HITACHI

KAOHSIUNG HITACHI ELECTRONICS CO., LTD.

FOR MESSRS:	DATE: Dec. 09 th 20	209

CUSTOMER'S ACCEPTANCE SPECIFICATIONS

TX23D38VM0CPA

Contents

No.	ITEM	SHEET No.	PAGE
1	COVER	7B64PS 2701-TX23D38VM0CPA-1	1-1/1
2	RECORD OF REVISION	7B64PS 2702-TX23D38VM0CPA-1	2-1/1
3	GENERAL DATA	7B64PS 2703-TX23D38VM0CPA-1	3-1/1
4	ABSOLUTE MAXIMUM RATINGS	7B64PS 2704-TX23D38VM0CPA-1	4-1/1
5	ELECTRICAL CHARACTERISTICS	7B64PS 2705-TX23D38VM0CPA-1	5-1/2~2/2
6	OPTICAL CHARACTERISTICS	7B64PS 2706-TX23D38VM0CPA-1	6-1/2~2/2
7	BLOCK DIAGRAME	7B64PS 2707-TX23D38VM0CPA-1	7-1/1
8	RELIABILITY TESTS	7B64PS 2708-TX23D38VM0CPA-1	8-1/1
9	LCD INTERFACE	7B64PS 2709-TX23D38VM0CPA-1	9-1/7~7/7
10	OUTLINE DIMENSIONS	7B63PS 2710-TX23D38VM0CPA-1	10-1/2~2/2
11	TOUCH PANEL	7B64PS 2711-TX23D38VM0CPA-1	11-1/2~2/2
12	APPEARANCE STANDARD	7B64PS 2712-TX23D38VM0CPA-1	12-1/4~4/4
13	PRECAUTIONS	7B64PS 2713-TX23D38VM0CPA-1	13-1/2~2/2
14	DESIGNATION OF LOT MARK	7B64PS 2714-TX23D38VM0CPA-1	14-1/1

ACCEPTED BY:	PROPOSED BY:	Elton Lin
·		

KAOHSIUNG HITACHI ELECTRONICS CO., LTD.	SHEET NO.	7B64PS 2701-TX23D38VM0CPA-1	PAGE	1-1/1	
--	--------------	-----------------------------	------	-------	--

2. RE	CORD OF R	EVISI	NC						
DATE	SHEET No.				SU	IMMARY			
								<u> </u>	
	IUNG HITACHI ONICS CO., LTD.	SHEET	7	'B64PS	2702-TX23	D38VM0CP	A-1	PAGE	2-1/1

7B64PS 2702-TX23D38VM0CPA-1

ELECTRONICS CO., LTD.

NO.

3. GENERAL DATA

3.1 DISPLAY FEATURES

This module is a 9" WVGA of 16:9 format amorphous silicon TFT. The pixel format is vertical stripe and sub pixels are arranged as R(red), G(green), B(blue) sequentially. This display is RoHS compliant, and COF (chip on film) technology and LED backlight are applied on this display.

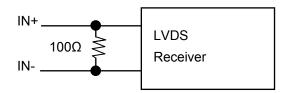
Part Name	TX23D38VM0CPA
Module Dimensions	218.0(W) mm x 135.0(H) mm x 12.65 (D) mm
LCD Active Area	195.0(W) mm x 117.0(H) mm
Pixel Pitch	0.24375(W) mm x 0.24375(H) mm
Resolution	800 x 3(RGB)(W) x 480(H) dots
Color Pixel Arrangement	R, G, B Vertical stripe
LCD Type	Transmissive Color TFT; Normally Black
Display Type	Active Matrix
Number of Colors	16.7M Colors(6-bit + FRC)
Backlight	7 LEDs parallel x 3 serial (21 LEDs in total)
Weight	(415) g (typ.)
Interface	1ch-LVDS/Receiver ; 20 pins
Power Supply Voltage	3.3V for LCD; 12V for Backlight
Power Consumption	1.5 W for LCD (WVGA) ;6.96W for backlight
Viewing Direction	Super Wide Version (In Plane Switching)
Touch Panel	Resistive type; Film on Glass, 4-wire type; Antiglare surface

4. ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Min.	Max.	Unit	Remarks
Supply Voltage	VDD	0	4.0	V	-
Input Voltage of Logic	VI	-0.3	VDD+0.3	V	Note 1
Operating Temperature	Тор	-20	70	°C	Note 2
Storage Temperature	Tst	-30	80	°C	Note 2
Backlight Input Voltage	VLED	-	15	V	-

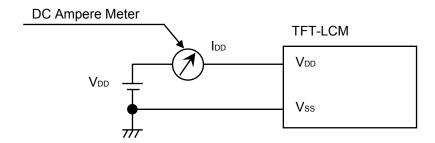
- Note 1: The rating is defined for the signal voltages of the interface such as CLK, DE, Hsync, Vsync, and RGB data bus.
- Note 2: The maximum rating is defined as above based on the temperature on the panel surface, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed:
 - Background color, contrast and response time would be different in temperatures other than 25 °C.
 - Operating under high temperature will shorten LED lifetime.

5. ELECTRICAL CHARACTERISTICS


5.1 LCD CHARACTERISTICS

 $T_a = 25$ °C, VSS = 0V

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
Power Supply Voltage	VDD	-	3.0	3.3	3.6	V	-
Differential Input		"H" level	-	-	+100		
Voltage for LVDS Receiver Threshold	VI	"L" level	-100	ı	-	mV	Note 1
DPS,FRC,AMODE	VI	"H" level	0.7VDD	ı	VDD	V	CMOS
Signal Input Voltage	VI	"L" level	0	-	0.3VDD	V	LEVEL
Power Supply Current	IDD	VDD-VSS		46E	F60	m 1	Note 2.2
Fower Supply Current	IDD	=3.3V	-	465	560	mA	Note 2,3
Vsync Frequency	f_{v}	-	-	60	75	Hz	Note 4,5
Hsync Frequency	$f_{\scriptscriptstyle H}$	-	-	31.3	39.4	KHz	Note 4
DCLK Frequency	f_{CLK}	-	-	33.3	35	MHz	Note 4

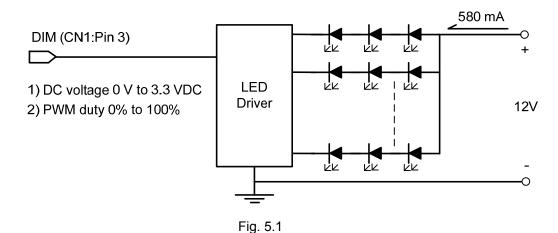

Notes 1: VCM=VDD / 2V

VCM is common mode voltage of LVDS transmitter / receiver .The input terminal of LVDS transmitter is terminated with 100Ω .

Notes 2: fV=60Hz,fCLK=35MHz,VDD=3.3V,DC Current.

Typical value is measured when displaying vertical 256 gray scale. Maximum is measured when displaying Vertical-stripe.

Notes 3: As this module contains 1.0A fuse, prepare current source that is enough for cutting current fuse when a trouble happens. (larger than 2.5A)


Notes 4: For LVDS Transmitter Input.

Notes 5: Vertical frequency is recommended to apply 60Hz.

5.2 BACKLIGHT CHARACTERISTICS

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
LED Input Voltage	VLED	-	11.7	12.0	12.3	V	Note1
LED Forward Current	II.ED	0V; 0% duty	540	580	620	A	Note 0
(Dim Control)	ILED	3.3VDC; 100% duty	15	30	45	mA	Note 2
LED lifetime	-	580 mA	ı	70K	i	hrs	Note 3

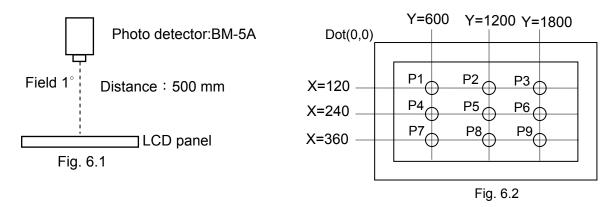
- Note 1: As Fig. 5.1 shown, LED current is constant, 580 mA, controlled by the LED driver when applying 12V VLED.
- Note 2: Dimming function can be obtained by applying DC voltage or PWM signal from the display interface CN1. The recommended PWM signal is 1K ~ 10K Hz with 3.3V amplitude.
- Note 3: The estimated lifetime is specified as the time to reduce 50% brightness by applying 580 mA at 25° C.

6. OPTICAL CHARACTERISTICS

The optical characteristics are measured based on the conditions as below:

- Supplying the signals and voltages defined in the section of electrical characteristics.
- The backlight unit needs to be turned on for 30 minutes.
- The ambient temperature is 25 °C.
- In the dark room around 500~1000 lx, the equipment has been set for the measurements as shown in Fig 6.1.

 $T_a = 25 \, ^{\circ}C, f_v = 60 \, \text{Hz}, \text{VDD} = 3.3 \text{V}$

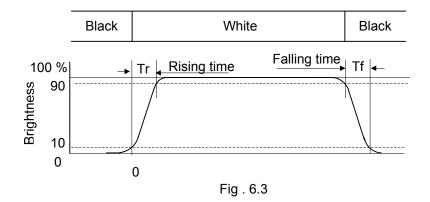

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
Brightness o	f White	-	4 00 0 00	280	360	-	cd/m ²	Note 1
Brightness Ur	niformity	-	$\phi = 0^{\circ}, \theta = 0^{\circ},$ ILED= 580 mA	75	-	i	%	Note 2
Contrast F	Ratio	CR	ILED- 500 IIIA	500	800	ı	-	Note 3
Response	Time	Rise + Fall	$\phi = 0^{\circ}, \theta = 0^{\circ}$	-	25	50	ms	Note 4
NTSC R	atio	-	$\phi = 0^{\circ}, \theta = 0^{\circ}$	-	60	-	%	-
		θ x	$\phi = 0^{\circ}$, CR ≥ 10	-	85	-		
Viouing A	nalo	$\theta x'$	φ = 180°, CR ≥ 10	-	85	-	Dograd	Note 5
Viewing A	Viewing Angle		φ = 90°, CR ≥ 10	-	85	-	Degree	Note 5
		θ y'	$\phi = 270^{\circ}, CR \ge 10$	-	85	-		<u> </u>
	Red	X		0.59	0.64	0.69		
	Reu	Υ		0.29	0.34	0.39		
	Green	X		0.31	0.36	0.41		
Color	Green	Υ		0.55	0.60	0.65		
Chromaticity	Blue	Х	$\phi = 0^{\circ}, \theta = 0^{\circ}$	0.10	0.15	0.20	-	Note 6
	Dide	Y		0.01	0.06	0.11		
	White		0.30	0.35	0.40			
	vviiite	Υ		0.31	0.36	0.41		

Note 1: The brightness is measured from 9 point of the panel, P1~P9 in Fig. 6.2, for the average value.

Note 2: The brightness uniformity is calculated by the equation as below:

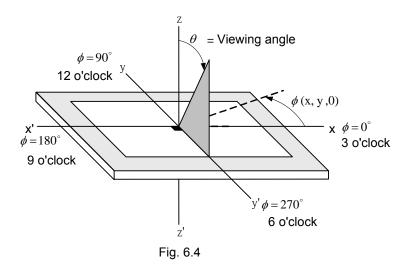
Brightness uniformity =
$$\frac{\text{Min. Brightness}}{\text{Max. Brightness}}$$
 X100%

, which is based on the brightness values of the 9 points measured by BM-5 as shown in Fig. 6.2.

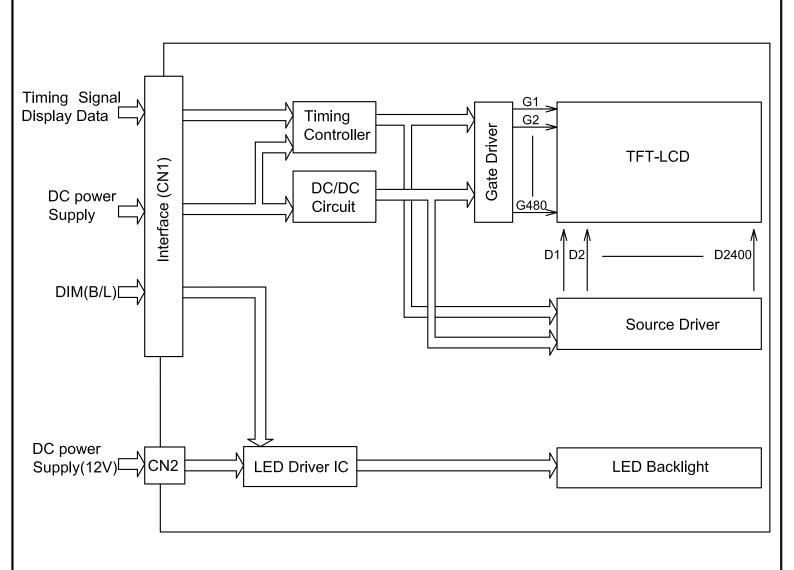


KAOHSIUNG HITACHI ELECTRONICS CO., LTD.	SHEET NO.	7B64PS 2706-TX23D38VM0CPA-1	PAGE	6-1/2	
--	--------------	-----------------------------	------	-------	--

Note 3: The Contrast ratio is measured from the center point of the panel, P5, and defined as the following equation:


CR = Brightness of White
Brightness of Black

Note 4: The definition of response time is shown in Fig. 6.3. The rising time is the period from 10% brightness to 90% brightness when the data is from white to black. Oppositely, Falling time is the period from 90% brightness rising to 10% brightness.


Note 5: The definition of viewing angle is shown in Fig. 6.4. Angle ϕ is used to represent viewing directions, for instance, $\phi = 270^{\circ}$ means 6 o'clock, and $\phi = 0^{\circ}$ means 3 o'clock. Moreover, angle θ is used to represent viewing angles from axis Z toward plane XY.

The display is super wide viewing angle version; 85° viewing angle can be obtained from each viewing direction.

Note 6: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2.

7 BLOCK DIAGRAM

8. RELIABILITY TESTS

Test Item	Condition		
High Temperature	1) Operating 2) 70°C	240 hrs	
Low Temperature	1) Operating 2) -20 °C	240 hrs	
High Temperature	1) Storage 2) 80°C	240 hrs	
Low Temperature	1) Storage 2) -30°C	240 hrs	
Heat Cycle	1) Operating 2) -20 °C ~70 °C 3) 3hrs~1hr~3hrs	240 hrs	
Thermal Shock	 Non-Operating -35 °C ↔ 85 °C 0.5 hr ↔ 0.5 hr 	240 hrs	
High Temperature & Humidity	1) Operating2) 40°C & 85%RH3) Without condensation4) Note 3	240 hrs	
Vibration	1) Non-Operating 2) 20~200 Hz 3) 2G 4) X, Y, and Z directions	1 hr for each direction	
Mechanical Shock	 1) Non-Operating 2) 10 ms 3) 50G 4) ±X, ± Y and ±Z directions 	Once for each direction	
ESD	 Operating Tip: 200 pF, 250 Ω Air discharge for glass: ± 8KV Contact discharge for metal frame: ± 8KV 	1) Glass: 9 points 2) Metal frame: 8 points	

- Note 1: Display functionalities are inspected under the conditions defined in the specification after the reliability tests.
- Note 2: The display is not guaranteed for use in corrosive gas environments.
- Note 3: Under the condition of high temperature & humidity, if the temperature is higher than 40° C, the humidity needs to be reduced as Fig. 8.1 shown.
- Note 4: All pins of LCD interface(CN1) have been tested by ± 100 V contact discharge of ESD under non-operating condition.

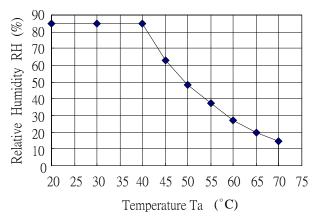


Fig. 8.1

KAOHSIUNG HITACHI ELECTRONICS CO., LTD.	SHEET NO.	7B64PS	2708-TX23D38VM0CPA-1	F	PAGE	8-1/1	
--	--------------	--------	----------------------	---	------	-------	--

9. LCD INTERFACE

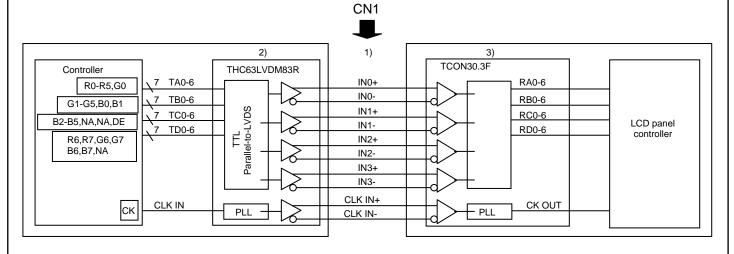
9.1 INTERFACE PIN CONNECTIONS

The display interface connector is FI-SEB20P-HF13E made by JAE and more details of the connector are shown in the section of outline dimension.

Pin assignment of LCD interface is as below:

Pin No.	Symbol	Description	Note
1	VDD	Dowar Supply (typ. 12.2)/)	Note 3
2	VDD	Power Supply (typ.+3.3V)	Note 3
3	DIM	Normal Brightness:0V or 0% PWM Duty Brightness Control:0V to 3.3VDC or 0% to 100% PWM Duty.	-
4	VSS	GND (0V)	Note 1
5 6	IN0- IN0+	Pixel Data	Note 2
7	VSS	GND (0V)	Note 1
8	IN1-	Pixel Data	Note 2
9	IN1+	Fixel Data	Note 2
10	VSS	GND (0V)	Note 1
11	IN2-	Pixel Data	Note 2
12	IN2+	OND (OV)	N
13	VSS	GND (0V)	Note 1
14	CLK IN-	Clock	Note 2
15	CLK IN+		
16	VSS	GND (0V)	Note 1
17	IN3-	Pixel Data	Note 2
18	IN3+		
19 20	VSS VSS	GND (0V)	Note 1

Note 1: All VDD pins should be connected to +3.3V.

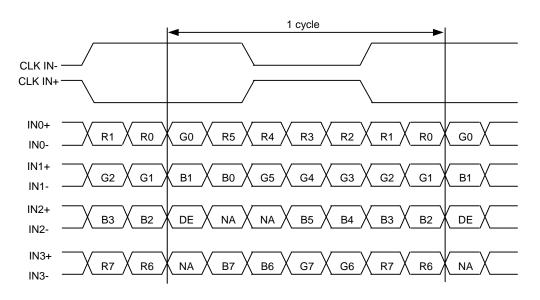

Note 2: All VSS pins should be connected to GND(0V), Metal bezel is connected internally to VSS.

Note 3: In n⁻ and n⁺ (n=0,1,2,3),CLK IN- and CLK IN+ should be wired by twist-pairs or side by side FPC patterns, respectively.

The backlight interface connector is SM08B-SRSS-TB made by JST, and pin assignment of backlight is as below:

Pin No.	Signal	Level	Function
1~3	V_{LED} +	-	Power Supply for LED(12V)
4~5	NC	1	No Connection
6~8	V _{LED} -	-	GND

9.2 LVDS INTERFACE


Note 1: $100\,\Omega$ impedance of LVDS cable is recommended for best optical performance.

Note 2: Transmitter Made by Thine: THC63LVDM83R or equivalent.

Note 3: Receiver (TCON30.3-F) • Made by THine : THC63LVDF84B equivalent.

9.3 DATA MAPPING

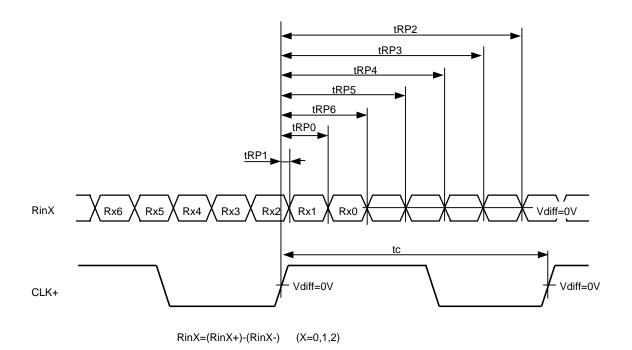
Pin No.	Pin name	Data	Pin No.	Pin name	Data
51	TA0	R0(LSB)	20	TC0	B2
52	TA1	R1	22	TC1	B3
54	TA2	R2	23	TC2	B4
55	TA3	R3	24	TC3	B5
56	TA4	R4	27	TC4	(NA)
3	TA5	R5	28	TC5	(NA)
4	TA6	G0(LSB)	30	TC6	DE
6	TB0	G1	50	TD0	R6
7	TB1	G2	2	TD1	R7(MSB)
11	TB2	G3	8	TD2	G6
12	TB3	G4	10	TD3	G7(MSB)
14	TB4	G5	16	TD4	B6
15	TB5	B0(LSB)	18	TD5	B7(MSB)
19	TB6	B1	25	TD6	(NA)

DE : Display Enable NA : Not Available

9.4 DATA INPUT for DISPLAY COLOR(8BIT MODE)

					Red	Data	ı					G	reen	Dat	а					ı	Blue	Data	ı		
Input		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	B4	В3	B2	B1	В0
colo	r	MSB							LSB	MSB							LSB	MSB							LSB
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	i	:	:	:	:	:	:	:	:
	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note 1: Definition of gray scale : Color(n) Number in parenthesis indicates gray scale level. Larger number corresponds to brighter level.


Note 2: Data Signal : 1 : High, 0 : Low

KAOHSIUNG HITACHI ELECTRONICS CO., LTD.	SHEET NO.	7B64PS 2709-TX23D38VM0CPA-1	PAGE	9-4/7	
--	--------------	-----------------------------	------	-------	--

9.5 INTERFACE TIMING

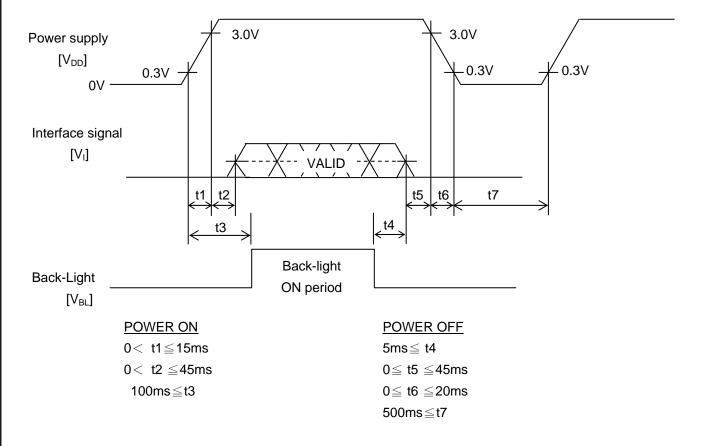
(1) LVDS Receiver Timing

(Interface of TFT module)

	Item	Symbol	Min.	Ту	p.	Max.	Unit
DCLK	FREQUENCY	1/tc	25.0	28.0 1)	33.3 2)	35.0	MHz
RinX	0 data position	t _{RP0}	1/7t _{CLK} -0.65	1/7*	t _{CLK}	1/7t _{CLK} +0.65	
(X=0,1,2)	1st data position	t _{RP1}	-0.65	C)	-0.65	
	2nd data	t _{RP2}	6/7t _{CLK} -0.65	6/7*	t _{CLK}	6/7t _{CLK} +0.65	
	position						
	3rd data position	t _{RP3}	5/7t _{CLK} -0.65	5/7*	t _{CLK}	5/7t _{CLK} +0.65	ns
	4th data position	t _{RP4}	4/7t _{CLK} -0.65	4/7*	t _{CLK}	4/7t _{CLK} +0.65	
	5th data position	t _{RP5}	3/7t _{CLK} -0.65	3/7*	t _{CLK}	3/7t _{CLK} +0.65	
	6th data position	t _{RP6}	2/7t _{CLK} -0.65	2/7*	t _{CLK}	2/7t _{CLK} +0.65	

Note 1: fv=50Hz Note 2: fv=60Hz

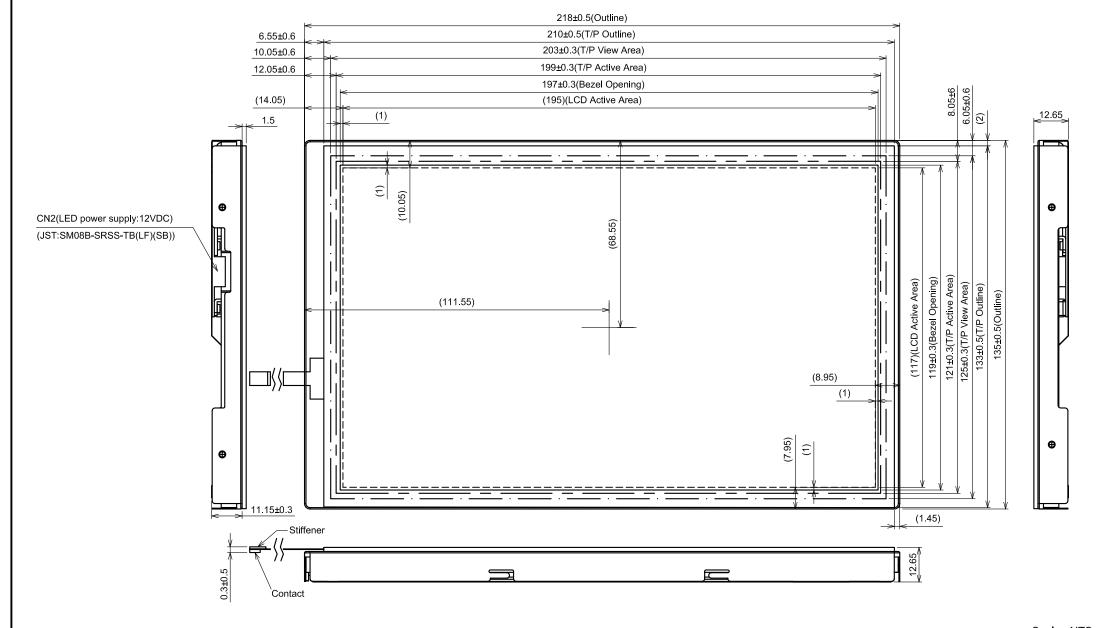
(2) Timing converter timing (Input timing for transmitter) T_V T_{VD} Data enable Data enable D_{CLK} T_C T_C


The timings except mentioned above are referred to the specifications of your transmitter.

Item		Symbol	Min.	Тур.	Max.	Unit	Remarks
DCLK	CLK Cycle time		28.6	30.0	35.7	ns	
	Duty	D	0.45	0.5	0.5	-	
	Horizontal period	T _H	842	1056	1056	T _C	
Data	Horizontal width-Active	T _{HD}	800	800	800	T _C	
Enable	Vertical period	T_V	482	525	525	T _H	
	Vertical width-Active	T_VD	480	480	480	T _H	
	Frame frequency	f _V	42	60	50	H _Z	

DATA SIGNALS

(3) TIMING BETWEEN INTERFACE SIGNAL AND POWER SUPPLY


Power Supply, Input Signal and Backlight Voltage ON/OFF/REENTRY should comply with the following sequence.

- Note 1: In order to prevent electronic parts from destruction caused by latch-up, please input signal after Power Supply Voltage ON. In addition, please turn off signals before power supply voltage OFF.
- Note 2: In order to prevent from function error due to residual charge, please reenter power supply voltage after time stipulated with t7.
- Note 3: Please turn on Backlight after signals fix and turn off before signals down, otherwise noise appears in the display. The noise cause no problem with display performance in case of timing sequence comply with the spec.

10. OUTLINE DIMENSIONS

10.1 SURFACE SIDE

Scale: NTS Unit : mm

KAOHSIUNG HITACHI ELECTRONICS CO.,LTD.

SHEET No.

7B63PS 2710-TX23D38VM0CPA-1 PAGE

10.2 BACK SIDE Mounting hole(Screw) Mounting hole(screw) **M** (48.1) θ CN2:(JST)SM08B-SRSS-TB CN1:(JAE)FI-SEB20P-HF13E Detail A CN3 4 (74.05)Mounting hole(Screw) LABEL Mounting hole(screw) 5.35±0.5 5.00±0.2 PITCH 1.00x3±0.05 0.60±0.05 6.35 ± 0.5 10.45±0.5 202.2±0.5 7.00±0.5(Stiffener) 0.20±0.15 Scale: NTS Unit mm Note 1: The maximum depth of mounting pillars is 3.3mm. 5.00±0.5(Contact) KAOHSIUNG HITACHI Detail A SHEET 7B63PS 2710-TX23D38VM0CPA-1 PAGE 10-2/2 ELECTRONICS CO.,LTD. No.

11. TOUCH PANEL

The type of touch panel used on this display is resistive, analog, 4-wire and film on glass, and more characteristics are shown as below:

11.1 OPERATING CONDITIONS

Item	Specification	Remarks
Operating Voltage	DC 5V	DC 7V Max.
Operating Current	20mA	-

11.2 ELECTRICAL CHARACTERISTICS

Item		Specification	Remarks
Circuit registence	X- axis	370~1010 Ω	
Circuit resistance	Y-axis	200~590 Ω	-
Insulation Resistance	X-Y	>20M Ω	At DC 25V
Lincority	Х	≤ ± 1.5%	Note 4
Linearity	Υ	≤ ± 1.5%	Note 1
Chattering		≤10ms	-

Note 1: The test conditions and equipments of linearity are as below:

- Material of pen: poly-acetal resin

- End shape: R 0.8 mm

- Test force: 150 gf

- Pitch: 10 mm

- Test area is shown in Fig. 11.1

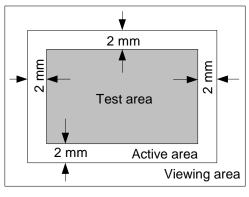


Fig. 11.1

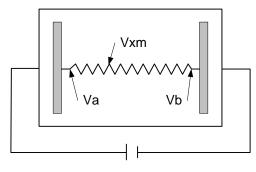


Fig. 11.2

As shown in Fig. 11.2, applying voltage meter to measure Va, Vb and Vxm, where Va is the maximum voltage in the active area; Vb is the minimum voltage in the active area; Vxm is the measured voltage of point x selected by random. Afterwards, the linearity can be calculated by following equation:

$$Linearity = \frac{|Vxi - Vxm|}{Va - Vb} \times 100\%,$$

where Vxi is the idea voltage of point x.

The method to measure the linearity of Y-axis is the same as above.

KAOHSIUNG HITACHI ELECTRONICS CO., LTD.	SHEET NO.	7B64PS 2711-TX23D38VM0CPA-1	PAGE	11-1/2	
--	--------------	-----------------------------	------	--------	--

11.3 MECHANICAL CHARACTERISTICS

Item	1	Specification	Remarks
A ativation force	Finger	1.2N Max	End shape: R8.0 mm
Activation force	Pen	1.2N Max	End shape: R0.8 mm
Surface Ha	ardness	3H	JIS K 5400

11.4 OPTICAL CHARACTERISTICS

Item	Specification	Remarks
Transmittance	>80%	-

11.5 SAFETY AND ATTENTIONS

- 1) Do not put heavy shock or stress on the touch panel.
- 2) Please use soft cloth or absorbent cotton with ethanol to clean the touch panel by gently wiping. Moreover, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the touch panel's surface.
- 3) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean the display's surface.

12. APPEARANCE STANDARD

The appearance inspection is performed in a dark room around 1200 lx based on the conditions as below:

- The distance between inspector's eyes and display is 30 cm.
- The viewing zone is defined with angle θ shown in Fig. 12.1 The inspection should be performed within 45° when display is shut down. The inspection should be performed within 5° when display is power on.

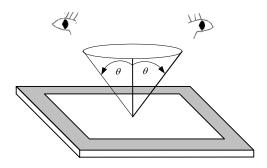


Fig. 12.1

12.1 THE DEFINITION OF LCD ZONE

LCD panel is divided into 3 areas as shown in Fig.12.2 for appearance specification in next section. A zone is the LCD active area (dot area); B zone is the area, which extended 1 mm out from LCD active area; C zone is the area between B zone and metal frame.

In terms of housing design, B zone is the recommended window area customers' housing should be located in.

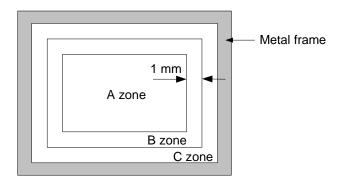
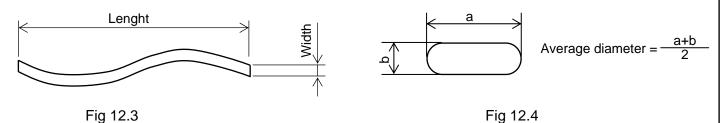


Fig. 12.2

12.2 LCD APPEARANCE SPECIFICATION

When displaying conditions are not stable (ex. at turn on or off), the following specifications are not applied.


Operating inspection

No	I:	tem		Max. acceptable number A-ZONE	Unit	Remarks
			1-dot	2	pcs	Note 1,2,4
		Sparkle	2-dots	1	Units	Note 1.2.5
		mode	3-dots	not allowed	Units	Note 1,2,5
			Total	2	Units	Note 1,2
1	5		1-dot	3	pcs	Note 1,3,4
' '	Dot defect	Black	2-dots	2	Units	Note 1,3,5
		mode	3-dots	not allowed	Offics	Note 1,3,5
			Total	3	Units	Note 1,3
		Total	Density	1	Units/\phi80mm	Note 1,2,3,6
		Total	Total	3	Units	Note 1
2	Line defect			Serious one is	_	_
3	Uneven brightness			not allowed		
	Stain inclusion	W≦0.02	L : Ignore	Ignore		
		W≦0.03	L≦2.0	10		
1	W : width (mm)	vv <u>≦</u> 0.03	L>2.0	0		Note 7
4	L: length (mm)	W≦0.06	L≦1.0	10	pcs	Note 7
		VV <u>≥</u> 0.06	L>1.0	0		
		W>0.06	-	(See dot shape)		
	Stain inclusion	D≦	_0.22	Ignore		
5	Dot shape	D≦	_0.33	5	pcs	Note 7
	D : ave. dia (mm)	D>	> 0.33	0	·	
	Scratch on polarizer	W≦0.01	L : Ignore	Ignore		
	Line shape		L≦40	10		
6	W : width (mm)	W≦0.02	L>40	0	pcs	Note 8
	L: length (mm)		L≦20	10		. 1010 0
		W≦0.04	L>20	0		
	Scratch on polarizer	D≦0.2		Ignore		
7	Dot shape	D≦0.2 D≦0.4		10	pcs	Note 8
'	D: ave. dia (mm)	D≥0.4 D>0.4		0	- P63	NOLE O
	C D . ave. ula (IIIII)	D>0.4		U		

KAOHSIUNG HITACHI ELECTRONICS CO., LTD.	SHEET NO.	7B64PS 2712-TX23D38VM0CPA-1	PAGE	12-2/4	
--	--------------	-----------------------------	------	--------	--

Non-operating inspection

No	ITEM		Max. acceptable number	Unit	Remarks
140	11210	A-zone		Onic	Remarks
	Bubbles, peeling	D≦0.3	Ignore		
0	In polarizer	D≦0.5	10	200	Note 8
8	D:ave.dia(mm)	D≦1.0	5	pcs	Note o
	, , ,	D>1.0	0		
9	Wrinkles on polarizer		Serious one is not allowed	-	-

Note 1: Dot defect : defect area > 1/2 dot

Note 2: Sparkle mode: brightness of dot is more than 30% at black raster.

Note 3: Black mode : brightness of dot is less than 70% at white raster.

Note 4: 1 dot: defect dot is isolated, not attached to other defect dot.

Note 5: N dots: N defect dots are consecutive. (N means the number of defects dots)

Note 6: Density: number of defect dots inside 20mm ϕ .

Note 7: Those stains which can be wiped out easily are acceptable.

Note 8: Polarizer area inside of B-zone is not applied.

12.3 TOUCH PANEL APPEARANCE SPECIFICATION

The specification as below is defined by the amount of unexpected material in different zones of touch panel.

Item	Criteria			Applied zone	
	Width (mm)	Length	n (mm)	Maximum number	
Scratches	W>0.1	L≧	10	Not allowed	A, B
Scratches	$0.10>W \ge 0.05$	L<	(10	4 pcs max.	А, Б
	0.05≧W	L<	(10	Ignored	
	Fi	lamentous	(Line shap	oe)	
	Width (mm)	Length	n (mm)	Maximum number	
	W>0.10		-	Dust (circular)	A, B
	$0.10 \ge W > 0.05$	3<	<l< td=""><td>Not allowed</td><td></td></l<>	Not allowed	
Foreign Materials	0.05≧W	L≦	≦3	Ignored	
		Round (D	ot shape)		
	Average diameter (mm)		Ma	aximum number	A, B
	D>0.3			Not allowed	
	0.3≧D>0.2			3 pcs max.	В
	D≦0.2			Ignored	A, B

The limitation of glass flaw occurred on touch panel is defined in the table as below.

Item	Specifications		
Edge flaw	X	$X \le 5.0 \text{ mm}$ $Y \le 1.0 \text{ mm}$ $Z \le \text{Thickness}$	
Corner flaw	X Y Z	$X \leq 3.0 \text{ mm}$ $Y \leq 3.0 \text{ mm}$ $Z \leq \text{Thickness}$	
Progressive flaw		Not allowed	

KAOHSIUNG HITACHI ELECTRONICS CO., LTD.	SHEET NO.	7B64PS 2712-TX23D38VM0CPA-1	PAGE	12-4/4	
--	--------------	-----------------------------	------	--------	--

13. PRECAUTIONS

13.1 PRECAUTIONS of TOUCH PANEL

- 1) Please refer to Fig. 13.1 for housing the display with touch panel into applications. The Fig. 13.1 shows some points as below:
- The cushion needs to be designed between housing and touch panel in order to avoid unexpected pressure to cause any wrong reactions, and the cushion should be located in the cushion area.
- The housing should not cover the active area of touch panel as the figure shown.

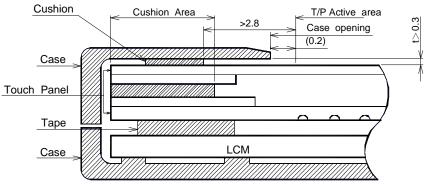


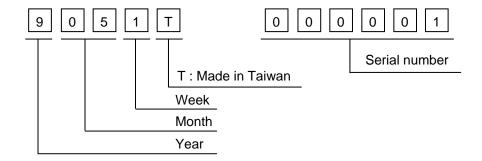
Fig. 13.1

13.2 PRECAUTIONS of ESD

- 1) Before handling the display, please ensure your body has been connected to ground to avoid any damages by ESD. Also, do not touch display's interface directly when assembling.
- 2) Please remove the protection film very slowly before turning on the display to avoid generating ESD.

13.3 PRECAUTIONS of HANDLING

- 1) In order to keep the appearance of display in good condition, please do not rub any surfaces of the displays by using sharp tools harder than 3H, especially touch panel, metal frame and polarizer.
- 2) Please do not stack the displays as this may damage the surface. In order to avoid any injuries, please avoid touching the edge of the glass or metal frame and wore gloves during handling.
- 3) Touching the polarizer or terminal pins with bare hand should be avoided to prevent staining and poor electrical contact.
- 4) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean display's surfaces.
- 5) Please use soft cloth or absorbent cotton with ethanol to clean the display by gently wiping. Moreover, when wiping the display, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the display's surface, especially polarizer.
- 6) Please wipe any unknown liquids immediately such as saliva, water or dew on the display to avoid color fading or any permanent damages.
- 7) Maximum pressure to the surface of the display must be less than 1.96×10^4 Pa. If the area of applied pressure is less than 1 cm^2 , the maximum pressure must be less than 1.96×10^4 Pa. If the area of applied pressure is less than 1 cm^2 , the maximum pressure must be less than 1.96×10^4 Pa.


13.4 PRECAUTIONS of STORAGE

If the displays are going to be stored for years, please be aware the following notices.

- 1) Please store the displays in a dark room to avoid any damages from sunlight and other sources of UV light.
- 2) The recommended long term storage temperature is between 10 °C ~35 °C and 55%~75% humidity to avoid causing bubbles between polarizer and LCD glasses, and polarizer peeling from LCD glasses.
- 3) It would be better to keep the displays in the container, which is shipped from Hitachi, and do not unpack it.
- 4) Please do not stick any labels on the display surface for a long time, especially on the polarizer.

14. DESIGNATION of LOT MARK

1) The lot mark is showing in Fig.13.1. First 4 digits are used to represent production lot, T represented made in Taiwan, and the last 6 digits are the serial number.

2) The tables as below are showing what the first 4 digits of lot mark are shorted for.

Year	Mark
2009	9
2010	0
2011	1
2012	2
2013	3

Month	Mark	Month	Mark
1	01	7	07
2	02	8	08
3	03	9	09
4	04	10	10
5	05	11	11
6	06	12	12

Week (Days)	Mark
1~7	1
8~14	2
15~21	3
22~28	4
29~31	5

- 3) Except letters I and O, revision number will be showen on lot mark and following letters A to Z.
- 4) The location of the lot mark is on the back of the display shown in Fig. 14.1.

Fig 14.1