6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

\qquad
General Description
The MAX16067 flash-configurable system manager monitors and sequences multiple system voltages. The MAX16067 manages up to six system voltages simultaneously. The MAX16067 integrates an analog-to-digital converter (ADC) and configurable outputs for sequencing power supplies. Device configuration information, including overvoltage and undervoltage limits, time delay settings, and the sequencing order is stored in nonvolatile flash memory. During a fault condition, fault flags and channel voltages can be automatically stored in the nonvolatile flash memory for later readback.

The internal 1% accurate, 10-bit ADC measures each input and compares the result to one overvoltage and one undervoltage limit. A fault signal asserts when a monitored voltage falls outside the set limits.
The MAX16067 supports a power-supply voltage of up to 14 V and can be powered directly from the 12 V intermediate bus in many systems.
The integrated sequencer provides precise control over the power-up and power-down order of up to six power supplies. Three outputs (EN_OUT1 to EN_OUT3) are configurable with charge-pump outputs to directly drive external n-channel MOSFETs.
The MAX16067 includes six programmable generalpurpose inputs/outputs (GPIOs). GPIOs are flash configurable as a fault output, as a watchdog input or output, or as a manual reset.
The MAX16067 features nonvolatile fault memory for recording information during system shutdown events. The fault logger records a failure in the internal flash and sets a lock bit protecting the stored fault data from accidental erasure.
An SMBus ${ }^{\text {™ }}$ or a JTAG serial interface configures the MAX16067. The MAX16067 is available in a 32 -pin, 5 mm $\times 5 \mathrm{~mm}$, TQFN package and is fully specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Features

- Operates from 2.8V to 14V
- 1\% Accurate, 10-Bit ADC Monitors 6 Voltage Inputs
- Analog EN Monitoring Input
- 6 Monitored Inputs with Overvoltage and Undervoltage Limits
- Nonvolatile Fault Event Logger
- Power-Up and Power-Down Sequencing Capability
- 6 Outputs for Sequencing/Power-Good Indicators
- 3 Configurable Charge-Pump Outputs
- Six General-Purpose Inputs/Outputs Configurable as:

Dedicated Fault Output
Watchdog Timer Function
Manual Reset
SMBus Alert
Fault Propagation Input/Output

- SMBus and JTAG Interface
- Supports Cascading with MAX16065/MAX16066
- Flash-Configurable Time Delays and Thresholds
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Extended Operating Temperature Range

Applications
Networking Equipment
Telecom Equipment (Base Stations, Access) Storage/Raid Systems
Servers

Typical Operating Circuit appears at end of data sheet.

Ordering Information/Selector Guide

PART	PIN-PACKAGE	VOLTAGE- DETECTOR INPUTS	GENERAL-PURPOSE INPUTS/OUTPUTS	SEQUENCING OUTPUTS
MAX16067ETJ+	32 TQFN-EP*	6	6	6

[^0]SMBus is a trademark of Intel Corp.

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

ABSOLUTE MAXIMUM RATINGS

	$\left.V \text { and }\left(V_{C C}+0.3 V\right)\right)$
tinuous Current	$\pm 20 \mathrm{~mA}$
Continuous Current (GND, pin 5)	30 mA
Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
Thermal Resistance (Note 1)	
ӨJA.................................	/W
$\theta \mathrm{Jc}$	$2^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Junction Temperature ... $+150^{\circ} \mathrm{C}$	
Storage Temperature Range......................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$	
Soldering Temperature (reflow)	$+260^{\circ} \mathrm{C}$

*As per JEDEC 51 Standard, Multilayer Board (PCB).
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=2.8 \mathrm{~V}\right.$ to $14 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified. Typical values are at $\mathrm{V}_{\mathrm{ABP}}=\mathrm{V}_{\mathrm{DBP}}=\mathrm{VCC}=3.3 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Voltage Range	VCC	RESET output asserted low	1.2			V
			2.8		14	
Undervoltage Lockout	VUVLO	Minimum voltage on $V_{C C}$ to ensure the device is flash configurable			2.7	V
Undervoltage Lockout Hysteresis	UVLOHYS			55		mV
Minimum Flash Operating Voltage	VFLASH	Minimum voltage on Vcc to ensure flash erase and write operations	2.7			V
Supply Current	ICC1	No load on any output		2.8	4	mA
	ICC2	No load on any output, during flash writing cycle		7.7	14	
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {ABP }}=\mathrm{V}_{\text {DBP }}=3.6 \mathrm{~V}$ (Note 3)			5	
DBP Regulator Voltage	VDBP	$V C C=5 \mathrm{~V}, \mathrm{CDBP}=1 \mu \mathrm{~F}$, no load	2.8	3	3.2	V
ABP Regulator Voltage	VABP	$V C C=5 V, C A B P=1 \mu F$, no load	2.85	3	3.15	V
Boot Time	tBOOT	VCC > VUVLO		100	200	$\mu \mathrm{s}$
Flash Writing Time		8-byte word		122		ms
Internal Timing Accuracy		(Note 4)	-10		+10	\%
ADC						
Resolution				10		Bits
Gain Error	ADCGAIN	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.35	\%
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			0.75	
Offset Error	ADCoFF				1.50	LSB
Integral Nonlinearity	ADCINL				1	LSB

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=2.8 \mathrm{~V}\right.$ to $14 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified. Typical values are at $\mathrm{V}_{\mathrm{ABP}}=\mathrm{V}_{\mathrm{DBP}}=\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Differential Nonlinearity	ADCDNL			1	LSB
ADC Total Monitoring Cycle Time	tCYCLE	Monitoring all 6 inputs, no MON_fault detected	24	30	$\mu \mathrm{s}$
ADC MON_ Ranges	ADCRNG	MON_ range set to '00'	5.552		V
		MON_ range set to '01'	2.776		
		MON_ range set to ' 10 '	1.388		
ADC LSB Step Size	ADCLSB	MON_ range set to '00'	5.42		mV
		MON_ range set to '01'	2.71		
		MON_ range set to ' 10 '	1.35		
ADC Input Leakage Current				1	$\mu \mathrm{A}$

ENABLE INPUT (EN)

EN Input-Voltage Threshold	VTH_EN_R	EN voltage rising	1.24			V
	VTH_EN_F	EN voltage falling	1.195	1.215	1.235	
EN Input Current	IEN		-0.5	+0.5	$\mu \mathrm{~A}$	
EN Input-Voltage Range			0	3.6	V	

OUTPUTS (EN_OUT_, RESET, GPIO_)

Output Voltage Low	VoL	ISINK $=2 \mathrm{~mA}$			0.4	V
		ISINK $=10 \mathrm{~mA}$, GPIO_ only			0.7	
		VCC $=1.2 \mathrm{~V}, \mathrm{ISINK}=100 \mu \mathrm{~A}$ (RESET only)			0.3	
Maximum Output Sink Current		Total current into EN_OUT_, RESET, GPIO_, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$			30	mA
Output-Voltage High (Push-Pull)	VOH	ISOURCE $=100 \mu \mathrm{~A}$	2.4			V
Output-Voltage High (EN_OUT1, EN_OUT2, EN_OUT3 Configured as Charge Pumps)	VOH_CP	$\mathrm{IEN}_{\text {E }}$ OUT_ $=1 \mu \mathrm{~A}$	11	11.7	13	V
EN_OUT_ Pullup Current (Charge Pump)	ICH_UP	VEN_OUT_ = 1V	5.4	7.9		$\mu \mathrm{A}$
Output Leakage Current	IT				1	A
(Open Drain)	IOUT_LKG	EN_OUT1, EN_OUT2, EN_OUT3 > 11.8V			5	A
INPUTS (A0, GPIO_)						
Input Logic-Low	VIL				0.8	V
Input Logic-High	VIH		2.0			V
WDI Pulse Width	tWDI		100			ns
MR Pulse Width	tMR		2			$\mu \mathrm{s}$

SMBus INTERFACE

Logic-Input Low Voltage	V_{IL}	Input voltage falling		0.8
Logic-Input High Voltage	V_{IH}	Input voltage rising	V	
Input Leakage Current		${\text { VCC shorted to GND, } \mathrm{V}_{\mathrm{MON}}=0 \text { or } 6 \mathrm{~V}}^{2.0}$	-1	V
Output Sink Current	$\mathrm{VOL}_{\mathrm{OL}}$	ISINK $=3 \mathrm{~mA}$		$\mu \mathrm{~A}$
Input Capacitance	CIN			5

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{VCC}=2.8 \mathrm{~V}\right.$ to $14 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified. Typical values are at $\mathrm{V}_{\mathrm{ABP}}=\mathrm{V}_{\mathrm{DBP}}=\mathrm{V}_{C C}=3.3 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

Note 2: Specifications are guaranteed for the stated global conditions, unless otherwise noted. 100% production tested at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$. Specifications at $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ are guaranteed by design.
Note 3: For $V_{C C}$ of 3.6 V or lower, connect $\mathrm{V}_{C C}$, DBP, and ABP together. For higher supply applications, connect only $\mathrm{V}_{C C}$ to the supply rail.
Note 4: Applies to RESET (except for reset timeout period of $25 \mu \mathrm{~s}$), fault, autoretry, sequence delays, and watchdog timeout.

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Figure 1. SMBus Timing Diagram

Figure 2. JTAG Timing Diagram

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Typical Operating Characteristics

(Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

TRANSIENT DURATION
vs. THRESHOLD OVERDRIVE (EN)

$\overline{\text { MR TO }} \overline{\text { RESET PROPAGATION DELAY }}$
vs. TEMPERATURE

NORMALIZED MON_THRESHOLD
vs. TEMPERATURE

NORMALIZED TIMING ACCURACY
vs. TEMPERATURE

NORMALIZED EN THRESHOLD vs. TEMPERATURE

TRANSIENT DURATION
vs. MON_DEGLITCH

OUTPUT VOLTAGE vs. SINK CURRENT
(OUT = LOW)

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Typical Operating Characteristics (continued)
(Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

FET TURN_ON WITH CHARGE PUMP

RESET OUTPUT CURRENT
vs. Vcc SUPPLY VOLTAGE

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

TOP VIEW

Pin Description

PIN	NAME	FUNCTION
$1-4,31,32$	GPIO3-GPIO6, GPIO1, GPIO2	General-Purpose Inputs/Outputs. Each GPIO_ can be configured to act as an input, a push-pull output, an open-drain output, or a special function.
5,23	GND	Ground. Connect all GNDs together.
6	AO	Four-State SMBus Address. Address is sampled upon POR.
7	SCL	SMBus Serial-Clock Input
8	SDA	SMBus Serial-Data Open-Drain Input/Output
9	TDO	JTAG Test Data Output
10	TDI	JTAG Test Data Input
11	TCK	JTAG Test Clock
12	TMS	JTAG Test Mode Select
$13-18$	EN_OUT6- EN_OUT1	Outputs. Set EN_OUT_ with an active-high/active-low logic and with push-pull or open-drain configuration. EN_OUT_ can be asserted by a combination of MON_ voltages configurable through the flash. EN_OUT1-EN_OUT3 can be configured with a charge-pump output (+12V above GND) that can drive an external n-channel MOSFET. All EN_OUT_ can be configured as GPIOs.
19	EN	Analog Enable Input. All outputs deassert when VEN is below the enable threshold.

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Pin Description (continued)

PIN	NAME	FUNCTION		
20	DBP	Digital Bypass. All push-pull outputs are referenced to DBP. Bypass DBP with a 1 1 F capacitor to GND.		
21	VCC	Power-Supply Input. Bypass VCC to GND with a 10رF ceramic capacitor.		
22	ABP	Analog Bypass. Bypass ABP to GND with a 1 μ F ceramic capacitor.		
$24-29$	MON1-MON6	Monitor Voltage Inputs. Set the monitor voltage range through the configuration registers. Measured values are written to the ADC registers and can be read back through the SMBus or JTAG interface.		
30	RESET	Configurable Reset Output - EP		Exposed Pad. Internally connected to GND. Connect to ground, but do not use EP as the main
:---				
ground connection.	.			

Functional Diagram

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Detailed Description

The MAX16067 manages up to six system power supplies. After boot-up, if EN is high and the software-enable bit is set to '1,' a power-up sequence begins based on the configuration stored in flash and the EN_OUT_s are controlled accordingly. When the power-up sequence is successfully completed, the monitoring phase begins. An internal multiplexer cycles through each MON_ input. At each multiplexer stop, the 10-bit ADC converts the monitored analog voltage to a digital result and stores the result in a register. Each time a conversion cycle ($5 \mu \mathrm{~s}, \mathrm{max}$) completes, internal logic circuitry compares the conversion results to the overvoltage and undervoltage thresholds stored in memory. When a result violates a programmed threshold, the conversion can be configured to generate a fault. GPIO_ can be programmed to assert on combinations of faults. Additionally, faults can be configured to shut off the system and trigger the nonvolatile fault logger, which writes all fault information automatically to the flash and write-protects the data to prevent accidental erasure.
The MAX16067 contains both SMBus and JTAG serial interfaces for accessing registers and flash. Use only one interface at any given time. For more information on how to access the internal memory through these interfaces, see the SMBus-Compatible Serial Interface and JTAG Serial Interface sections. The memory map is divided into three pages with access controlled by special SMBus and JTAG commands.
The factory-default values at POR (power-on reset) for all RAM registers are '0's. POR occurs when VCC reaches the undervoltage-lockout threshold (UVLO) of 2.7 V (max). At POR, the device begins a boot-up sequence. During the boot-up sequence, all monitored inputs are masked from initiating faults and flash contents are copied to the respective register locations. During bootup, the MAX16067 is not accessible through the serial interface. The boot-up sequence takes up to $150 \mu \mathrm{~s}$, after which the device is ready for normal operation. RESET is asserted low up to the boot-up phase after which it assumes its programmed active state. RESET remains active for its programmed timeout period once sequencing is completed and all monitored channels are within their respective thresholds. Up to the boot-up phase, the GPIO_s and EN_OUT_s are high impedance.

Power
Apply 2.8 V to 14 V to VCC to power the MAX16067. Bypass VCc to ground with a $10 \mu \mathrm{~F}$ capacitor. Two internal voltage regulators, $A B P$ and $D B P$, supply power to the analog and digital circuitry within the device. For operation at 3.6V or lower, disable the regulators by connecting ABP and DBP to VCC.
$A B P$ is a 3.0 V (typ) voltage regulator that powers the internal analog circuitry. Bypass ABP to GND with a $1 \mu \mathrm{~F}$ ceramic capacitor installed as close as possible to the device.
DBP is an internal 3.0V (typ) voltage regulator. DBP powers flash and digital circuitry. All push-pull outputs refer to DBP. DBP supplies the input voltage to the internal charge pump when the programmable outputs are configured as charge-pump outputs. Bypass the DBP output to GND with a 1μ F ceramic capacitor installed as close as possible to the device.
Do not power external circuitry from ABP or DBP.

Sequencing

To sequence a system of power supplies safely, the output voltage of a power supply must be good before the next power supply may turn on. Connect EN_OUT_ outputs to the enable input of the external power supplies and connect $M O N_{-}$inputs to the output of the power supplies for voltage monitoring. More than one MON_ can be used if the power supply has multiple outputs.

Sequence Order

The MAX16067 provides a system of ordered slots to sequence multiple power supplies. To determine the sequence order, assign each EN_OUT_ to a slot ranging from Slot 1 to Slot 6 (Table 6b). EN_OUT_(s) assigned to Slot 1 are turned on first, followed by outputs assigned to Slot 2 through Slot 6. Multiple EN_OUT_s assigned to the same slot turn on at the same time.
Each slot includes a built-in configurable sequence delay (registers r77h to r7Dh) ranging from $80 \mu s$ to 5.079s. During a reverse sequence, slots are turned off in reverse order starting from Slot 6. The MAX16067 can be configured to power down in simultaneous mode or in reverse-sequence mode as set in r75h[0]. Set r75h[0] to '1' for reverse sequence power-down.
See Tables 5 and 6 for the MON_ and EN_OUT_ slot assignment bits, and Tables 2 and 3 for the sequence delays.
During power-up or power-down sequencing, the current sequencer state can be found in r21h[3:0].

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Table 1. Current Sequencer Slot

REGISTER ADDRESS	BIT RANGE	DESCRIPTION
21h	[3:0]	Current-sequencer state $\begin{aligned} & 0000=\text { Slot0 } \\ & 0001=\text { Slot } 1 \\ & 0010=\text { Slot2 } \\ & 0011=\text { Slot3 } \\ & 0100=\text { Slot } 4 \\ & 0101=\text { Slot5 } \\ & 0110=\text { Slot } 6 \\ & 0111=\text { Power-on mode } \\ & 1000=\text { Fault state } \\ & 1001 \text { to } 1111=\text { Unused } \end{aligned}$
	[7:4]	Reserved

A sequencing delay occurs between each slot and is configured in registers 77h-7Dh as shown in Table 2. Each sequencing delay is stored as an 8-bit value and is calculated as follows:

$$
\mathrm{t}_{\text {SEQ }}=\left(5 \times 10^{-6}\right) \times 2^{a} \times(16+b)
$$

where tSEQ is in seconds, a is the decimal value of the 4 MSBs and b is the decimal value of the 4 LSBs. See Table 3 for example calculations.

Enable Input (EN)

To initiate sequencing and enable monitoring, the voltage at EN must be above 1.24 V (typ) and the software enable bit in r73h[0] must be set to '1.' To power down and disable monitoring, either pull EN below 1.215V (typ) or set the software enable bit to '0.' See Table 4 for the software enable bit configurations. Connect EN to $A B P$ if not used.

If a fault condition occurs during the power-up cycle, the EN_OUT_ outputs are powered down immediately, regardless of the state of EN. In the monitoring state, if EN falls below the threshold, the sequencing state machine begins the power-down sequence. If EN rises above the threshold during the power-down sequence, the sequence state machine continues the power-down sequence until all the channels are powered off and then the device immediately begins the power-up sequence. When in the monitoring state, and when EN falls below the undervoltage threshold, a register bit, ENRESET ($\mathrm{r} 20 \mathrm{~h}[2]$), is set to a '1.' This register bit latches and must be cleared through software. This bit indicates if RESET asserted low due to EN going under the threshold. The POR state of ENRESET is ' 0 '. The bit is only set on a falling edge of the EN comparator output or the software enable bit. If operating in latch-on fault mode, toggle EN or toggle the software enable bit to clear the latch condition and restart the device once the fault condition has been removed.

Table 2. Slot Delay Register

REGISTER ADDRESS	FLASH ADDRESS	BIT RANGE	DESCRIPTION
77 h	277 h	$[7: 0]$	Sequence slot 0 to slot 1 delay
78 h	278 h	$[7: 0]$	Sequence slot 1 to slot 2 delay
79 h	279 h	$[7: 0]$	Sequence slot 2 to slot 3 delay
7 Ah	27 h	$[7: 0]$	Sequence slot 3 to slot 4 delay
7 Bh	27 Bh	$[7: 0]$	Sequence slot 4 to slot 5 delay
7 Ch	27 Ch	$[7: 0]$	Sequence slot 5 to slot 6 delay
7 Dh	27 Dh	$[7: 0]$	Sequence slot 6 to power-on state delay

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Table 3. Power-Up/Power-Down Slot Delays

Code	Value
00000000	${ }^{{ }^{\text {S SEQ }}}=\left(5 \times 10^{-6}\right) \times 2^{\mathrm{a}} \times(16+\mathrm{b})=\left(5 \times 10^{-6}\right) \times 2^{0} \times(16+0)=80 \mu \mathrm{~s}$
\bullet	\vdots
\bullet	
11111111	${ }^{\mathrm{t}}{ }^{\text {SEQ }}=\left(5 \times 10^{-6}\right) \times 2^{\mathrm{a}} \times(16+\mathrm{b})=\left(5 \times 10^{-6}\right) \times 2^{15} \times(16+15)=5.079 \mathrm{~s}$

Table 4. Software Enable Configurations

REGISTER ADDRESS	FLASH ADDRESS	BIT RANGE	
73 h	[0]	Software enable $1=$ Sequencing enabled $0=$ Power-down	
		$[1]$	Reserved
		$[2]$	$1=$ Margin mode enabled
		$[3]$	Reserved
		$[4]$	Independent watchdog mode enable $1=$ Watchdog timer is independent of sequencer $0=$ Watchdog timer boots after sequence completes

Monitoring Inputs While Sequencing

An enabled MON_ input can be assigned to a slot ranging from Slot 1 to Slot 6. EN_OUT_s are always asserted at the beginning of a slot. The supply voltages connected to the MON_ inputs must exceed the undervoltage threshold before the programmed fault timeout period expires, otherwise, a fault condition occurs. Once a MON_ input crosses the undervoltage threshold, the monitoring for overvoltage begins. The undervoltage and overvoltage threshold checking cannot be disabled during power-up and power-down. See Tables 5 and 6 for the MON_ slot assignment bits. The programmed sequence delay is then counted before moving to the next slot.

Slot 0 does not monitor any MON_ input and does not control any EN_OUT_. Slot 0 waits for the software enable bit r73h[0] to be a logic-high and for the voltage on EN to rise above 1.24 V (typ) before initiating the pow-er-up sequence and counting its own sequence delay.
Any $M O N_{-}$input that suffers a fault during power-up sequencing causes all the EN_OUT_s to turn off and the sequencer to shut down regardless of the state of the critical fault enables (see the Faults section). If a MON_ input is less critical to system operation, it can be configured as "monitoring only" (see Table 6a) for sequencing. Monitoring for MON_ inputs assigned as "monitoring only" begins after sequencing is complete, and can trigger a critical fault only if specifically configured to do so using the critical fault enables.

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Figure 3. Delay and Reset Timing

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Table 5. MON_ and EN_OUT_Assignment Registers

REGISTER ADDRESS	$\begin{gathered} \text { FLASH } \\ \text { ADDRESS } \end{gathered}$	BIT RANGE	DESCRIPTION
7Eh	27Eh	[2:0]	MON1
		[3]	Not used
		[6:4]	MON2
		[7]	Not used
7Fh	27Fh	[2:0]	MON3
		[3]	Not used
		[6:4]	MON4
		[7]	Not used
80h	280h	[2:0]	MON5
		[3]	Not used
		[6:4]	MON6
		[7]	Not used
81h-83h	281h-283h	-	Not used
84h	284h	[3:0]	EN_OUT1
		[7:4]	EN_OUT2
85h	285h	[3:0]	EN_OUT3
		[7:4]	EN_OUT4
86h	286h	[3:0]	EN_OUT5
		[7:4]	EN_OUT6

Table 6a. MON_ Slot Assignment Codes

SLOT ASSIGNMENT	
CODE	MON_DESCRIPTION
000	Not assigned
001	Slot 1
010	Slot 2
011	Slot 3
100	Slot 4
101	Slot 5
110	Slot 6
111	Monitoring-only state

Table 6b. EN_OUT_ Slot Assignment Codes

SLOT ASSIGNMENT	
CODE	EN_OUT_DESCRIPTION
0000	Not assigned
0001	Slot 1
0010	Slot 2
0011	Slot 3
0100	Slot 4
0101	Slot 5
0110	Slot 6
1101	General-purpose input
1110	General-purpose output
-	All other unspecified codes are not assigned.

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Abstract

Power-Up On power-up, when EN is high and the software enable bit is ' 1 ', the MAX16067 begins sequencing with Slot 0 . After the sequencing delay for Slot 0 expires, the sequencer advances to Slot 1, and all EN_OUT_s assigned to the slot assert. All MON_inputs assigned to Slot 1 are monitored and when the voltage rises above the undervoltage (UV) fault threshold, the sequence delay counter is started. When the sequence delay expires, the MAX16067 proceeds to the next slot.

When the tFAULT counter expires before all MON_inputs assigned to the slot are above the fault UV threshold, a fault asserts. EN_OUT_ outputs are disabled and the MAX16067 returns to the fault state. Register r75h[4:1] sets the tFAULT delay. See Table 7 for details.
After the voltages on all MON_ inputs assigned to the last slot exceed the UV fault threshold and the slot delay expires, the MAX16067 starts the reset timeout counter. After the reset timeout, RESET deasserts. See Table 22 for more information on setting the reset timeout.

Power-Down

Power-down starts when EN is pulled low or the software enable bit is set to ' 0 .' Power down EN_OUT_s simultaneously or in reverse sequence mode by setting the reverse sequence bit (r75h[0]) appropriately. Set r75h[0] to ' 1 ' to power down in reverse sequence.

Reverse Sequence Mode

When the MAX16067 is fully powered up and EN is pulled low or the software enable bit is set to ' 0 ', the EN_OUT_s assigned to Slot 6 deassert, the MAX16067 waits for the Slot 6 sequence delay and then proceeds to the previous slot (Slot 5), and so on until the EN_OUT_s assigned to Slot 1 turn off. When simultaneous powerdown is selected (r75h[0] is set to ' 0 '), all EN_OUT_s turn off at the same time.

Voltage Monitoring

The MAX16067 features an internal 10-bit ADC that monitors the MON_ voltage inputs. An internal multiplexer cycles through each of the enabled inputs, taking less than 24μ s for a complete monitoring cycle. Each acquisition takes approximately $4 \mu \mathrm{~s}$. At each multiplexer stop, the 10-bit ADC converts the analog input to a digital result and stores the result in a register. ADC conversion results are stored in registers rOOh-rOBh (see Table 9). Use the SMBus or JTAG serial interface to read ADC conversion results.
The MAX16067 provides six inputs, MON1-MON6, for voltage monitoring. Each input-voltage range

Table 7. tFAULT Delay Settings

r75h[4:1]	FAULT DELAY
0000	$120 \mu \mathrm{~s}$
0001	$150 \mu \mathrm{~s}$
0010	$250 \mu \mathrm{~s}$
0011	$380 \mu \mathrm{~s}$
0100	$600 \mu \mathrm{~s}$
0101	1 ms
0110	1.5 ms
0111	2.5 ms
1000	4 ms
1001	6 ms
1010	10 ms
1011	15 ms
1100	25 ms
1101	40 ms
1110	60 ms
1111	100 ms

is programmable in registers r43h-r44h (see Table 8). When MON_ configuration registers are set to '11,' MON_ voltages are not monitored and the multiplexer does not stop at these inputs, decreasing the total cycle time. These inputs cannot be configured to trigger fault conditions.
The two programmable thresholds for each monitored voltage include an overvoltage and an undervoltage threshold. See the Faults section for more information on setting overvoltage and undervoltage thresholds. All voltage thresholds are 8 bits wide. The 8 MSBs of the 10-bit ADC conversion result are compared to these overvoltage and undervoltage thresholds.
For any undervoltage or overvoltage condition to be monitored and any faults detected, the MON_ input must be assigned to a sequence order or set to monitoring mode as described in the Sequencing section. Inputs that are not enabled are not converted by the ADC; they contain the last value acquired before that channel was disabled. The ADC conversion result registers are reset to 00h at boot-up. These registers are not reset when a reboot command is executed.
To temporarily disable voltage monitoring during voltage margining conditions, set r73h[2] to '1' to enable margining mode functionality. Faults, except for faults triggered by EXTFAULT pulled low externally, are not recorded when the device is in margining mode but the ADC continues to run and conversion results continue to be available. Set r73h[2] back to '0' for normal functionality.

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Table 8. ADC Configuration Registers

REGISTER ADDRESS	FLASH ADDRESS	BIT RANGE	DESCRIPTION
43h	243h	[1:0]	MON1 full-scale range $\begin{aligned} & 00=5.6 \mathrm{~V} \\ & 01=2.8 \mathrm{~V} \\ & 10=1.4 \mathrm{~V} \\ & 11=\text { channel not converted } \end{aligned}$
		[3:2]	MON2 full-scale range $\begin{aligned} & 00=5.6 \mathrm{~V} \\ & 01=2.8 \mathrm{~V} \\ & 10=1.4 \mathrm{~V} \\ & 11=\text { channel not converted } \end{aligned}$
		[5:4]	MON3 full-scale range $\begin{aligned} & 00=5.6 \mathrm{~V} \\ & 01=2.8 \mathrm{~V} \\ & 10=1.4 \mathrm{~V} \\ & 11=\text { channel not converted } \end{aligned}$
		[7:6]	MON4 full-scale range $\begin{aligned} & 00=5.6 \mathrm{~V} \\ & 01=2.8 \mathrm{~V} \\ & 10=1.4 \mathrm{~V} \\ & 11=\text { channel not converted } \end{aligned}$
44h	244h	[1:0]	MON5 full-scale range $\begin{aligned} & 00=5.6 \mathrm{~V} \\ & 01=2.8 \mathrm{~V} \\ & 10=1.4 \mathrm{~V} \\ & 11=\text { channel not converted } \end{aligned}$
		[3:2]	MON6 full-scale range $\begin{aligned} & 00=5.6 \mathrm{~V} \\ & 01=2.8 \mathrm{~V} \\ & 10=1.4 \mathrm{~V} \\ & 11=\text { channel not converted } \end{aligned}$
		[7:4]	Not used

Table 9. ADC Conversion Results (Read Only)

REGISTER ADDRESS	BIT RANGE	
00 h	$[7: 0]$	MON1 result (MSB)
01 h	$[7: 6]$	MON1 result (LSB)
02 h	$[7: 0]$	MON2 result (MSB)
03 h	$[7: 6]$	MON2 result (LSB)
04 h	$[7: 0]$	MON3 result (MSB)
05 h	$[7: 6]$	MON3 result (LSB)
06 h	$[7: 0]$	MON4 result (MSB)
07 h	$[7: 6]$	MON4 result (LSB)
08 h	$[7: 0]$	MON5 result (MSB)
09 h	$[7: 6]$	MON5 result (LSB)
0 Ah	$[7: 0]$	MON6 result (MSB)
$0 B h$	$[7: 6]$	MON6 result (LSB)

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

General-Purpose Inputs/Outputs

 GPIO1-GPIO6 are programmable general-purpose inputs/outputs. GPIO1-GPIO6 are configurable as a manual reset input, a watchdog timer input and output, logic inputs/outputs, and fault-dependent outputs. When programmed as outputs, GPIOs are open-drain or pushpull. See Tables 10 and 11 for more detailed information on configuring GPIO1-GPIO6.When GPIO1-GPIO6 are configured as general-purpose inputs/outputs, read values from the GPIO ports through r1Eh and write values to GPIOs through r3Eh. Note that r3Eh has a corresponding flash register, which programs the default state of a general purpose output. See Table 12 for more information on reading and writing to the GPIO.

Table 10. GPIO_Configuration Registers

REGISTER ADDRESS	FLASH ADDRESS	BIT RANGE	DESCRIPTION
3Fh	23Fh	[1:0]	GPIO1 configuration
		[3:2]	GPIO2 configuration
		[5:4]	GPIO3 configuration
		[7:6]	GPIO4 configuration
40h	240h	[1:0]	GPIO5 configuration
		[3:2]	GPIO6 configuration
		[4]	ARAEN bit
		[7:5]	Not used

Table 11. GPIO_Function Configuration Bits

	GPIO1	GPIO2	GPIO3	GPIO4	GPIO5	GPIO6
00	Logic input					
01	Logic output (push-pull)					
10	Logic output (open drain)					
11	$\overline{\text { ALERT } \text { (open drain) }}$	FAULT (open drain)	$\overline{\text { MR input }}$	WDI	$\overline{\text { WDO }}$ (open drain)	$\overline{\text { EXTFAULT }}$ (open drain)

Table 12. GPIO_State Registers

REGISTER ADDRESS	FLASH ADDRESS	BIT RANGE	DESCRIPTION
1Eh	-	[0]	GPIO1 input state
		[1]	GPIO2 input state
		[2]	GPIO3 input state
		[3]	GPIO4 input state
		[4]	GPIO5 input state
		[5]	GPIO6 input state
		[7:6]	Not used
3Eh	23Eh	[0]	GPIO1 output state
		[1]	GPIO2 output state
		[2]	GPIO3 output state
		[3]	GPIO4 output state
		[4]	GPIO5 output state
		[5]	GPIO6 output state
		[7:6]	Not used

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Abstract

$\overline{\text { ALERT }}$ GPIO1 is configurable as the SMBus alert signal, $\overline{\text { ALERT. }}$ $\overline{\text { ALERT }}$ asserts when any fault condition occurs. When the SMBus host sends the ARA (Alert Response Address), the MAX16067 responds with its slave address and deasserts $\overline{\text { ALERT. }}$ ALERT is an open-drain output. Set the ARAEN bit in r40h[4] to ' 1 ' to disable the ARA feature. Under these conditions, the device does not respond to an ARA on the SMBus line.

FAULT
GPIO2 is configurable as a dedicated fault output, FAULT. FAULT asserts when an overvoltage or undervoltage condition occurs on the selected inputs. FAULT dependencies are set using registers r36h and r37h (see Table 13). When FAULT depends on more than one MON_, the fault output asserts when one or more MON_ exceeds a programmed threshold voltage. FAULT acts independently of the critical fault system, described in the Critical Faults section. Use r37h[7] to set the polarity of FAULT.

Manual Reset ($\overline{M R}$)

GPIO3 is configurable to act as an active-low manual reset input, $\overline{\mathrm{MR}}$. Drive $\overline{\mathrm{MR}}$ low to assert RESET. RESET remains asserted for the selected reset timeout period after $\overline{\mathrm{MR}}$ transitions from low to high. When connecting $\overline{M R}$ to a pushbutton, use a pullup resistor. See the Reset Output section for more information on selecting a reset timeout period.

Watchdog Input (WDI) and Output ($\overline{W D O}$)
GPIO4 and GPIO5 are configurable as the watchdog timer input (WDI) and output, $\overline{\mathrm{WDO}}$, respectively. See Table 23 for configuration details. $\overline{\mathrm{WDO}}$ is an open-drain, active-low output. See the Watchdog Timer section for more information about the operation of the watchdog timer.

External Fault (EXTFAULT) GPIO6 is configurable as the external fault input/output, EXTFAULT. EXTFAULT asserts if any monitored voltage exceeds an overvoltage or undervoltage threshold. EXTFAULT also asserts if a power-up or power-down sequencing fault occurs. This signal can be used to cascade multiple MAX16067s.
Pull $\overline{\text { EXTFAULT }}$ low externally to force the sequencer to enter a fault state. Under these conditions, all outputs deassert.
Two configuration bits determine the behavior of the MAX16067 when EXTFAULT is pulled low by an external device. Register bit r72h[5], if set to a '1', causes the sequencer state machine to enter the fault state, deasserting all the outputs when EXTFAULT is pulled low. When this happens, the flag bit r1Ch[6] is set to indicate the cause of the fault. If register bit r6Dh[2] is set in addition to r72h[5], EXTFAULT going low triggers a nonvolatile fault log operation.

Table 13. FAULT Dependencies

REGISTER ADDRESS	FLASH ADDRESS	BIT RANGE	DESCRIPTION
36h	236h	[0]	FAULT depends on MON1 undervoltage threshold
		[1]	FAULT depends on MON2 undervoltage threshold
		[2]	FAULT depends on MON3 undervoltage threshold
		[3]	FAULT depends on MON4 undervoltage threshold
		[4]	FAULT depends on MON5 undervoltage threshold
		[5]	FAULT depends on MON6 undervoltage threshold
		[7:6]	Not used
37h	237h	[0]	FAULT depends on MON1 overvoltage threshold
		[1]	FAULT depends on MON2 overvoltage threshold
		[2]	FAULT depends on MON3 overvoltage threshold
		[3]	FAULT depends on MON4 overvoltage threshold
		[4]	FAULT depends on MON5 overvoltage threshold
		[5]	FAULT depends on MON6 overvoltage threshold
		[6]	Not used
		[7]	$0=$ FAULT is an active-low digital output $1=$ FAULT is an active-high digital output

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Faults
The MAX16067 monitors the input (MON_) channels and compares the results with an overvoltage threshold and an undervoltage threshold. Based on these conditions, the MAX16067 asserts various fault outputs and save specific information about the channel conditions and voltages into the nonvolatile flash. Once a critical fault event occurs, the failing channel condition, ADC conversions at the time of the fault, or both can be saved by configuring the event logger. The event logger records a single failure in the internal flash and sets a lock bit which protects the stored fault data from accidental erasure on a subsequent power-up.

The MAX16067 is capable of measuring overvoltage and undervoltage fault events. Fault conditions are detected at the end of each ADC conversion. An overvoltage event occurs when the voltage at a monitored input exceeds the overvoltage threshold for that input. An undervoltage event occurs when the voltage at a monitored input falls below the undervoltage threshold. Fault thresholds are set in registers r49h-r59h as shown in Table 14. Disabled inputs are not monitored for fault conditions and are skipped over by the input multiplexer. Only the upper 8 bits of a conversion result are compared with the programmed fault thresholds.

Table 14. Fault Threshold Registers

REGISTER ADDRESS	FLASH ADDRESS	BIT RANGE	
48 h	248 h	$[7: 0]$	Not used
49 h	249 h	$[7: 0]$	MON1 overvoltage threshold
4 Ah	24 Ah	$[7: 0]$	MON1 undervoltage threshold
4 Bh	24 Bh	$[7: 0]$	Not used
4 Ch	24 Ch	$[7: 0]$	MON2 overvoltage threshold
4 Dh	24 Dh	$[7: 0]$	MON2 undervoltage threshold
4 Eh	24 Eh	$[7: 0]$	Not used
4 Fh	24 Fh	$[7: 0]$	MON3 overvoltage threshold
50 h	250 h	$[7: 0]$	MON3 undervoltage threshold
51 h	251 h	$[7: 0]$	Not used
52 h	252 h	$[7: 0]$	MON4 overvoltage threshold
53 h	253 h	$[7: 0]$	MON4 undervoltage threshold
54 h	254 h	$[7: 0]$	Not used
55 h	255 h	$[7: 0]$	MON5 overvoltage threshold
56 h	256 h	$[7: 0]$	MON5 undervoltage threshold
57 h	257 h	$[7: 0]$	Not used
58 h	258 h	$[7: 0]$	MON6 overvoltage threshold
59 h	259 h	$[7: 0]$	MON6 undervoltage threshold

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Deglitch

Fault conditions are detected at the end of each conversion. When the voltage on an input falls outside a monitored threshold for one acquisition, the input multiplexer remains on that channel and performs several successive conversions. To trigger a fault, the input must stay outside the threshold for a certain number of acquisitions as determined by the deglitch setting in r74h[6:5] (see Table 15).

Fault Flags
Fault flags indicate the fault status of a particular input. The fault flag of any monitored input in the device can be read at any time from registers r1Bh and r1Ch, as shown
in Table 16. Clear a fault flag by writing a ' 1 ' to the appropriate bit in the flag register. Unlike the fault signals sent to the fault outputs, these bits are masked by the critical fault enable bits (see Table 17). The fault flag is only set when the matching enable bit in the critical fault enable register is also set.
If GPIO6 is configured as the EXTFAULT input/output and EXTFAULT is pulled low by an external circuit, bit $\mathrm{r1Ch}[6]$ is set.
The SMB Alert (ALERT) bit is set if the MAX16067 has asserted the SMBus Alert output. Clear by writing a ' 1 '. See the SMBALERT (ALERT) section for more details.

Table 15. Deglitch Configuration

REGISTER ADDRESS	FLASH ADDRESS	BIT RANGE	
			DESCRIPTION
			Voltage comparator deglitch configuration $00=2$ cycles 74 h
	274 h	$[6: 5]$	$01=4$ cycles $10=8$ cycles $11=16$ cycles

Table 16. Fault Flags

REGISTER ADDRESS	BIT RANGE	DESCRIPTION
1 Bh	[0]	MON1 undervoltage threshold
	[1]	MON2 undervoltage threshold
	[2]	MON3 undervoltage threshold
	[3]	MON4 undervoltage threshold
	[4]	MON5 undervoltage threshold
	[5]	MON6 undervoltage threshold
	[7:6]	Reserved
1Ch	[0]	MON1 overvoltage threshold
	[1]	MON2 overvoltage threshold
	[2]	MON3 overvoltage threshold
	[3]	MON4 overvoltage threshold
	[4]	MON5 overvoltage threshold
	[5]	MON6 overvoltage threshold
	[6]	External fault ($\overline{\text { EXTFAULT }}$)
	[7]	SMB alert

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Critical Faults
During normal operation, a fault condition can be configured to shut down all the EN_OUT_s and store fault information in the flash memory by setting the appropriate critical fault enable bits. During power-up and power-down, all sequenced MON inputs are considered critical. Faults during power-up and power-down always cause the EN_OUT_s to turn off and can store fault information in the flash memory, depending on the contents of r6Dh[1:0]. Set the appropriate critical fault enable bits in registers r6Eh-r72h (see Table 17) for a fault condition to trigger a critical fault.
Logged fault information is stored in flash registers r200h-r208h (see Table 18). After fault information is
logged, the flash is locked and must be unlocked to enable a new fault log to be stored. Write a '0' to r8Ch[1] to unlock the configuration flash. Fault information can be configured to store ADC conversion results and/or fault flags in registers. Select the critical fault configuration in r6Dh[1:0]. Set r6Dh[1:0] to '11' to turn off the fault logger. All stored ADC results are 8 bits wide (MSBs of the conversion).

Power-Up/Power-Down Faults

All EN_OUT_s deassert when an overvoltage or undervoltage fault is detected during power-up/power-down and the MAX16067 enters to the fault state. Fault information can be stored to flash depending on r6D[1:0] (see Table 17).

Table 17. Critical Fault Configuration

REGISTER ADDRESS	FLASH ADDRESS	$\begin{gathered} \text { BIT } \\ \text { RANGE } \end{gathered}$	DESCRIPTION
6Dh	26Dh	[1:0]	Fault Information to Log $00=$ Save failed line flags and ADC values in flash 01 = Save only failed line flags in flash 10 = Save only ADC values in flash 11 = Do not save anything
		[2]	1 = Fault log triggered when EXTFAULT is pulled low externally
		[7:3]	Not used
6Eh	26Eh	[0]	1 = Fault log triggered when MON1 is below its undervoltage threshold
		[1]	1 = Fault log triggered when MON2 is below its undervoltage threshold
		[2]	1 = Fault log triggered when MON3 is below its undervoltage threshold
		[3]	1 = Fault log triggered when MON4 is below its undervoltage threshold
		[4]	1 = Fault log triggered when MON5 is below its undervoltage threshold
		[5]	1 = Fault log triggered when MON6 is below its undervoltage threshold
		[7:6]	Not used
6Fh	26Fh	[3:0]	Not used
		[4]	1 = Fault log triggered when MON1 is above its overvoltage threshold
		[5]	1 = Fault log triggered when MON2 is above its overvoltage threshold
		[6]	1 = Fault log triggered when MON3 is above its overvoltage threshold
		[7]	1 = Fault log triggered when MON4 is above its overvoltage threshold
70h	270h	[0]	1 = Fault log triggered when MON5 is above its overvoltage threshold
		[1]	1 = Fault log triggered when MON6 is above its overvoltage threshold
		[7:2]	Not used
71h	271h	[7:0]	Not used
72h	272h	[4:0]	Not used
		[5]	1 = EXTFAULT pulled low externally causes sequencer to enter fault state, turning off all EN_OUT_s $0=\overline{\text { EXTFAULT }}$ pulled low externally does not cause sequencer to enter fault state
		[7:6]	Not used

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Table 18. Nonvolatile Fault Log Registers

FLASH ADDRESS	BIT RANGE	DESCRIPTION
200h	[3:0]	Sequencer state where the fault has happened (see Table 1 for state codes). Fault has happened during power-up if bit [3] = 0 and during power-down if [3] = 1 . Bits [2:0] indicate the slot number.
	[7:4]	Not used
201h	[0]	Fault log triggered on MON1 falling below its undervoltage threshold
	[1]	Fault log triggered on MON2 falling below its undervoltage threshold
	[2]	Fault log triggered on MON3 falling below its undervoltage threshold
	[3]	Fault log triggered on MON4 falling below its undervoltage threshold
	[4]	Fault log triggered on MON5 falling below its undervoltage threshold
	[5]	Fault log triggered on MON6 falling below its undervoltage threshold
	[7:6]	Not used
202h	[0]	Fault log triggered on MON1 exceeding its overvoltage threshold
	[1]	Fault log triggered on MON2 exceeding its overvoltage threshold
	[2]	Fault log triggered on MON3 exceeding its overvoltage threshold
	[3]	Fault log triggered on MON4 exceeding its overvoltage threshold
	[4]	Fault log triggered on MON5 exceeding its overvoltage threshold
	[5]	Fault log triggered on MON6 exceeding its overvoltage threshold
	[6]	Fault log triggered on EXTFAULT
	[7]	Not used
203h	[7:0]	MON1 ADC output (8 MSBs)
204h	[7:0]	MON2 ADC output (8 MSBs)
205h	[7:0]	MON3 ADC output (8 MSBs)
206h	[7:0]	MON4 ADC output (8 MSBs)
207h	[7:0]	MON5 ADC output (8 MSBs)
208h	[7:0]	MON6 ADC output (8 MSBs)

Autoretry/Latch Mode

 The MAX16067 can be configured for one of two fault management methods: autoretry or latch-on-fault. Set r74h[4:3] to ' 00 ' to select the latch-on-fault mode. In this configuration, EN_OUT_s deassert after a critical fault event. The device does not reinitiate the power-up sequence until EN is toggled or the software enable bit is toggled. See the Enable Input (EN) section for more information on setting the software enable bit.Set $\mathrm{r} 74 \mathrm{~h}[4: 3$] to a value other than ' 00 ' to select autoretry mode (see Table 19). In this configuration, the device shuts down after a critical fault event then restarts following a configurable delay. Use r74h[2:0] to select an
autoretry delay from 20 ms to 1.6 s . See Table 19 for more information on setting the autoretry delay.
When fault information is stored in flash (see the Critical Faults section) and autoretry mode is selected, set an autoretry delay greater than the time required for the storing operation. When fault information is stored in flash and latch-on-fault mode is chosen, toggle EN or reset the software enable bit only after the completion of the storing operation. When saving information about the failed lines only, ensure a delay of at least 12 ms before the restart procedure. Otherwise, ensure a minimum 153 ms timeout, to ensure that ADC conversions are completed and values are stored correctly in flash.

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Table 19. Autoretry Configuration

REGISTER ADDRESS	FLASH ADDRESS	BIT RANGE	DESCRIPTION
74h	274h	[2:0]	Retry Delay $000=20 \mathrm{~ms}$ $001=40 \mathrm{~ms}$ $010=80 \mathrm{~ms}$ $011=150 \mathrm{~ms}$ $100=280 \mathrm{~ms}$ $101=540 \mathrm{~ms}$ $110=1 \mathrm{~s}$ $111=2 s$
		[4:3]	Autoretry/Latch Mode $00=$ Latch 01 = Reserved $10=$ Reserved 11 = Always retry

Programmable Outputs

(EN_OUT1-EN_OUT6)
The MAX16067 includes six programmable outputs. These outputs are capable of connecting to either the enable (EN) inputs of a DC-DC or LDO power supply, or to drive the gate of an n-channel MOSFET in charge-pump mode. Selectable output configurations include: active-low or active-high, open-drain or pushpull. EN_OUT1-EN_OUT3 can act as charge-pump outputs, EN_OUT1-EN_OUT6 can be configured as general-purpose inputs or general-purpose outputs. Use the registers r30h-r33h to configure outputs. See Table 20 for detailed information on configuring EN_OUT1EN_OUT6.

In charge-pump configuration: EN_OUT1, EN_OUT2, and EN_OUT3 act as high-voltage charge-pump outputs to drive up to three external n-channel MOSFETs. During sequencing, an EN_OUT_ output is configured as a charge-pump output 11 V above GND. See the Sequencing section for more detailed information on power-supply sequencing.
In open-drain output configuration: Connect an external pullup resistor from the output to an external voltage up to 5.5 V (EN_OUT4, EN_OUT5, EN_OUT6) or 14 V (EN_OUT1, EN_OUT2, EN_OUT3) when configured as an open-drain output. Choose the pullup resistor depending on the number of devices connected to the open-drain output and the allowable current consumption. The open-drain output configuration allows wiredOR connection.
In push-pull configuration: The MAX16067's programmable outputs are referenced to VDBP.

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Table 20. EN_OUT1-EN_OUT6 Configuration

REGISTER ADDRESS	FLASH ADDRESS	BIT RANGE	DESCRIPTION
30h	230h	[1:0]	EN_OUT1 Configuration $00=$ Active-low, open drain 01 = Active-high, open drain 10 = Active-low, push-pull 11 = Active-high, push-pull
		[3:2]	EN_OUT2 Configuration $00=$ Active-low, open drain 01 = Active-high, open drain 10 = Active-low, push-pull 11 = Active-high, push-pull
		[5:4]	EN_OUT3 Configuration $00=$ Active-low, open drain 01 = Active-high, open drain 10 = Active-low, push-pull 11 = Active-high, push-pull
		[7:6]	EN_OUT4 Configuration $00=$ Active-low, open drain 01 = Active-high, open drain 10 = Active-low, push-pull 11 = Active-high, push-pull
31h	231h	[1:0]	EN_OUT5 Configuration $00=$ Active-low, open drain 01 = Active-high, open drain 10 = Active-low, push-pull 11 = Active-high, push-pull
		[3:2]	EN_OUT6 Configuration $00=$ Active-low, open drain 01 = Active-high, open drain 10 = Active-low, push-pull 11 = Active-high, push-pull
		[7:4]	Not used
33h	233h	[0]	EN_OUT1 Charge-Pump Output Configuration 0 = Charge-pump output disabled 1 = Charge-pump output enabled (active-high)
		[1]	EN_OUT2 Charge-Pump Output Configuration $0=$ Charge-pump output disabled 1 = Charge-pump output enabled (active-high)
		[2]	EN_OUT3 Charge-Pump Output Configuration 0 = Charge-pump output disabled 1 = Charge-pump output enabled (active-high)
		[7:3]	Not used

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

EN_OUT_s as GPIO
EN_OUT1-EN_OUT6 can be configured as general-purpose inputs by setting the sequencing slot assignments in r84h-r86h to '1101' or as general-purpose outputs by setting the slot assignments to '1110'. See Tables 5 and 6. If an EN_OUT_ is configured as a general-purpose input, the state of the GPIO can be read from r1Fh (see Table 21). If an EN_OUT_ is configured as a generalpurpose output, it is controlled by r34h.

EN_OUT_ State During Power-Up
When VCC is ramped from OV to the operating supply voltage, the EN_OUT_ output is high impedance until VCC reaches UVLO and then EN_OUT_ goes into the configured deasserted state. See Figures 4 and 5. Configure RESET as an active-low push-pull or opendrain output pulled up to V_{CC} through a $10 \mathrm{k} \Omega$ resistor for Figures 4 and 5.

Table 21. EN_OUT_ GPIO State Registers

REGISTER ADDRESS	FLASH ADDRESS	BIT RANGE	DESCRIPTION
1Fh	-	[0]	EN_OUT1 input state
		[1]	EN_OUT2 input state
		[2]	EN_OUT3 input state
		[3]	EN_OUT4 input state
		[4]	EN_OUT5 input state
		[5]	EN_OUT6 input state
		[7:6]	Not used
34h	234h	[0]	1 = Assert EN_OUT1
		[1]	1 = Assert EN_OUT2
		[2]	1 = Assert EN_OUT3
		[3]	1 = Assert EN_OUT4
		[4]	1 = Assert EN_OUT5
		[5]	1 = Assert EN_OUT6
		[7:6]	Not used

Figure 4. RESET and EN_OUT_ During Power-Up, EN_OUT_ is in Open-Drain Active-Low Configuration

Figure 5. RESET and EN_OUT_ During Power-Up, EN_OUT_ is in Push-Pull Active-High Configuration

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Reset Output

The reset output, RESET, indicates the status of the sequencer and the monitored inputs. It asserts during pow-er-up/power-down and deasserts following the reset timeout period once the power-up sequence is complete. The power-up sequence is complete when any MON_ inputs assigned to slot 6 exceed the undervoltage thresholds and the slot 6 sequence delay expires. When no MON_ inputs are assigned to slot 6 , the power-up sequence is complete after the slot sequence delay expires.
During normal monitoring, RESET can be configured to assert when any combination of MON_ inputs violates configurable combinations of undervoltage or overvoltage
thresholds. Select the combination of MON_inputs using r3Ch[5:0] and r3Dh[5:0]. Note that MON_ inputs configured as critical faults always cause RESET to assert regardless of these configuration bits.
RESET can be configured as push-pull or open drain using r3Bh[3], and active high or active low using r3Bh[2]. Select the reset timeout by loading a value from Table 22 into r3Bh[7:4].
To generate a one-shot pulse on RESET, write a ' 1 ' into r3Bh[0]. The pulse width is the configured reset timeout. Register bit r3Bh[0] clears automatically (see Table 22). The current state of RESET can be checked by reading r20h[0].

Table 22. Reset Output Configuration

REGISTER ADDRESS	$\begin{gathered} \text { FLASH } \\ \text { ADDRESS } \end{gathered}$	BIT RANGE	DESCRIPTION
3Bh	23Bh	[0]	RESET Soft Trigger 0 = Normal RESET behavior 1 = Force RESET to assert
		[1]	Not used
		[2]	$\begin{aligned} & 0=\text { Active low } \\ & 1=\text { Active high } \end{aligned}$
		[3]	$\begin{aligned} & 0=\text { Open drain } \\ & 1=\text { Push-pull } \end{aligned}$
		[7:4]	Reset Timeout Period $\begin{aligned} & 0000=25 \mu \mathrm{~s} \\ & 0001=1.5 \mathrm{~ms} \\ & 0010=2.5 \mathrm{~ms} \\ & 0011=4 \mathrm{~ms} \\ & 0100=6 \mathrm{~ms} \\ & 0101=10 \mathrm{~ms} \\ & 0110=15 \mathrm{~ms} \\ & 0111=25 \mathrm{~ms} \\ & 1000=40 \mathrm{~ms} \\ & 1001=60 \mathrm{~ms} \\ & 1010=100 \mathrm{~ms} \\ & 1011=150 \mathrm{~ms} \\ & 1100=250 \mathrm{~ms} \\ & 1101=400 \mathrm{~ms} \\ & 1110=600 \mathrm{~ms} \\ & 1111=1 \mathrm{~s} \end{aligned}$

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Table 22. Reset Output Configuration (continued)

REGISTER ADDRESS	FLASH ADDRESS	BIT RANGE	DESCRIPTION
3Ch	23Ch	[0]	1 = RESET depends on MON1 undervoltage
		[1]	1 = RESET depends on MON2 undervoltage
		[2]	1 = RESET depends on MON3 undervoltage
		[3]	1 = RESET depends on MON4 undervoltage
		[4]	1 = RESET depends on MON5 undervoltage
		[5]	1 = RESET depends on MON6 undervoltage
		[7:6]	Not used
3Dh	23Dh	[0]	1 = RESET depends on MON1 overvoltage
		[1]	1 = RESET depends on MON2 overvoltage
		[2]	1 = RESET depends on MON3 overvoltage
		[3]	1 = RESET depends on MON4 overvoltage
		[4]	1 = RESET depends on MON5 overvoltage
		[5]	1 = RESET depends on MON6 overvoltage
		[7:6]	Not used

Watchdog Timer

The watchdog timer operates together with or independently of the MAX16067. When operating in dependent mode, the watchdog is not activated until the sequencing is complete and RESET is deasserted. When operating in independent mode, the watchdog timer is independent of the sequencing operation and activates immediately after VCC exceeds the UVLO threshold and the boot phase is complete. Set r73h[4] to '0' to configure the watchdog in dependent mode. Set r73h[4] to ' 1 ' to configure the watchdog in independent mode. See Table 23 for more information on configuring the watchdog timer in dependent or independent mode. The watchdog timer can be reset by toggling the WDI input (GPIO4) or by writing a ' 1 ' to r75h[5].

Dependent Watchdog Timer Operation

Use the watchdog timer to monitor $\mu \mathrm{P}$ activity in two modes. Flexible timeout architecture provides an adjustable watchdog startup delay of up to 300s, allowing complicated systems to complete lengthy boot-up routines. An adjustable watchdog timeout allows the supervisor to provide quick alerts when the processor activity fails. After each reset event (VCC drops below UVLO then returns above UVLO, software reboot, manual reset (MR), EN input going low then high, or watchdog reset) and once sequencing is complete, the watchdog startup delay provides an extended time for the system to power
up and fully initialize all $\mu \mathrm{P}$ and system components before assuming responsibility for routine watchdog updates. Set r76h[6:4] to a value other than '000' to enable the watchdog startup delay. Set r76h[6:4] to '000' to disable the watchdog startup delay.
The normal watchdog timeout period, twDI, begins after the first transition on WDI before the conclusion of the long startup watchdog period, tWDI_STARTUP (Figures 6 and 7). During the normal operating mode, WDO asserts if the $\mu \mathrm{P}$ does not toggle WDI with a valid transition (high-to-low or low-to-high) within the standard timeout period, tWDI. $\overline{\text { WDO }}$ remains asserted until WDI is toggled or RESET is asserted (Figure 7).
While EN is low, the watchdog timer is in reset. The watchdog timer does not begin counting until the poweron mode is reached and RESET is deasserted. The watchdog timer is reset and $\overline{\mathrm{WDO}}$ deasserts any time RESET is asserted (Figure 8). The watchdog timer is held in reset while RESET is asserted.
The watchdog can be configured to control the RESET output as well as the $\overline{\mathrm{WDO}}$ output. RESET asserts for the reset timeout, tRP, when the watchdog timer expires and the Watchdog Reset Output Enable bit (r76h[7]) is set to '1'. When RESET is asserted, the watchdog timer is cleared and $\overline{\mathrm{WDO}}$ is deasserted, therefore, $\overline{\mathrm{WDO}}$ pulses low for a short time (approximately $1 \mu \mathrm{~s}$) when

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

the watchdog timer expires. RESET is not affected by the watchdog timer when the Watchdog Reset Output Enable bit (r76h[7]) is set to ' 0 '. If a RESET is asserted by the watchdog timeout, the WDRESET bit is set to ' 1 '. A connected processor can check this bit to see the reset was due to a watchdog timeout.
See Table 23 for more information on configuring watchdog functionality.

Independent Watchdog Timer Operation
When r73h[3] is '1,' the watchdog timer operates in the independent mode. In the independent mode, the watchdog timer operates as if it were a separate device. The watchdog timer is activated immediately upon VCC
exceeding UVLO and once the boot-up sequence is finished. When RESET is asserted by the sequencer state machine, the watchdog timer and WDO are not affected. There is a startup delay if $r 76 h[6: 4]$ is set to a value different than ' 000 '. If $\mathrm{r} 76 \mathrm{~h}[6: 4]$ is set to ' 000 ', there is not a startup delay. See Table 23 for delay times.
In independent mode, if the Watchdog Reset Output Enable bit r76h[7] is set to ' 1 ,' when the watchdog timer expires, WDO asserts then RESET asserts. WDO is then deasserts. WDO is low for approximately $1 \mu \mathrm{~s}$. If the Watchdog Reset Output Enable bit (r76h[7]) is set to ' 0 ,' when the watchdog timer expires, $\overline{\text { WDO }}$ asserts but RESET is not affected.

Figure 6. Normal Watchdog Startup Sequence

Figure 7. Watchdog Timer Operation

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Figure 8. Watchdog Startup Sequence with Watchdog Reset Enable Bit Set to '1'
Table 23. Watchdog Configuration

REGISTER ADDRESS	FLASH ADDRESS	$\begin{gathered} \text { BIT } \\ \text { RANGE } \end{gathered}$	DESCRIPTION
73h	273h	[4]	$\begin{aligned} & 1=\text { Independent mode } \\ & 0=\text { Dependent mode } \end{aligned}$
76h	276h	[7]	1 = Watchdog reset output enabled $0=$ Watchdog reset output disabled
		[6:4]	Watchdog Startup Delay $000=$ No initial timeout $001=30$ s $010=40 \mathrm{~s}$ $011=80 \mathrm{~s}$ $100=120 \mathrm{~s}$ $101=160 s$ $110=220 \mathrm{~s}$ $111=300 \mathrm{~s}$
		[3:0]	Watchdog Timeout $\begin{aligned} & 0000=\text { Watchdog disabled } \\ & 0001=1 \mathrm{~ms} \\ & 0010=2 \mathrm{~ms} \\ & 0011=4 \mathrm{~ms} \\ & 0100=8 \mathrm{~ms} \\ & 0101=14 \mathrm{~ms} \\ & 0110=27 \mathrm{~ms} \\ & 0111=50 \mathrm{~ms} \\ & 1000=100 \mathrm{~ms} \\ & 1001=200 \mathrm{~ms} \\ & 1010=400 \mathrm{~ms} \\ & 1011=750 \mathrm{~ms} \\ & 1100=1.4 \mathrm{~s} \\ & 1101=2.7 \mathrm{~s} \\ & 1110=5 \mathrm{~s} \\ & 1111=10 \mathrm{~s} \end{aligned}$

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

User-Defined Register

Register r8Ah provides storage space for a user-defined configuration or firmware version number. Note that this register controls the contents of the JTAG USERCODE register bits 7-0. The user-defined register is stored at r28Ah in the flash memory.

Memory Lock Bits

Register r8Ch contains the lock bits for the configuration registers, configuration flash, user flash, and fault register lock. See Table 24 for details.

SMBus-Compatible Interface

The MAX16067 features an SMBus-compatible, 2-wire serial interface consisting of a serial-data line (SDA) and a serial-clock line (SCL). SDA and SCL facilitate bidirectional communication between the MAX16067 and the master device at clock rates up to 400 kHz . Figure 1 shows the 2 -wire interface timing diagram. The MAX16067 is a transmit/receive, slave-only device, relying upon a master device to generate a clock signal. The master device (typically a microcontroller) initiates a data transfer on the bus and generates SCL to permit that transfer.
A master device communicates to the MAX16067 by transmitting the proper address followed by command and/or data words. The slave address input, AO, is capable of detecting four different states, allowing multiple identical devices to share the same serial bus. The slave address is described further in the Slave Address section. Each transmit sequence is framed by a START
(S) or REPEATED START (Sr) condition and a STOP (P) condition. Each word transmitted over the bus is 8 bits long and is always followed by an acknowledge pulse. SCL is a logic input, while SDA is an open-drain input/ output. SCL and SDA both require external pullup resistors to generate the logic-high voltage. Use $4.7 \mathrm{k} \Omega$ for most applications.

Bit Transfer

Each clock pulse transfers one data bit. The data on SDA must remain stable while SCL is high (Figure 9); otherwise, the MAX16067 registers a START or STOP condition (Figure 10) from the master. SDA and SCL idle high when the bus is not busy.

START and STOP Conditions

Both SCL and SDA idle high when the bus is not busy. A master device signals the beginning of a transmission with a START condition by transitioning SDA from high to low while SCL is high. The master device issues a STOP condition by transitioning SDA from low to high while SCL is high. A STOP condition frees the bus for another transmission. The bus remains active if a REPEATED START condition is generated, such as in the block read protocol (see Figure 1, SMBus Timing Diagram).

Early STOP Conditions
The MAX16067 recognizes a STOP condition at any point during transmission except if a STOP condition occurs in the same high pulse as a START condition. This condition is not a legal SMBus format; at least one clock pulse must separate any START and STOP condition.

Table 24. Memory Lock Bits

REGISTER ADDRESS	FLASH ADDRESS	BIT RANGE	DESCRIPTION
8Ch	28Ch	[0]	Configuration Register Lock $\begin{aligned} & 1=\text { Locked } \\ & 0=\text { Unlocked } \end{aligned}$
		[1]	$\begin{aligned} & \text { Flash Fault Register Lock } \\ & 1=\text { Locked } \\ & 0=\text { Unlocked } \end{aligned}$
		[2]	Flash Configuration Lock $\begin{aligned} & 1=\text { Locked } \\ & 0=\text { Unlocked } \end{aligned}$
		[3]	$\begin{aligned} & \text { User Flash Lock } \\ & 1=\text { Locked } \\ & 0=\text { Unlocked } \end{aligned}$
		[7.4]	Not used

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Figure 9. Bit Transfer

Figure 10. START and STOP Conditions

Figure 11. Acknowledge

REPEATED START Conditions

A REPEATED START can be sent instead of a STOP condition to maintain control of the bus during a read operation. The START and REPEATED START conditions are functionally identical.

Acknowledge

The acknowledge bit (ACK) is the 9th bit attached to any 8-bit data word. The receiving device always generates an ACK. The MAX16067 generates an ACK when receiving an address or data by pulling SDA low during the 9th clock period (Figure 11). When transmitting data,
such as when the master device reads data back from the MAX16067, the device waits for the master device to generate an ACK. Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if the receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master can reattempt communication at a later time. The MAX16067 generates a NACK after the command byte received during a software reboot, while writing to the flash, or when receiving an illegal memory address.

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Slave Address

Use the slave address input, A0, to allow multiple identical devices to share the same serial bus. Connect A0 to GND, DBP (or an external supply voltage greater than 2 V), SCL, or SDA to set the device address on the bus. See Table 26 for a listing of all possible 7-bit addresses.
The slave address can also be set to a custom value by loading the address into register r8Bh[6:0]. See Table 25. If $\mathrm{r} 8 \mathrm{Bh}[6: 0]$ is loaded with 00 h , the address is set by input A0. Do not set the address to 09h or 7Fh to avoid address conflicts. The slave address setting takes effect immediately after writing to the register.

Packet Error Checking (PEC)
The MAX16067 features a packet-error checking (PEC) mode that is useful to improve the reliability of the communication bus by detecting bit errors. By enabling PEC, an extra CRC-8 error check byte is added in the data string during each read and/or write sequence. Enable PEC by writing a ' 1 ' to r8Bh[7].

The CRC-8 byte is calculated using the polynomial

$$
C=X^{8}+X^{2}+X+1
$$

The PEC calculation includes all bytes in the transmission, including address, command and data. The PEC
calculation does not include ACK, NACK, START, STOP, or REPEATED START.

Command Codes

The MAX16067 uses eight command codes for block read, block write, and other commands. See Table 27 for a list of command codes.
To initiate a software reboot, send A7h using the send byte format. A software-initiated reboot is functionally the same as a hardware-initiated power-on reset. During boot-up, flash configuration data in the range of $230 \mathrm{~h}-28 \mathrm{Ch}$ is copied to r30h-r8Ch registers in the default page.
Send command code A8h to trigger a fault store to flash. Configure the Critical Fault Log Control register (6Dh) to store ADC conversion results and/or fault flags.
While in the flash page, send command code A9h to access the flash page (addresses from 200h-2FFh). Once command code A9h has been sent, all addresses are recognized as flash addresses only. Send command code AAh to return to the default page (addresses from 000h-OFFh). Send command code ABh to access the user flash-page (addresses from 300h-3FFh), and send command code ACh to return to the flash page.

Table 25. SMBus Settings Register

REGISTER ADDRESS	FLASH ADDRESS	BIT RANGE	DESCRIPTION
8 Bh	28 Bh	$[6: 0]$	SMBus Slave Address Register. Set to 00h to use A0 pin address setting.
		$[7]$	1 = Enable PEC (Packet Error Check).

Table 26. Setting the SMBus Slave Address

SLAVE ADDRESSES	
A0	SLAVE ADDRESS
0	1010 100R
1	1010 101R
SCL	1010110 R
SDA	1010111 R

$R=$ Read/write select bit.

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Table 27. Command Codes

COMMAND CODE	
A5h	Block write
A6h	Block read
A7h	Reboot flash in register file
A8h	Trigger emergency save to flash
A9h	Flash page access ON
AAh	Flash page access OFF
ABh	User flash access ON (must be in flash page already)
ACh	User flash access OFF (return to flash page)

Restrictions When Writing to Flash

Flash must be written to 8 bytes at a time. The initial address must be aligned to 8 -byte boundaries-the 3 LSBs of the initial address must be '000'. Write the 8 bytes using a single block write command or using eight successive Write Byte commands. A write operation requires 122 ms for each 8 -byte block. After programming a block, check r20h[1] (see Table 31) to make sure the write operation is complete before attempting to write the next block.

Send Byte

The send byte protocol allows the master device to send one byte of data to the slave device (see Figure 12). The send byte presets a register pointer address for a subsequent read or write. The slave sends a NACK instead of an ACK if the master tries to send a memory address or command code that is not allowed. If the master sends A5h or A6h, the data is ACK, because this could be the start of the write block or read block. If the master sends a STOP condition before the slave asserts an ACK, the internal address pointer does not change. If the master sends $A 7 h$, this signifies a software reboot. The send byte procedure is as follows:

1) The master sends a START condition.
2) The master sends the 7-bit slave address and a write bit (low).
3) The addressed slave asserts an ACK on SDA.
4) The master sends an 8-bit memory address or command code.
5) The addressed slave asserts an ACK (or NACK) on SDA.
6) The master sends a STOP condition.

Receive Byte
The receive byte protocol allows the master device to read the register content of the MAX16067 (see Figure 12). The flash or register address must be preset with a send byte or write word protocol first. Once the read is complete, the internal pointer increases by one. Repeating the receive byte protocol reads the contents of the next address. The receive byte procedure follows:

1) The master sends a START condition.
2) The master sends the 7 -bit slave address and a read bit (high).
3) The addressed slave asserts an ACK on SDA.
4) The slave sends 8 data bits.
5) The master asserts a NACK on SDA.
6) The master generates a STOP condition.

Write Byte

The write byte protocol (see Figure 12) allows the master device to write a single byte in the default page, extended page, or flash page, depending on which page is currently selected. The write byte procedure is as follows:

1) The master sends a START condition.
2) The master sends the 7 -bit slave address and a write bit (low).
3) The addressed slave asserts an ACK on SDA.
4) The master sends an 8-bit memory address.
5) The addressed slave asserts an ACK on SDA.
6) The master sends an 8-bit data byte.
7) The addressed slave asserts an ACK on SDA.
8) The master sends a STOP condition.

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

To write a single byte, only the 8 -bit memory address and a single 8 -bit data byte are sent. The data byte is written to the addressed location if the memory address is valid. The slave asserts a NACK at step 5 if the memory address is not valid.
When PEC is enabled, the write byte protocol becomes:

1) The master sends a START condition.
2) The master sends the 7 -bit slave ID plus a write bit (low).
3) The addressed slave asserts an ACK on the data line.
4) The master sends an 8-bit command code.
5) The active slave asserts an ACK on the data line.
6) The master sends an 8-bit data byte.
7) The slave asserts an ACK on the data line.
8) The master sends an 8 -bit PEC byte.
9) The slave asserts an ACK on the data line (if PEC is good, otherwise NACK).
10) The master generates a STOP condition.

Read Byte

The read byte protocol (see Figure 12) allows the master device to read a single byte located in the default page, extended page, or flash page depending on which page is currently selected. The read byte procedure is as follows:

1) The master sends a START condition.
2) The master sends the 7 -bit slave address and a write bit (low).
3) The addressed slave asserts an ACK on SDA.
4) The master sends an 8-bit memory address.
5) The addressed slave asserts an ACK on SDA.
6) The master sends a REPEATED START condition.
7) The master sends the 7 -bit slave address and a read bit (high).
8) The addressed slave asserts an ACK on SDA.
9) The slave sends an 8-bit data byte.
10) The master asserts a NACK on SDA.
11) The master sends a STOP condition.

If the memory address is not valid, it is NACKed by the slave at step 5 and the address pointer is not modified.

When PEC is enabled, the read byte protocol becomes:

1) The master sends a START condition.
2) The master sends the 7 -bit slave ID plus a write bit (low).
3) The addressed slave asserts an ACK on the data line.
4) The master sends 8 data bits.
5) The active slave asserts an ACK on the data line.
6) The master sends a REPEATED START condition.
7) The master sends the 7 -bit slave ID plus a read bit (high).
8) The addressed slave asserts an ACK on the data line.
9) The slave sends 8 data bits.
10) The master asserts an ACK on the data line.
11) The slave sends an 8-bit PEC byte.
12) The master asserts a NACK on the data line.
13) The master generates a STOP condition.

Block Write

The block write protocol (see Figure 12) allows the master device to write a block of data ($1-16$ bytes) to memory. Preload the destination address by a previous send byte command; otherwise the block write command begins to write at the current address pointer. After the last byte is written, the address pointer remains preset to the next valid address. If the number of bytes to be written causes the address pointer to exceed 8Fh for configuration registers or configuration flash or FFh for user flash, the address pointer stays at 8Fh or FFh, respectively, overwriting this memory address with the remaining bytes of data. The slave generates a NACK at step 5 if the command code is invalid or if the device is busy, and the address pointer is not altered.
The block write procedure is as follows:
1 The master sends a START condition.
2 The master sends the 7-bit slave address and a write bit (low).
3) The addressed slave asserts an ACK on SDA.
4) The master sends the 8-bit command code for block write (94h).
5) The addressed slave asserts an ACK on SDA.

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

6) The master sends the 8-bit byte count (1 byte to 16 bytes), n .
7) The addressed slave asserts an ACK on SDA.
8) The master sends 8 bits of data.
9) The addressed slave asserts an ACK on SDA.
10) Repeat steps 8 and $9 n-1$ times.
11) The master sends a STOP condition.

When PEC is enabled, the block write protocol becomes:

1) The master sends a START condition.
2) The master sends the 7-bit slave ID plus a write bit (low).
3) The addressed slave asserts an ACK on the data line.
4) The master sends 8 bits of the block write command code.
5) The slave asserts an ACK on the data line.
6) The master sends 8 bits byte count (min 1, max 16) n.
7) The slave asserts an ACK on the data line.
8) The master sends 8 bits of data.
9) The slave asserts an ACK on the data line.
10) Repeat 8 and $9 n-1$ times.
11) The master sends an 8 -bit PEC byte.
12) The slave asserts an ACK on the data line (if PEC is good, otherwise NACK).
13) The master generates a STOP condition.

Block Read

The block read protocol (see Figure 12) allows the master device to read a block of up to 16 bytes from memory. Read fewer than 16 bytes of data by issuing an early STOP condition from the master, or by generating a NACK with the master. The destination address should be preloaded by a previous send byte command; otherwise, the block read command begins to read at the current address pointer. If the number of bytes to be read causes the address pointer to exceed 8Fh for the configuration register or configuration flash or FFh in user flash, the address pointer stays at 8Fh or FFh, respectively.
The block read procedure is the following:

1) The master sends a START condition.
2) The master sends the 7-bit slave address and a write bit (low).
3) The addressed slave asserts an ACK on SDA.
4) The master sends 8 bits of the block read command (95h).
5) The slave asserts an ACK on SDA, unless busy.
6) The master generates a REPEATED START condition.
7) The master sends the 7-bit slave address and a read bit (high).
8) The slave asserts an ACK on SDA.
9) The slave sends the 8-bit byte count (16).
10) The master asserts an ACK on SDA.
11) The slave sends 8 bits of data.
12) The master asserts an ACK on SDA.
13) Repeat steps 11 and 12 up to fifteen times.
14) The master asserts a NACK on SDA.
15) The master sends a STOP condition.

When PEC is enabled, the block read protocol becomes:

1) The master sends a START condition.
2) The master sends the 7-bit slave ID plus a write bit (low).
3) The addressed slave asserts an ACK on the data line.
4 The master sends 8 bits of the block read command code.
4) The slave asserts an ACK on the data line unless busy.
5) The master sends a REPEATED START condition.
6) The master sends the 7-bit slave ID plus a read bit (high).
7) The slave asserts an ACK on the data line.
8) The slave sends 8-bit byte count (16).
9) The master asserts an ACK on the data line.
10) The slave sends 8 bits of data.
11) The master asserts an ACK on the data line.
12) Repeat 11 and 12 up to 15 times.
13) The slave sends an 8-bit PEC byte.
14) The master asserts a NACK on the data line.
15) The master generates a STOP condition.

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

send byte format

S	ADDRESS	R/W	ACK	COMMAND	ACK	P
\downarrow	7 BITS	0	0	8 BITS	0	$\mathbf{4}$
SLAVE ADDRESS: Address of the slave on the serial interface bus.					DATA BYTE: Presets the internal address pointer or represents a command.	

WRITE BYte format

S	ADDRESS	R/W	ACK	COMMAND	ACK	DATA	ACK	P
\downarrow	7 BITS	0	0	8 BITS	0	8 BITS	0	4
	SLAVE ADDRESS: Address of the slave on the serial interface bus.			COMMAND BYTE: Sets the internal address pointer.		DATA BYTE: Data is written to the locations set by the internal address pointer.		
READ BYTE FORMAT								

S	ADDRESS	R \bar{W}	ACK	COMMAND	ACK	DATA	ACK	P
$\boldsymbol{\nabla}$	7 BITS	0	0	8 BITS	0	8 BITS	0	4

SLAVE ADDRESS: Address
of the slave on the serial
interface bus.
:---
Sets the internal
address pointer.

READ BYTE FORMAT
recelve byte format

S	ADDRESS	R \bar{W}	ACK	DATA	NACK	P
\downarrow	7 BITS	1	0	8 BITS	1	\mathbf{A}

SMBALERT\#

S	ADDRESS	R \bar{W}	ACK	DATA	NACK	P
\downarrow	0001100	D.C.	0	8 BITS	1	$\mathbf{4}$

S	SLAVE ADDRESS	$\mathrm{R} \bar{W}$	ACK	COMMAND	ACK	SR	SLAVE ADDRESS	R \bar{W}	ACK	DATA BYTE	NACK	P
$\boldsymbol{\downarrow}$	7 BITS	0	0	8 BITS	0	$\boldsymbol{\downarrow}$	7 BITS	1	0	8 BITS	1	$\mathbf{4}$

SLAVE ADDRESS: Address of the slave on the serial interface bus.	COMMAND BYTE: Sets the internal
address pointer.	

DATA BYTE: Data is written to
the locations set by the
internal address pointer.
BLOCK WRITE FORMAT

S	ADDRESS	R/W	ACK	COMMAND	ACK	$\begin{gathered} \text { BYTE } \\ \text { COUNT }=\mathrm{N} \end{gathered}$	ACK	DATA BYTE 1	ACK	DATA BYTE ..	ACK	DATA BYTE N	ACK	P	SLAVE TO MASTER
\downarrow	7 BITS	0	0	8 BITS	0	4	MASTER TO SLAVE								
	SLAVE ADDRESS: Address of the slave on the			COMMAND BYTE: FAh				DATA BYTE: Data is written to the locations set by the internal address pointer.							

BLOCK READ FORMAT

S	ADDRESS	R/W	ACK	COMMAND	ACK	SR	ADDRESS	R/W	ACK	$\begin{array}{c\|} \text { BYTE } \\ \text { COUNT }=\mathrm{N} \end{array}$	ACK	DATA BYTE N	ACK	DATA BYTE.	ACK	DATA BYTE N	NACK	P
\downarrow	7 BITS	0	0	8 BITS	0	\downarrow	7 BITS	1	0	8 BITS	1	4						

| SLAVE ADDRESS: Address
 of the slave on the | COMMAND BYTE: | SLAVE ADDRESS: Address | |
| :--- | :--- | :--- | :--- | :--- |
| serial interface bus. | | DATA BYTE: Data is read from the locations
 of the slave on the
 serial interface bus. | set by the internal address pointer. |

WRITE BYTE FORMAT WITH PEC

S	ADDRESS	R/W	ACK	COMMAND	ACK	DATA	ACK	PEC	ACK	P
\downarrow	7 BITS	0	0	8 BITS	0	8 BITS	0	8 BITS	0	$\boldsymbol{4}$

READ BYTE FORMAT WITH PEC

S	ADDRESS	R/ \bar{W}	ACK	COMMAND	ACK	SR	ADDRESS	R/ \bar{W}	ACK	DATA	ACK	PEC	NACK	P
$\boldsymbol{\downarrow}$	7 BITS	0	0	8 BITS	0	$\boldsymbol{\downarrow}$	7 BITS	1	0	8 BITS	0	8 BITS	1	$\mathbf{4}$

BLOCK WRITE WITH PEC

S	ADDRESS	R/	ACK	COMMAND	ACK	BYTE COUNT N	ACK	DATA BYTE 1	ACK	DATA BYTE	ACK	DATAN	ACK	PEC	ACK	P
$\boldsymbol{\downarrow}$	7 BITS	0	0	8 BITS	0	4										

block read with pec

| S | ADDRESS | R/ \bar{W} | ACK | COMMAND | ACK | SR | ADDRESS | R/ | ACK | BYTE COUNT | ACK | DATA BYTE 1 | ACK | DATA BYTE | ACK | DATAN | ACK | PEC | NACK | P |
| :---: |
| $\boldsymbol{\downarrow}$ | 7 BITS | 0 | 0 | 8 BITS | 0 | $\boldsymbol{\nabla}$ | 7 BITS | 1 | 0 | 8 BITS | 1 | $\mathbf{4}$ |

$S=$ START CONDITION
$P=$ STOP CONDITION
$S r=$ REPEAAED START CONDITION
D.C. $=$ DON'T CARE

S STOP CONDITION
$\mathrm{Sr}=$ REPEATED START CONDITION
D.C. $=$ DON'T CARE

ACK = ACKNOWLEDGE, SDA PULLED LOW DURING RIIING EDGE OF SCL. NACK = NOT ACKNOWLEDGE, SDA LEFT HIGH DURING RIIING EDGE OF SCL.
ALL DATA IS CLOCKED IN/OUT OF THE DEVICE ON RISING EDGES OF SCL.
= SDA TRANSITIONS FROM HIGH TO LOW DURING PERIOD OF SCL.
$\boldsymbol{\Lambda}=$ SDA TRANSITIONS FROM LOW TO HIGH DURING PERIOD OF SCL.

Figure 12. SMBus Protocols

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

SMBALERT ($\overline{\text { ALERT }}$

The MAX16067 supports the SMBus alert protocol. To enable the SMBus alert output, set r40h[4] to ' 1 ', then configure GPIO1 to act as the SMBus alert (ALERT) according to Table 11. This output is open drain and uses the wired-OR configuration with other devices on the SMBus. During a fault, the MAX16067 asserts ALERT low, signaling the master that an interrupt has occurred. The master responds by sending the ARA (Alert Response Address) protocol on the SMBus. This protocol is a read byte with 09h as the slave address. The slave acknowledges the ARA (09h) address and sends its own SMBus address to the master. The slave then deasserts ALERT. The master can then query the slave and determine the cause of the fault. By checking r1C[7], the master can confirm that the MAX16067 trig-
gered the SMBus alert. The master must send the ARA before clearing r1Ch[7]. Clear r1Ch[7] by writing a ' 1 '. If GPIO1 is configured as the SMBus alert output but the SMBus alert feature is disabled (r40h[4] is set to ' 0 '), GPIO1 acts as an additional fault output.

JTAG Serial Interface

The MAX16067 features a JTAG port that complies with a subset of the IEEE 1149.1 specification. Either the SMBus or the JTAG interface can be used to access internal memory; however, only one interface is allowed to run at a time. The MAX16067 contains extra JTAG instructions and registers not included in the JTAG specification that provide access to internal memory. The extra instructions include LOAD ADDRESS, WRITE, READ, REBOOT, and SAVE.

Figure 13. JTAG Block Diagram

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Test Access Port (TAP)
 Controller State Machine

The TAP controller is a finite state machine that responds to the logic level at TMS on the rising edge of TCK. See Figure 14 for a diagram of the finite state machine. The possible states are described as follows:
Test-Logic-Reset: At power-up, the TAP controller is in the test-logic-reset state. The instruction register contains the IDCODE instruction. All system logic of the device operates normally. This state can be reached from any state by driving TMS high for five clock cycles.
Run-Test/Idle: The run-test/idle state is used between scan operations or during specific tests. The instruction register and test data registers remain idle.
Select-DR-Scan: All test data registers retain their previous state. With TMS low, a rising edge of TCK moves the controller into the capture-DR state and initiates a scan sequence. TMS high during a rising edge on TCK moves the controller to the select-IR-scan state.
Capture-DR: Data can be parallel-loaded into the test data registers selected by the current instruction. If the
instruction does not call for a parallel load or the selected test data register does not allow parallel loads, the test data register remains at its current value. On the rising edge of TCK, the controller goes to the shift-DR state if TMS is low or it goes to the exit1-DR state if TMS is high.
Shift-DR: The test data register selected by the current instruction connects between TDI and TDO and shifts data one stage toward its serial output on each rising edge of TCK while TMS is low. On the rising edge of TCK, the controller goes to the exit1-DR state if TMS is high.
Exit1-DR: While in this state, a rising edge on TCK puts the controller in the update-DR state. A rising edge on TCK with TMS low puts the controller in the pause-DR state.
Pause-DR: Shifting of the test data registers halts while in this state. All test data registers retain their previous state. The controller remains in this state while TMS is low. A rising edge on TCK with TMS high puts the controller in the exit2-DR state.
Exit2-DR: A rising edge on TCK with TMS high while in this state puts the controller in the update-DR state. A rising edge on TCK with TMS low enters the shift-DR state.

Figure 14. Tap Controller State Diagram

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Update-DR: A falling edge on TCK while in the updateDR state latches the data from the shift register path of the test data registers into a set of output latches. This prevents changes at the parallel output because of changes in the shift register. On the rising edge of TCK, the controller goes to the run-test/idle state if TMS is low or goes to the select-DR-scan state if TMS is high.
Select-IR-Scan: All test data registers retain the previous states. The instruction register remains unchanged during this state. With TMS low, a rising edge on TCK moves the controller into the capture-IR state. TMS high during a rising edge on TCK puts the controller back into the test-logic-reset state.
Capture-IR: Use the capture-IR state to load the shift register in the instruction register with a fixed value. This value is loaded on the rising edge of TCK. If TMS is high on the rising edge of TCK, the controller enters the exit1-IR state. If TMS is low on the rising edge of TCK, the controller enters the shift-IR state.
Shift-IR: In this state, the shift register in the instruction register connects between TDI and TDO and shifts data one stage for every rising edge of TCK toward the TDO serial output while TMS is low. The parallel outputs of the instruction register as well as all test data registers remain at the previous states. A rising edge on TCK with TMS high moves the controller to the exit1-IR state. A rising edge on TCK with TMS low keeps the controller in the shift-IR state while moving data one stage through the instruction shift register.
Exit1-IR: A rising edge on TCK with TMS low puts the controller in the pause-IR state. If TMS is high on the rising edge of TCK, the controller enters the update-IR state.

Pause-IR: Shifting of the instruction shift register halts temporarily. With TMS high, a rising edge on TCK puts the controller in the exit2-IR state. The controller remains in the pause-IR state if TMS is low during a rising edge on TCK.
Exit2-IR: A rising edge on TCK with TMS high puts the controller in the update-IR state. The controller loops back to shift-IR if TMS is low during a rising edge of TCK in this state.
Update-IR: The instruction code that has been shifted into the instruction shift register latches to the parallel outputs of the instruction register on the falling edge of TCK as the controller enters this state. Once latched, this instruction becomes the current instruction. A rising edge on TCK with TMS low puts the controller in the runtest/idle state. With TMS high, the controller enters the select-DR-scan state.

Instruction Register

The instruction register contains a shift register as well as a latched 5-bit wide parallel output. When the TAP controller enters the shift-IR state, the instruction shift register connects between TDI and TDO. While in the shift-IR state, a rising edge on TCK with TMS low shifts the data one stage toward the serial output at TDO. A rising edge on TCK in the exit1-IR state or the exit2-IR state with TMS high moves the controller to the updateIR state. The falling edge of that same TCK latches the data in the instruction shift register to the instruction register parallel output. Table 28 shows the instructions supported by the MAX16067 and the respective operational binary codes.

Table 28. JTAG Instruction Set

INSTRUCTION	CODE	
BYPASS	$0 \times 1 F$	NOTES
IDCODE	0×00	Load manufacturer ID code/part number
USERCODE	0×03	Load user code
LOAD ADDRESS	0×04	Load address register content
READ DATA	0×05	Read data pointed by current address
WRITE DATA	0×06	Write data pointed by current address
REBOOT	0×07	Reboot FLASH data content into register file
SAVE	0×08	Trigger emergency save to flash
SETFLSHADD	0×09	Flash page access ON
RSTFLSHADD	$0 \times 0 \mathrm{~A}$	Flash page access OFF
SETUSRFLSH	$0 \times 0 \mathrm{~B}$	User flash access ON (must be in flash page already)
RSTUSRFLSH	$0 \times 0 \mathrm{C}$	User flash access OFF (return to flash page)

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

BYPASS: When the BYPASS instruction is latched into the instruction register, TDI connects to TDO through the 1-bit bypass test data register. This allows data to pass from TDI to TDO without affecting the device's operation.
IDCODE: When the IDCODE instruction is latched into the parallel instruction register, the identification data register is selected. The device identification code is loaded into the identification data register on the rising edge of TCK following entry into the capture-DR state. Shift-DR can be used to shift the identification code out serially through TDO. During test-logic-reset, the IDCODE instruction is forced into the instruction register. The identification code always has a ' 1 ' in the LSB position. The next 11 bits identify the manufacturer's JEDEC number and number of continuation bytes followed by 16 bits for the device and 4 bits for the version. See Table 29.
USERCODE: When the USERCODE instruction latches into the parallel instruction register, the user-code data register is selected. The device user-code loads into the user-code data register on the rising edge of TCK following entry into the capture-DR state. Shift-DR can be used to shift the user-code out serially through TDO. See Table 30. This instruction can be used to help identify multiple MAX16067 devices connected in a JTAG chain.
LOAD ADDRESS: This is an extension to the standard IEEE 1149.1 instruction set to support access to the
memory in the MAX16067. When the LOAD ADDRESS instruction latches into the instruction register, TDI connects to TDO through the 8-bit memory address test data register during the shift-DR state.
READ DATA: This is an extension to the standard IEEE 1149.1 instruction set to support access to the memory in the MAX16067. When the READ instruction latches into the instruction register, TDI connects to TDO through the 8-bit memory read test data register during the shift-DR state.
WRITE DATA: This is an extension to the standard IEEE 1149.1 instruction set to support access to the memory in the MAX16067. When the WRITE instruction latches into the instruction register, TDI connects to TDO through the 8-bit memory write test data register during the shift-DR state.
REBOOT: This is an extension to the standard IEEE 1149.1 instruction set to initiate a software controlled reset to the MAX16067. When the REBOOT instruction latches into the instruction register, the MAX16067 resets and immediately begins the boot-up sequence.
SAVE: This is an extension to the standard IEEE 1149.1 instruction set that triggers a fault log. The current ADC conversion results along with fault information are saved to flash depending on the configuration of the Critical Fault Log Control register (r6Dh).

Table 29. 32-Bit Identification Code

MSB	LSB		
VERSION (4 BITS)	PART NUMBER (16 BITS)	MANUFACTURER (11 BITS)	FIXED VALUE (1 BIT)
0001	1000000000000001	00011001011	1

Table 30. 32-Bit User-Code Data

| MSB | LSB | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DON'T CARE | SMBUS SLAVE ID | USER ID (r8A[7:0]) | | |
| 00000000000000000 | See Table 26 | | | |

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

SETFLSHADD: This is an extension to the standard IEEE 1149.1 instruction set that allows access to the flash page. Flash registers include ADC conversion results, DACOUT enables, and GPIO input/output data. Use this page to access registers 200h-2FFh.
RSTFLSHADD: This is an extension to the standard IEEE 1149.1 instruction set. Use RSTFLSHADD to return to the default page and disable access to the flash page.
SETUSRFLSH: This is an extension to the standard IEEE 1149.1 instruction set that allows access to the user flash page. When on the configuration flash page, send the SETUSRFLSH command, all addresses are recognized as flash addresses only. Use this page to access registers 300h-3FFh.
RSTUSRFLSH: This is an extension to the standard IEEE 1149.1 instruction set. Use RSTUSRFLSH to return to the configuration flash page and disable access to the user flash.

Restrictions When Writing to Flash

 Flash must be written to 8 bytes at a time. The initial address must be aligned to 8-byte boundaries-the 3 LSBs of the initial address must be '000'. Write the 8 bytes using 8 successive Write Data commands. A write operation requires 122 ms for each 8 -byte block. After programming a block, check r20h[1] (see Table 31) to make sure the write operation is complete before attempting to write the next block.
Applications Information

Unprogrammed Device Behavior

When the flash has not been programmed using the JTAG or SMBus interface, the default configuration of the EN_OUT_ outputs is open drain active low. This means that the EN_OUT_ outputs are high impedance.

When it is necessary to hold an EN_OUT_ high or low to prevent premature startup of a power supply before the flash is programmed, connect a resistor from EN_OUT_ to ground or the supply voltage. Avoid connecting a resistor to ground when the output is to be configured as open drain with a separate pullup resistor.

Device Behavior at Power-Up
When VCC is ramped from OV, the RESET output is high impedance until VCC reaches 1.4 V , at which point RESET goes low. All other outputs are high impedance until VCC reaches 2.7 V , then the flash contents are copied into register memory. This takes 150 1 s (max) after which the outputs assume their programmed states.

Programming the MAX16067 in Circuit

 The MAX16067 can be programmed in the application circuit by taking into account the following points during circuit design:- The MAX16067 needs to be powered from an intermediate voltage bus or auxiliary voltage supply so programming can occur even when the board's power supplies are off. This could also be achieved by using ORing diodes so that power can be provided through the programming connector.
- The SMBus or JTAG bus lines should not connect through a bus multiplexer powered from a voltage rail controlled by the MAX16067. If the device needs to be controlled by an on-board $\mu \mathrm{P}$, consider connecting the $\mu \mathrm{P}$ to one bus (such as SMBus) and use the other bus for in-circuit programming.
- An unprogrammed MAX16067's EN_OUT_s go high impedance. Ensure that this does not cause undesired circuit behavior. If necessary, connect pulldown resistors to prevent power supplies from turning on.

Table 31. RESET State, Flash State, and Reset Reason

REGISTER ADDRESS	BIT RANGE	DESCRIPTION
r20h	[0]	Reset Output State $0=$ RESET is low $1=$ RESET is high
	[1]	1 = Flash memory is busy
	[2]	1 = Last reset asserted due to EN going low
	[3]	1 = Last reset asserted due to watchdog timeout
	[7:4]	Not used

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Maintaining Power During a Fault Condition

Power to the MAX16067 must be maintained for a specific period of time to ensure a successful flash fault log operation during a fault that removes power to the circuit. Table 32 shows the amount of time required depends on the settings in the fault control register (r6Dh[1:0]).
Maintain power for shutdown during fault conditions in applications where the always-on power supply cannot be relied upon by placing a diode and a large capacitor between the voltage source, VIN, and VCC (Figure 15). The capacitor value depends on VIN and the time delay required, tFAULT_SAVE. Use the following formula to calculate the capacitor size:

$$
\mathrm{C}=(\mathrm{tFAULT} \text { _SAVE } \times \text { ICC(MAX) }) /(\mathrm{VIN}-\mathrm{VDIODE}-\mathrm{VUVLO})
$$

where the capacitance is in Farads and tFAULT_SAVE is in seconds, ICC(MAX) is 14 mA , VDIODE is the voltage drop across the diode, and VUVLO is 2.7 V . For example, with a VIN of 14 V , a diode drop of 0.7 V , and a tFAULT_SAVE of 153 ms , the minimum required capacitance is $202 \mu \mathrm{~F}$.

Driving High-Side MOSFET Switches

Up to three of the programmable outputs (EN_OUT1, EN_OUT2, EN_OUT3) of the MAX16067 can be configured as charge-pump outputs to drive the gates of series-pass n-channel MOSFETS. When driving MOSFETs, these outputs act as simple power switches
to turn on the voltage supply rails. Approximate the slew rate, SR , using the following formula:

$$
S R=I C P /(C G A T E+C E X T)
$$

where ICP is the $6 \mu \mathrm{~A}$ (typ) charge-pump source current, CGATE is the gate capacitance of the MOSFET, and CEXT is the capacitance connected from the gate to ground. If more than three series-pass MOSFETs are required for an application, additional series-pass p-channel MOSFETs can be connected to outputs configured as active-low open drain (Figure 16). Connect a pullup resistor from the gate to the source of the MOSFET, and ensure the absolute maximum ratings of the MAX16067 are not exceeded.

Configuring the Device

An evaluation kit and a graphical user interface (GUI) are available to create a custom configuration for the device. Refer to the MAX16067 Evaluation Kit for configuration.

Cascading Multiple MAX16067s

Multiple MAX16067s can be cascaded to increase the number of rails controlled for sequencing and monitoring. There are many ways to cascade the devices depending on the desired behavior. In general, there are several techniques as follows:

- Configure a GPIO on each device to be EXTFAULT (open-drain). Externally wire them together with a single pullup resistor. Set register bits r72h[5] and r6Dh[2] to '1'

Table 32. Maximum Write Time

Figure 15. Power Circuit for Shutdown During Fault Conditions

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

so that all faults propagate between devices. If a critical fault occurs on one device, EXTFAULT asserts, triggering the nonvolatile fault logger in all cascaded devices and recording a snapshot of all system voltages.

- Connect open-drain RESET outputs together to obtain a master system reset signal.
- Connect all EN inputs together for a master enable signal. Since the internal timings of each cascaded device are not synchronized, EN_OUT_s placed in the same slot on different devices do not come up in the desired order even if the sequence delays are identical.
- Consider using an external $\mu \mathrm{P}$ to control the EN inputs or the software enable bits of cascaded devices, monitoring the RESET outputs as a power-good signal.
- For a large number of voltage rails, the MAX16067 can be cascaded hierarchically by using one master device's EN_OUT_s to control the EN inputs of several slave devices.

Controlling Power Supplies Without Using the Sequencer

A $\mu \mathrm{P}$ can control power supplies manually without involving the sequencing slot system by controlling EN_OUT_s configured as GPIO. The output of a power supply controlled this way can be monitored using a MON_ input configured as "monitoring only" (see the Monitoring Inputs While Sequencing section). To monitor the supply for critical faults, the $\mu \mathrm{P}$ will need to manually set the critical fault enable bit in r6Eh-r72h after turning on the EN_OUT_, and manually clearing the critical fault enable bit before turning off the EN_OUT_.

Layout and Bypassing

Bypass DBP and ABP each with a $1 \mu \mathrm{~F}$ ceramic capacitor to GND. Bypass VCC with a $10 \mu \mathrm{~F}$ capacitor to ground. Avoid routing digital return currents through a sensitive analog area, such as an analog supply input return path or ABP's bypass capacitor ground connection. Use dedicated analog and digital ground planes. Connect the capacitors as close as possible to the device.

Figure 17. Graphical User Interface Screenshot

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

				Register Map
FLASH ADDRESS	REGISTER ADDRESS	READ/ WRITE	DESCRIPTION	
ADC VALUES, FAULT REGISTERS, GPIOs AS INPUT PORTS-NOT IN FLASH				
-	000	R	MON1 ADC output, MSBs	
-	001	R	MON1 ADC output, LSBs	
-	002	R	MON2 ADC output, MSBs	
-	003	R	MON2 ADC output, LSBs	
-	004	R	MON3 ADC output, MSBs	
-	005	R	MON3 ADC output, LSBs	
-	006	R	MON4 ADC output, MSBs	
-	007	R	MON4 ADC output, LSBs	
-	008	R	MON5 ADC output, MSBs	
-	009	R	MON5 ADC output, LSBs	
-	00A	R	MON6 ADC output, MSBs	
-	00B	R	MON6 ADC output, LSBs	
-	00C-01A	-	Reserved	
-	01B	R/W	Fault register-failed line flags	
-	01C	R/W	Fault register-failed line flags	
-	01D	-	Reserved	
-	01E	R	GPIO data in (read only)	
-	01F	R	EN_OUT_ as GPIO data in (read only)	
-	020	R/W	Flash status/reset output monitor	
-	021	R	Current sequencer slot	
GPIO AND OUTPUT DEPENDENCIES/CONFIGURATIONS				
230	030	R/W	EN_OUT_ configuration	
231	031	R/W	EN_OUT_ configuration	
232	032	-	Reserved	
233	033	R/W	Charge-pump configuration bits	
234	034	R/W	EN_OUT_ as GPIO data out	
235	035	-	Reserved	
236	036	R/W	$\overline{\text { FAULT }}$ dependencies	
237	037	R/W	$\overline{\text { FAULT }}$ dependencies	
238-23A	038-03A	-	Reserved	
23B	03B	R/W	RESET output configuration	
23C	03C	R/W	RESET output dependencies	
23D	03D	R/W	RESET output dependencies	
23E	03E	R/W	GPIO data out	
23F	03F	R/W	GPIO configuration	
240	040	R/W	GPIO configuration, ARANEN (ARA Enable)	
241-242	041-042	-	Reserved	

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Register Map (continued)

FLASH ADDRESS	REGISTER ADDRESS	READ/ WRITE	DESCRIPTION
ADC-CONVERSIONS			
243	043	R/W	ADCs voltage ranges for MON_ monitoring
244	044	R/W	ADCs voltage ranges for MON_ monitoring
245-247	045-047	-	Reserved
INPUT THRESHOLDS			
248	048	-	Reserved
249	049	R/W	MON1 OV threshold
24A	04A	R/W	MON1 UV threshold
24B	04B	-	Reserved
24C	04C	R/W	MON2 OV threshold
24D	04D	R/W	MON2 UV threshold
24E	04E	-	Reserved
24F	04F	R/W	MON3 OV threshold
250	050	R/W	MON3 UV threshold
251	051	-	Reserved
252	052	R/W	MON4 OV threshold
253	053	R/W	MON4 UV threshold
254	054	-	Reserved
255	055	R/W	MON5 OV threshold
256	056	R/W	MON5 UV threshold
257	057	-	Reserved
258	058	R/W	MON6 OV threshold
259	059	R/W	MON6 UV threshold
25A-26C	05A-06C	-	Reserved
FAULT SETUP			
26D	06D	R/W	Save after $\overline{\text { EXTFAULT }}$ fault control
26E	06E	R/W	Faults causing store in flash
26F	06F	R/W	Faults causing store in flash
270	070	R/W	Faults causing store in flash
271	071	-	Reserved
272	072	R/W	EXTFAULT enable

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Register Map (continued)

FLASH ADDRESS	REGISTER ADDRESS	READ/ WRITE	DESCRIPTION
TIMEOUTS			
273	073	R/W	Watchdog independent mode, margin enabled, soft RESET functionality
274	074	R/W	ADC fault deglitch/autoretry configuration
275	075	R/W	WDI toggle/fault timeout, reverse sequencing bit
276	076	R/W	WDRESET, WD timers
277	077	R/W	Sequence delay for Slot 0
278	078	R/W	Sequence delay for Slot 1
279	079	R/W	Sequence delay for Slot 2
27A	07A	R/W	Sequence delay for Slot 3
27B	07B	R/W	Sequence delay for Slot 4
27C	07C	R/W	Sequence delay for Slot 5
27D	07D	R/W	Sequence delay for Slot 6
MISCELLANEOUS			
27E	07E	R/W	Assign MON_ input from Slot 1 to Slot 6 or for monitoring
27F	07F	R/W	Assign MON_ input from Slot 1 to Slot 6 or for monitoring
280	080	R/W	Assign MON_ input from Slot 1 to Slot 6 or for monitoring
281-283	081-083	-	Reserved
284	084	R/W	Assign EN_OUT_ from Slot 1 to Slot 6
285	085	R/W	Assign EN_OUT_ from Slot 1 to Slot 6
286	086	R/W	Assign EN_OUT_ from Slot 1 to Slot 6
287-289	087-089	-	Reserved
28A	08A	R/W	Customer use (version)
28B	08B	R/W	PEC enable/SMBus address
28C	08C	R/W	Lock bits
28D	08D	R	Revision code

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

Typical Operating Circuit

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
32 TQFN-EP	T3255+4	$\underline{21-0140}$

6-Channel, Flash-Configurable System Manager with Nonvolatile Fault Registers

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES
 CHANGED |
| :---: | :---: | :--- | :---: | :---: |
| 0 | $10 / 09$ | Initial release | - |
| 1 | $2 / 10$ | Updated Absolute Maximum Ratings and Table 19 | 2,23 |

[^0]: Note: This device is specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.
 +Denotes a lead(Pb)-free/RoHS-compliant package.
 *EP = Exposed pad.

