V_{RT} pin or the V_{RB} pin with devices that can not source or sink the current required by the ladder. As mentioned in section 2.0, care should be taken to see that any driving devices can source sufficient current into the $V_{R T}$ pin and sink sufficient current from the $V_{\text {RB }}$ pin. If these pins are not driven with devices than can handle the required current, these reference pins will not be stable, resulting in a reduction of dynamic performance.

Using a clock source with excessive jitter, using an excessively long clock signal trace, or having other signals coupled to the clock signal trace. This will cause the sampling interval to vary, causing excessive output noise and a reduction in SNR performance. Simple gates with RC timing is generally inadequate as a clock source.
Input test signal contains harmonic distortion that interferes with the measurement of dynamic signal to noise ratio. Harmonic and other interfering signals can be removed by inserting a filter at the signal input. Suitable filters are shown in Figure 7 and Figure 8. The circuit of Figure 7 has cutoff of about 5.5 MHz and is suitable for input frequencies of 1 MHz to 5 MHz . The circuit of Figure 8 has a cutoff of about 11 MHz and is suitable for input frequencies of 5 MHz to 10 MHz . These filters should be driven by a generator of 75 Ohm source impedance and terminated with a 75 ohm resistor.

FIGURE 7. 5.5 MHz Low Pass Filter to Eliminate Harmonics at the Signal Input.

FIGURE 8. 11 MHz Low Pass filter to eliminate harmonics at the signal input. Use at input frequencies of 5 MHz to 10 MHz

Not considering the effect on a driven CMOS digital circuit(s) when the ADC1175 is in the power down mode. Because the ADC1175 output goes into a high impedance state when in the power down mode, any CMOS device connected to these outputs will have their inputs floating when the ADC is in power down. Should the inputs of the circuit being driven by the ADC digital outputs float to a level near 2.5 V , a CMOS device could exhibit relative large supply currents as the input stage toggles rapidly. The solution is to use pull-down resistors at the ADC outputs. The value of these resistors is not critical, as long as they do not cause excessive currents in the outputs of the ADC1175. Low pull-down resistor values could result in degraded SNR and SINAD performance of the ADC1175. Values between $5 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ should work well.

Physical Dimensions inches (millimeters) unless otherwise noted

ADC1175 8-Bit, 20MHz, 60mW A/D Converter

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	SolarMagicTM	www.national.com/solarmagic
Wireless (PLL/VCO)	www.national.com/wireless	PowerWise® Design University	www.national.com/training

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright® 2009 National Semiconductor Corporation
For the most current product information visit us at www.national.com

	National Semiconductor	National Semiconductor Europe	National Semiconductor Asia
Americas Technical Technical Support Center Support Center Email: europe.support@nsc.com	Pacific Technical Support Center Email: support@nsc.com		Email: ap.support@nsc.com

[^0]
[^0]: www.national.com

