FODM452，FODM453
 5－Pin Mini Flat Package High Speed Transistor Optocoupler

Features

■ Compact 5－pin mini flat package
－High speed－1 MBit／s
■ Superior CMR－15kV／$\mu \mathrm{s}$ at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$（FODM453）
－Performance guaranteed over temperature（ $0-70^{\circ} \mathrm{C}$ ）
■ U．L．recognized（File \＃E90700）
■ VDE0884 recognized（File \＃136480）
－Ordering option V，e．g．，FODM452V

Applications

■ Line receivers
－Pulse transformer replacement
■ Output interface to CMOS－LSTTL－TTL
■ Wide bandwidth analog coupling

Note：
All dimensions are in inches（millimeters）．

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Value	Units
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
TopR	Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
EMITTER			
I_{F} (avg)	DC/Average Forward Input Current	25	mA
I_{F} (pk)	Peak Forward Input Current (50\% duty cycle, 1ms P.W.)	50	mA
I_{F} (trans)	Peak Transient Input Current ($\leq 1 \mu$ s P.W., 300pps)	1.0	A
V_{R}	Reverse Input Voltage	5	V
P_{D}	Input Power Dissipation (No derating required over specified operating temp range)	45	mW
DETECTOR			
I_{O} (avg)	Average Output Current	8	mA
$\mathrm{I}_{\mathrm{O}}(\mathrm{pk})$	Peak Output Current	16	mA
V_{CC}	Supply Voltage	-0.5 to 30	V
V_{O}	Output Voltage	-0.5 to 20	V
P_{D}	Output Power Dissipation (No derating required over specified operating temp range)	100	mW

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ unless otherwise specified)
Individual Component Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.*	Max.	Unit
EMITTER						
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.60	1.7	V
		$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$			1.8	
B_{VR}	Input Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	5.0			V
$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}_{\mathrm{A}}$	Temperature Coefficient of Forward Voltage	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$		-1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
DETECTOR						
$\mathrm{IOH}^{\text {a }}$	Logic High Output Current	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. 001	0.5	$\mu \mathrm{A}$
		$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. 001	1	
		$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$			50	
$\mathrm{I}_{\text {CCL }}$	Logic Low Supply Current	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=$ Open, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$		100	200	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CCH}}$	Logic high supply current	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open, } \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.05	1	$\mu \mathrm{A}$
		$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=$ Open, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$			2	

Transfer Characteristics

Symbol	Parameter	Test Conditions		Min.	Typ.*	Max	Unit
COUPLED							
CTR	Current Transfer Ratio ${ }^{(1)}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	20		50	\%
			$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	15			
V OL	Logic LOW Output Voltage	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				0.4	V
		$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=2.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$				0.5	

Switching Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\right)$

Symbol	Parameter	Test Conditions	Device	Min.	Typ.*	Max.	Unit
$\mathrm{T}_{\mathrm{PHL}}$	$\begin{array}{l}\text { Propagation Delay } \\ \text { Time to Logic LOW }\end{array}$	$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(2)}($ Fig. 9)					

Isolation Characteristics

Symbol	Characteristics	Test Conditions	Min.	Typ.*	Max.	Unit
$\mathrm{V}_{\text {ISO }}$	Withstand Insulation Test Voltage	$\mathrm{RH} \leq 50 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=1$ min..$^{(4)}$	3750			$\mathrm{~V}_{\mathrm{RMS}}$
$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$	Capacitance (Input to Output)	$\mathrm{f}=1 \mathrm{MHz}^{(4)}$		0.2		pF

*All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Notes:

1. Current Transfer Ratio is defined as a ratio of output collector current, I_{O}, to the forward LED input current, I_{F}, times 100\%.
2. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and $5.6 \mathrm{k} \Omega$ pull-up resistor.
3. Common mode transient immunity in logic high level is the maximum tolerable (positive) $d V_{c m} / d t$ on the leading edge of the common mode pulse signal V_{CM}, to assure that the output will remain in a logic high state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in logic low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a logic low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
4. Device is considered a two terminal device: Pins 1, and 3 are shorted together and Pins 4, 5, and 6 are shorted together.

Typical Performance Curves

Fig. 1 Input Forward Current vs Forward Voltage

Fig. 3 Normalized Current Transfer Ratio vs. Ambient Temperature

Fig. 5 DC and Pulsed Transfer Characteristics

Fig. 2 Normalized Current Transfer Ratio vs. Input Current

Fig. 4 Logic High Output Current vs. Ambient Temperature

Fig. 6 Propagation Delay vs. Load Resistance

Typical Performance Curves (Continued)

Fig. 7 Propagation Delay vs. Ambient Temperature

Fig. 8 Frequency Response

Fig. 9 Switching Time Test Circuit

Fig. 10 Common Mode Immunity Test Circuit

Footprint Drawing for PCB Layout

Ordering Information

Option	Order Entry Identifier (example)	Description
R1	FODM452R1	Tape and Reel (500 per reel)
R2	FODM452R2	Tape and Reel (2500 per reel)
V	FODM452V	VDE0884
R1V	FODM452R1V	VDE0884, Tape and Reel (500 per reel)
R2V	FODM452R2V	VDE0884, Tape and Reel (2500 per reel)

Marking Information

Carrier Tape Specifications

Note:
All dimensions are in millimeters.

Reflow Profile

- Peak reflow temperature: $230^{\circ} \mathrm{C}$ (package surface temperature) for 30 seconds
- Time of temperature higher than $210^{\circ} \mathrm{C}: 60$ seconds or less
- One time soldering reflow is recommended

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {® }}$	Green FPS ${ }^{\text {TM }} \mathrm{e}$-Series ${ }^{\text {TM }}$	POWEREDGE ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-8
Build it Now ${ }^{\text {TM }}$	GTOM	Power-SPM ${ }^{\text {TM }}$	SyncFET ${ }^{\text {m }}$
CorePLUSTM	$i-L o^{\text {TM }}$	PowerTrench ${ }^{\text {® }}$	The Power Franchise ${ }^{\circledR}$
CROSSVOLT ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {™ }}$	Programmable Active Droop ${ }^{\text {TM }}$	(1) ${ }^{\text {TM }}$
CTL ${ }^{\text {m }}$	ISOPLANAR ${ }^{\text {TM }}$	QFET ${ }^{\text {® }}$	TinyBoost ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	MegaBuck ${ }^{\text {TM }}$	QS ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {TM }}$
EcoSPARK ${ }^{\text {® }}$	MICROCOUPLER ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
FACT Quiet Series ${ }^{\text {TM }}$	MicroFET ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {TM }}$	TINYOPTOTM
FACT ${ }^{\text {® }}$	MicroPak ${ }^{\text {™ }}$	RapidConfigure ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
$\mathrm{FAST}^{\text {® }}$	Motion-SPM ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {™ }}$
FastvCore ${ }^{\text {TM }}$	OPTOLOGIC ${ }^{\circledR}$	SPM ${ }^{\text {® }}$	TinyWire ${ }^{\text {TM }}$
FPSTM	OPTOPLANAR ${ }^{\circledR}$	STEALTH ${ }^{\text {TM }}$	μ SerDes $^{\text {™ }}$
FRFET ${ }^{\circledR}$	PDP-SPM ${ }^{\text {TM }}$	SuperFET ${ }^{\text {TM }}$	UHC®
Global Power Resource ${ }^{\text {sM }}$	Power220 ${ }^{\text {® }}$	SuperSOTTM-3	UniFET ${ }^{\text {™ }}$
Green FPS ${ }^{\text {TM }}$	Power247 ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-6	VCX ${ }^{\text {™ }}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

