

RAM Mapping 32×4 LCD Controller for I/O MCU

Features

• Logic operating voltage: 2.4V~3.3V

• LCD voltage: 3.6V~4.9V

• Low operating current <3μA at 3V

• External 32.768kHz crystal oscillator

• Selection of 1/2 or 1/3 bias, and selection of 1/2 or 1/3 or 1/4 duty LCD applications

• Internal time base frequency sources

 Two selectable buzzer frequencies (2kHz/4kHz)

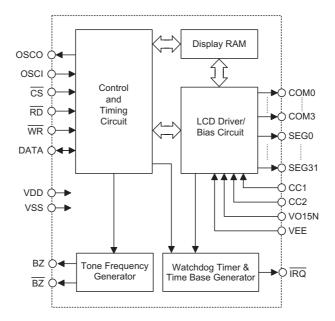
• Built-in capacitor type bias charge pump

• Time base or WDT overflow output

- 8 kinds of time base/WDT clock source
- 32×4 LCD driver
- Built-in 32×4-bit display RAM
- 3-wire serial interface
- Internal LCD driving frequency source
- Software configuration feature
- · R/Wy address auto increment
- · Data mode and command mode instructions
- Three data accessing modes
- 64-pin LQFP package

General Description

The HT1620 is a 128 pattern (32×4), memory mapping, and multi-function LCD driver. The S/W configuration feature of the HT1620 makes it suitable for multiple LCD applications including LCD modules and display subsystems. Only three or four lines are required for the in-

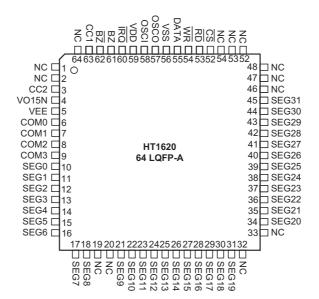

terface between the host controller and the HT1620. The HT1620 consumes low operating current owing to adopting capacitor type bias charge pump. The HT162X series have many kinds of products that match various applications.

Selection Table

HT162X	HT1620	HT1621	HT1622	HT16220	HT1623	HT1625	HT1626
СОМ	4	4	8	8	8	8	16
SEG	32	32	32	32	48	64	48
Built-in Osc.	_	√	√	_	√	√	V
Crystal Osc.	√	√		√	√	√	√

Block Diagram

Note: CS: Chip selection


BZ, \overline{BZ} : Tone outputs

WR, RD, DATA: Serial interface

COM0~COM3, SEG0~SEG31: LCD outputs IRQ: Time base or WDT overflow output VO15N: Half voltage circuit output pin VEE: Double voltage circuit output pin

CC1/CC2: External capacitor pin, for double voltage and half voltage circuit use

Pin Assignment

Pad Assignment

Chip size: $92 \times 89 \text{ (mil)}^2$

Pad Coordinates Unit: μm

Pad No.	X	Υ	Pad No.	X	Υ
1	-1047.550	1003.190	27	288.954	-1017.875
2	-1047.675	751.820	28	1066.345	-956.690
3	-1047.589	653.370	29	1066.345	-857.591
4	-1047.675	546.716	30	1066.345	-758.569
5	-1047.675	447.615	31	1066.345	-659.470
6	-1047.675	348.594	32	1066.345	-560.449
7	-1047.675	249.495	33	1066.345	-461.351
8	-1047.675	150.475	34	1066.345	-362.330
9	-1047.675	51.375	35	1066.345	-263.230
10	-1047.675	-47.646	36	1066.345	-164.210
11	-1047.675	-146.745	37	1066.345	-65.110
12	-1047.675	-245.766	38	1066.345	33.910
13	-1047.675	-344.865	39	1066.345	133.010
14	-998.865	-1017.875	40	1061.255	1003.190
15	-899.766	-1017.875	41	962.234	1003.190
16	-800.745	-1017.875	42	863.135	1003.190
17	-701.646	-1017.875	43	612.943	1003.190
18	-602.625	-1017.875	44	430.677	999.625
19	-503.526	-1017.875	45	267.974	1003.190
20	-404.505	-1017.875	46	168.952	1003.190
21	-305.406	-1017.875	47	59.692	1003.715
22	-206.385	-1017.875	48	-126.910	1003.190
23	-107.285	-1017.875	49	-445.130	999.100
24	-8.264	-1017.875	50	-704.419	999.100
25	90.835	-1017.875	51	-855.819	1003.190
26	189.855	-1017.875			

Rev. 1.50 3 March 17, 2008

^{*} The IC substrate should be connected to VDD in the PCB layout artwork.

Pad Description

Pad No.	Pad Name	I/O	Description	
51, 1	CC1, CC2	I	External capacitor pin, for double voltage and half voltage circuit use	
2	VO15N	0	Half voltage circuit output pin	
3	VEE	_	Double voltage circuit output pin	
4~7	COM0~COM3	0	LCD common outputs	
8~39	SEG0~SEG31	0	LCD segment outputs	
40	CS	I	Chip selection input with pull-high resistor. When the \overline{CS} is logic high, the data and command, read from or written to the HT1620 are disabled. The serial interface circuit is also reset. But if the \overline{CS} is at logic low level and is input to the \overline{CS} pad, the data and command transmission between the host controller and the HT1620 are all enabled.	
41	RD	ı	READ clock input with pull-high resistor. Data in the RAM of the HT1620 are clocked out on the falling edge of the RD signal. The clocked out data will appear on the DATA line. The host controller can use the next raising edge to latch the clocked out data.	
42	WR	I	WRITE clock input with pull-high resistor. Data on the DATA line are latched into the HT1620 on the rising edge of the WR signal.	
43	DATA	I/O	Serial data input/output with pull-high resistor	
44	VSS	_	Negative power supply, Ground	
45	osco	0	The OSCI and OSCO pads are connected to a 32.768kHz crystal in order to	
46	OSCI	I	generate a system clock.	
47	VDD		Positive power supply	
48	ĪRQ	0	Time base or WDT overflow flag, NMOS open drain output	
49, 50	BZ, BZ	0	2kHz or 4kHz tone frequency output pair (tri-state output buffer)	

Absolute Maximum Ratings

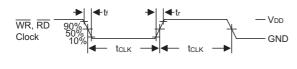
Supply VoltageV _{SS} -0.3V to V _{SS} +3.6V	Storage Temperature50°C to 125°C
Input VoltageV _{SS} -0.3V to V _{DD} +0.3V	Operating Temperature25°C to 75°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

Ta=25°C

Cumbal	Parameter		Test Conditions	Min.	Typ	May	Unit
Symbol	Parameter	V _{DD}	Conditions	wiin.	Тур.	Max.	
V_{DD}	Operating Voltage	_	_	2.4	_	3.3	V
I _{DD}	Operating Current	3V	See note 1	_	2	3	μА
I _{STB}	Standby Current	3V	See note 2	_	_	1	μΑ
V _{IL}	Input Low Voltage	3V	DATA, WR, CS, RD	_	_	0.6	V
V _{IH}	Input High Voltage	3V	DATA, WR, CS, RD	2.4	_	3.0	V
I _{OL1}	DATA, BZ, BZ, IRQ	3V	V _{OL} =0.3V	0.8	1.6	_	mA
I _{OH1}	DATA, BZ, BZ	3V	V _{OH} =2.7V	-0.6	-1.2	_	mA
I _{OL2}	LCD Common Sink Current	3V	V _{OL} =0.3V	80	150	_	μΑ
I _{OH2}	LCD Common Source Current	3V	V _{OH} =2.7V	-70	-120	_	μА
I _{OL3}	LCD Segment Sink Current	3V	V _{OL} =0.3V	70	140	_	μА
I _{OH3}	LCD Segment Source Current	3V	V _{OH} =2.7V	-30	-60	_	μΑ
R _{PH}	Pull-high Resister	3V	DATA, WR, CS, RD	100	200	300	kΩ


Note: 1. No load, Buzzer Off, LCD On, system enable and $\overline{\text{CS}} = \overline{\text{WR}} = \overline{\text{RD}} = \text{High}$ 2. No load, Buzzer Off, LCD Off, system disable and $\overline{\text{CS}} = \overline{\text{WR}} = \overline{\text{RD}} = \text{High}$

A.C. Characteristics

Ta=25°C

Symbol	Parameter	Test Conditions		Min.	Tim	Max.	Unit
Symbol	Parameter	V_{DD}	Conditions	Win.	Тур.	Wax.	Onic
f _{SYS}	System Clock	3V	Crystal 32kHz	_	32	_	kHz
	LCD Frame Frequency	_		_	64	_	Hz
_	LCD Frame Frequency 1/2 Duty		On 12421 2211 In	_	64	_	Hz
f _{LCD}	LCD Frame Frequency 1/3 Duty	_	Crystal 32kHz	_	56	_	Hz
	LCD Frame Frequency 1/4 Duty	_		_	64	_	Hz
t _{COM}	LCD Common Period	_	n: Number of COM	_	n/f _{LCD}	_	s
r	Ossial Data Olaska	3V	Write mode	_	_	150	kHz
f _{CLK}	Serial Data Clock	30	Read mode	_	_	75	kHz
f _{TONE}	Tone Frequency	_	_	_	2 or 4	_	kHz
t _{CS}	Serial Interface Reset Pulse Width (Figure 3)	_	CS	_	250	_	ns
_	WR, RD Input Pulse Width		Write mode	3.34	_	_	
t _{CLK}	(Figure 1)	3V	Read mode	6.67	_	_	μS
t _r , t _f	Rise/Fall Time Serial Data Clock Width (Figure 1)	3V	_	_	120	_	ns
t _{SU}	Setup Time for DATA to WR, RD Clock Width (Figure 2)	3V	_	_	120	_	ns
t _H	Hold Time for DATA to WR, RD Clock Width (Figure 2)	3V	_	_	120	_	ns
t _{SU1}	Setup Time for $\overline{\text{CS}}$ to $\overline{\text{WR}}$, $\overline{\text{RD}}$ Clock Width (Figure 3)	3V	_	_	100	_	ns
t _{H1}	Hold Time for $\overline{\text{CS}}$ to $\overline{\text{WR}}$, $\overline{\text{RD}}$ Clock Width (Figure 3)	3V	_	_	100	_	ns

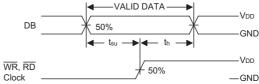
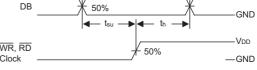



Figure 2

Figure 1

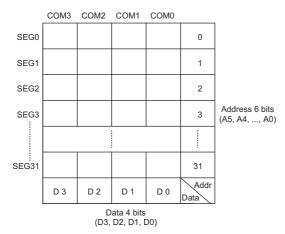

GND **←** tsu1 Vnn \overline{WR} , \overline{RD} 50% Clock GND FIRS1 LAST Clock Clock

Figure 3

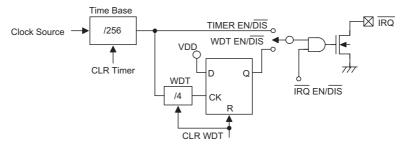
Functional Description

Display Memory - RAM structure

The static display RAM is organized into 32×4 bits and stores the display data. The contents of the RAM are directly mapped to the contents of the LCD driver. Data in the RAM can be accessed by the READ, WRITE and READ-MOD IFY-WRITE commands. The following is a mapping from the RAM to the LCD patterns.

RAM Mapping

Time Base and Watchdog Timer - WDT


The time base generator and WDT share the same divided (÷256) counter. TIMER DIS/EN/CLR, WDT DIS/EN/CLR and IRQ EN/DIS are independent from each other. Once the WDT time-out occurs, the IRQ pin will stay at a logic low level until the CLR WDT or the IRQ DIS command is issued.

Buzzer Tone Output

A simple tone generator is implemented in the HT1620. The tone generator can output a pair of differential driving signals on the BZ and BZ which are used to generate a single tone.

LCD Driver

The HT1620 is a 128 (32×4) pattern LCD driver. It can be configured as 1/2 or 1/3 bias and 2 or 3 or 4 commons of LCD driver by the S/W configuration. This feature makes the HT1620 suitable for multiple LCD applications. The LCD driving clock is derived from the system clock. The value of the driving clock is always 256Hz even when it is at a 32.768kHz crystal oscillator frequency. The LCD corresponding commands are summarized in the table.

Timer and WDT Configurations

Name	Command Code	Function		
LCD OFF	10000000010X	Turn off LCD outputs		
LCD ON	1000000011X	Turn on LCD outputs		
BIAS and COM	100 0010abXcX	c=0: 1/2 bias option c=1: 1/3 bias option ab=00: 2 commons option ab=01: 3 commons option ab=10: 4 commons option		

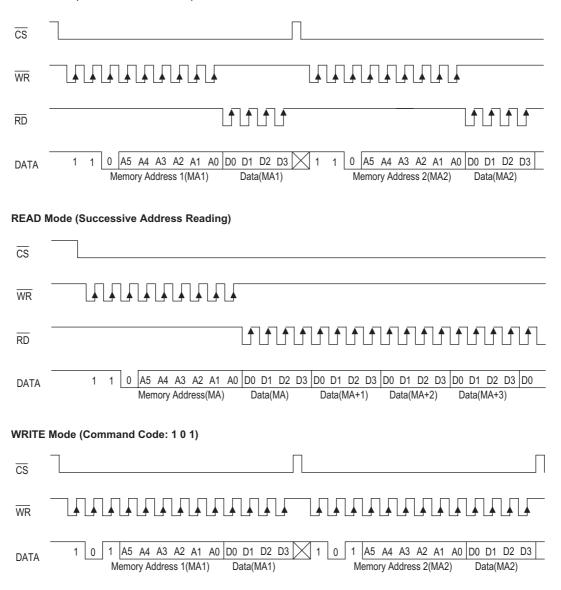
The bold form of 1 0 0, namely **1 0 0**, indicates the command mode ID. If successive commands have been issued, the command mode ID will be omitted, except for the first command. The LCD OFF command turns the LCD display off by disabling the LCD bias generator. The LCD ON command, on the other hand, turns the LCD display on by enabling the LCD bias generator. The BIAS and COM are the LCD panel related commands. With the use of the LCD related commands, the HT1620 can be compatible with most types of LCD panels.

Command Format

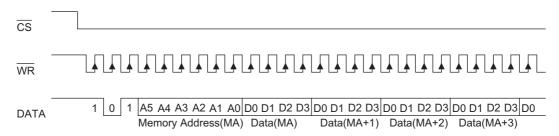
The HT1620 can be configured by the S/W setting. There are two mode commands to configure the HT1620 resources and to transfer the LCD display data. The configuration mode of the HT1620 is called command mode, and its command mode ID is 1 0 0. The command mode consists of a system configuration command, a system frequency selection command, an LCD configuration command, a tone frequency selection command, a timer/WDT setting command, and an operating command. The data mode, on the other hand, includes READ, WRITE, and READ-MODIFY-WRITE operations. The following are the data mode IDs and the command mode ID:

Operation	Mode	ID
READ	Data	110
WRITE	Data	101
READ-MODIFY-WRITE	Data	101
COMMAND	Command	100

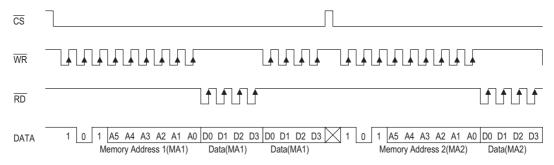
The mode command should be issued before the data or command is transferred. If successive commands have been issued, the command mode ID, $\bf 100$, can be omitted. While the system is operating in the non-successive command or the non-successive address data mode, the \overline{CS} pin should be set to "1" and the previous operation mode will be reset also. Once the \overline{CS} pin returns to "0", a new operation mode ID should be issued first.


Interfacing

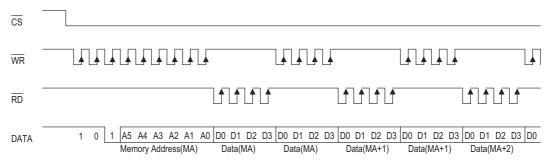
Only four lines are required to interface with the HT1620. The CS line is used to initialize the serial interface circuit and to terminate the communication between the host controller and the HT1620. If the CS pin is set to 1, the data and command issued between the host controller and the HT1620 are first disabled and then initialized. Before issuing a mode command or mode switching, a high level pulse is required to initialize the serial interface of the HT1620. The DATA line is the serial data input/output line. Data to be read or written or commands to be written have to be passed through the DATA line. The RD line is the READ clock input. Data in the RAM are clocked out on the falling edge of the RD signal, and the clocked out data will then appear on the DATA line. It is recommended that the host controller read in correct data during the interval between the rising edge and the next falling edge of the RD signal. The WR line is the WRITE clock input. The data, address, and command on the DATA line are all clocked into the HT1620 on the rising edge of the WR signal. There is an optional IRQ line to be used as an interface between the host controller and the HT1620. The IRQ pin can be selected as a timer output or a WDT overflow flag output by the S/W setting. The host controller can perform the time base or the WDT function by connecting with the IRQ pin of the HT1620.


Timing Diagrams

READ Mode (Command Code: 1 1 0)

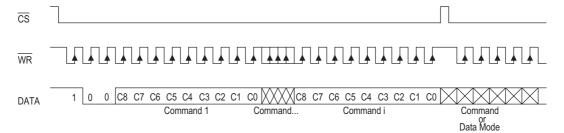


WRITE Mode (Successive Address Writing)

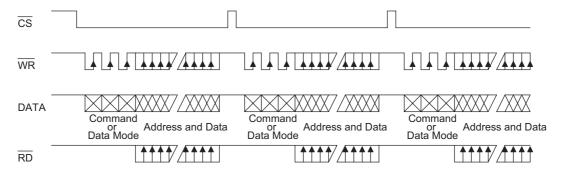


Note: It is recommended that the host controller should read with the data from the DATA line between the raising edge of the $\overline{\text{RD}}$ line and the falling edge of the next $\overline{\text{RD}}$ line.

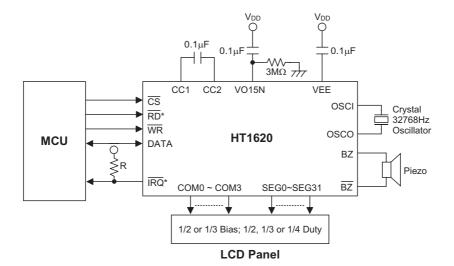
READ-MODIFY-WRITE Mode (Command Code: 1 0 1)



READ-MODIFY-WRITE Mode (Successive Address Accessing)



Command Mode (Command Code: 1 0 0)



Mode (Data And Command Mode)

Application Circuits

Note: * The connection of the $\overline{\text{IRQ}}$ and $\overline{\text{RD}}$ pin is selectable depending on the requirement of the MCU. $V_{DD}=2.4V\sim3.3V,\ V_{EE}=-1/2\ V_{DD},\ V_{LCD}\ (LCD\ voltage)=V_{DD}-V_{EE}=3/2\ V_{DD}=3.6V\sim4.9V.$ Adjust R (external pull-high resistance) to fit user's time base clock.

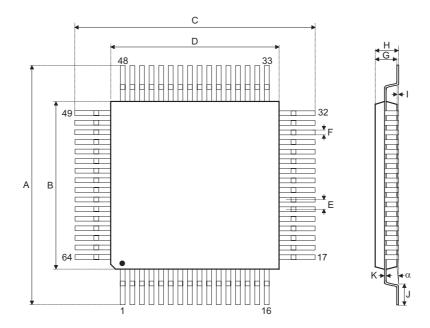
Command Summary

Name	ID	Command Code	D/C	Function	Def.
READ	110	A5A4A3A2A1A0D0D1D2D3	D	Read data from the RAM	
WRITE	101	A5A4A3A2A1A0D0D1D2D3	D	Write data to the RAM	
READ MODIFY WRITE	101	A5A4A3A2A1A0D0D D2D3	D	Read and write to the RAM	
SYS DIS	100	0000-0000-X	С	Turn off both system oscillator and LCD bias generator	
SYS EN	100	0000-0001-X	С	Turn on system oscillator	
LCD OFF	100	0000-0010-X	С	Turn off LCD bias generator	Yes
LCD ON	100	0000-0011-X	С	Turn on LCD bias generator	
TIMER DIS	100	0000-0100-X	С	Disable time base output	Yes
WDT DIS	100	0000-0101-X	С	Disable WDT time-out flag output	Yes
TIMER EN	100	0000-0110-X	С	Enable time base output	
WDT EN	100	0000-0111-X	С	Enable WDT time-out flag output	
TONE OFF	100	0000-1000-X	С	Turn off tone outputs	Yes
CLR TIMER	100	0000-1101-X	С	Clear the contents of the time base generator	
CLR WDT	100	0000-111X-X	С	Clear the contents of the WDT stage	
BIAS 1/2	100	0010-abX0-X	С	LCD 1/2 bias option ab=00: 2 commons option ab=01: 3 commons option ab=10: 4 commons option	

Name	ID	Command Code	D/C	Function	Def.
BIAS 1/3	100	0010-abX1-X	С	LCD 1/3 bias option ab=00: 2 commons option ab=01: 3 commons option ab=10: 4 commons option	
TONE 4K	100	010X-XXXX-X	С	Tone frequency, 4kHz	
TONE 2K	100	0110-XXXX-X	С	Tone frequency, 2kHz	
IRQ DIS	100	100X-0XXX-X	С	Disable IRQ output	Yes
ĪRQ EN	100	100X-1XXX-X	С	Enable IRQ output	
F1	100	101X-0000-X	С	Time base clock output: 1Hz The WDT time-out flag after: 4s	
F2	100	101X-0001-X	С	Time base clock output: 2Hz The WDT time-out flag after: 2s	
F4	100	101X-0010-X	С	Time base clock output: 4Hz The WDT time-out flag after: 1s	
F8	100	101X-0011-X	С	Time base clock output: 8Hz The WDT time-out flag after: 1/2s	
F16	100	101X-0100-X	С	Time base clock output: 16Hz The WDT time-out flag after: 1/4s	
F32	100	101X-0101-X	С	Time base clock output: 32Hz The WDT time-out flag after: 1/8s	
F64	100	101X-0110-X	С	Time base clock output: 64Hz The WDT time-out flag after: 1/16s	
F128	100	101X-0111-X	С	Time base clock output: 128Hz The WDT time-out flag after:1/32s	Yes
TEST	100	1110-0000-X	С	Test mode, user don't use.	
NORMAL	100	1110-0011-X	С	Normal mode	Yes

Note: X: Don't care

A5~A0: RAM addresses D3~D0: RAM data


D/C: Data/command mode
Def.: Power on reset default

All the bold forms, namely **110**, **101**, and **100**, are mode commands. Of these, **100** indicates the command mode ID. If successive commands have been issued, the command mode ID except for the first command will be omitted. The source of the tone frequency and of the time base/WDT clock frequency can be derived from a 32.768kHz crystal oscillator. Calculation of the frequency is based on the system frequency sources as stated above. It is recommended that the host controller should initialize the HT1620 after power on reset, for power on reset may fail, which in turn leads to malfunctioning of the HT1620.

Package Information

64-pin LQFP (7×7) Outline Dimensions

Symbol		Dimensions in mm					
	Min.	Nom.	Max.				
А	8.9	_	9.1				
В	6.9	_	7.1				
С	8.9	_	9.1				
D	6.9	_	7.1				
Е	_	0.4	_				
F	0.13		0.23				
G	1.35	_	1.45				
Н	_	_	1.6				
I	0.05	_	0.15				
J	0.45	_	0.75				
K	0.09	_	0.20				
α	0°	_	7°				

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)

4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan

Tel: 886-2-2655-7070 Fax: 886-2-2655-7373

Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)

7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233

Tel: 86-21-6485-5560 Fax: 86-21-6485-0313 http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office)

5F, Unit A, Productivity Building, Gaoxin M 2nd, Middle Zone Of High-Tech Industrial Park, ShenZhen, China 518057

Tel: 86-755-8616-9908, 86-755-8616-9308

Fax: 86-755-8616-9722

Holtek Semiconductor Inc. (Beijing Sales Office)

Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031

Tel: 86-10-6641-0030, 86-10-6641-7751, 86-10-6641-7752

Fax: 86-10-6641-0125

Holtek Semiconductor Inc. (Chengdu Sales Office)

709, Building 3, Champagne Plaza, No.97 Dongda Street, Chengdu, Sichuan, China 610016

Tel: 86-28-6653-6590 Fax: 86-28-6653-6591

Holtek Semiconductor (USA), Inc. (North America Sales Office)

46729 Fremont Blvd., Fremont, CA 94538

Tel: 1-510-252-9880 Fax: 1-510-252-9885 http://www.holtek.com

Copyright © 2008 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

Rev. 1.50 14 March 17, 2008