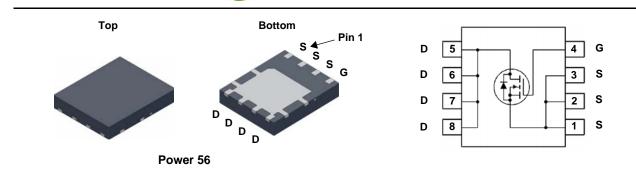


FDMS7670 N-Channel PowerTrench[®] MOSFET 30 V, 3.8 m Ω

Features


- Max $r_{DS(on)}$ = 3.8 m Ω at V_{GS} = 10 V, I_D = 21 A
- Max $r_{DS(on)} = 5.0 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 17 \text{ A}$
- Advanced Package and Silicon design for low r_{DS(on)} and high efficiency
- Next generation enhanced body diode technology, engineered for soft recovery. Provides Schottky-like performance with minimum EMI in sync buck converter applications.
- MSL1 robust package design
- 100% UIL tested
- RoHS Compliant

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency and to minimize switch node ringing of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(on)}$, fast switching speed and body diode reverse recovery performance.

Applications

- IMVP Vcore Switching for Notebook
- VRM Vcore Switching for Desktop and Server
- OringFET / Load Switch
- DC-DC Conversion

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter		Ratings	Units		
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage			±16	V	
ID	Drain Current -Continuous (Package limited)	T _C = 25 °C		42		
	-Continuous (Silicon limited)	T _C = 25 °C		105	•	
	-Continuous	T _A = 25 °C	(Note 1a)	21	Α	
	-Pulsed			150		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	144	mJ	
<u> </u>	Power Dissipation	T _C = 25 °C		62	14/	
P _D	Power Dissipation	T _A = 25 °C	(Note 1a)	2.5	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

R_{\thetaJC}	Thermal Resistance, Junction to Case	2.0	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient (Note 1a) 50	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS7670	FDMS7670	Power 56	13 "	12 mm	3000 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	acteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = 250 \ \mu A, V_{GS} = 0 \ V$	30			V	
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25 °C		15		mV/°C	
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = 24 V, V_{GS} = 0 V$			1	μA	
I _{GSS}	Gate to Source Leakage Current, Forward	$V_{GS} = 16 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			100	nA	
On Chara	acteristics				-	-	
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$	1.25	1.9	3.0	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_{J}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		-7		mV/°C	
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 21 A		2.9	3.8		
		V _{GS} = 4.5 V, I _D = 17 A		4.1	5.0	mΩ	
		V _{GS} = 10 V, I _D = 21 A, T _J = 125 °C		4.0	5.3	1	
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 21 A		136		S	
-	Characteristics						
C _{iss}	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V,		3085	4105	pF	
C _{oss}	Output Capacitance	-f = 1 MHz		990	1315	pF	
C _{rss}	Reverse Transfer Capacitance			75	115	pF	
R _g	Gate Resistance			0.9		Ω	
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time			15	26	ns	
t _r	Rise Time	V _{DD} = 15 V, I _D = 21 A,		6	12	ns	
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		31	50	ns	
t _f	Fall Time			5	10	ns	
Qg	Total Gate Charge	V _{GS} = 0 V to 10 V		40	56	nC	
Qg	Total Gate Charge	$V_{GS} = 0 V \text{ to } 4.5 V$ $V_{DD} = 15 V$, $I_D = 21 A$		17	24	nC	
Q _{gs}	Gate to Source Charge	I _D = 21 A		9.8		nC	
Q _{gd}	Gate to Drain "Miller" Charge			3.1		nC	
Drain-Sou	urce Diode Characteristics						
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 2.1 A$ (Note 2)		0.7	1.2	v	
▼ SD	Source to Drain Diode Forward voilage	$V_{GS} = 0 V, I_S = 21 A$ (Note 2)		0.8	1.3	v	
t _{rr}	Reverse Recovery Time	- I _F = 21 A, di/dt = 100 A/μs		38	61	ns	
~	Reverse Recovery Charge	$r_{\rm F} = 2 r \Lambda$, u/ul = 100 Λ/μ		19	34	nC	
Q _{rr}	Reverse Recovery Charge			10	54	110	

Q_{rr} Notes:

t_{rr}

1. R_{0JA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

 $I_F = 21 \text{ A}, \text{ di/dt} = 300 \text{ A/}\mu\text{s}$

Reverse Recovery Time

Reverse Recovery Charge

a. 50 °C/W when mounted on a 1 in² pad of 2 oz copper.

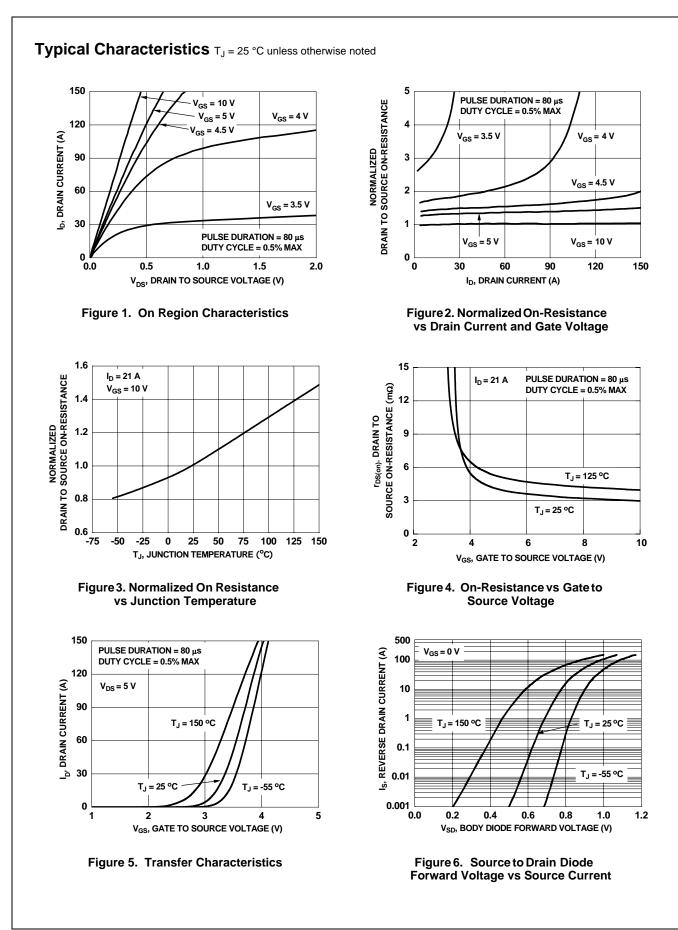
b. 125 °C/W when mounted on a minimum pad of 2 oz copper.

32

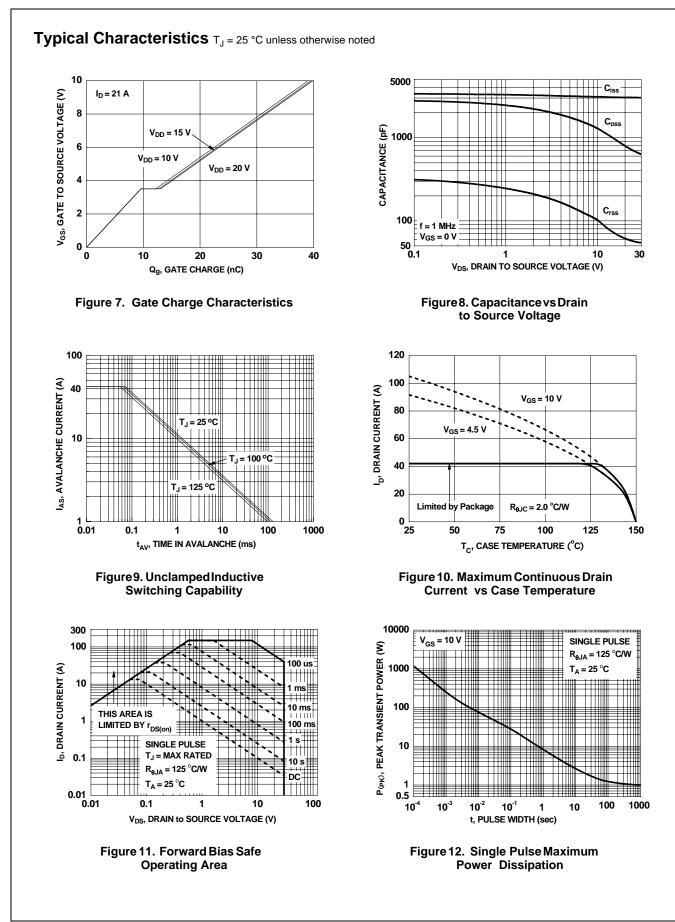
34

51

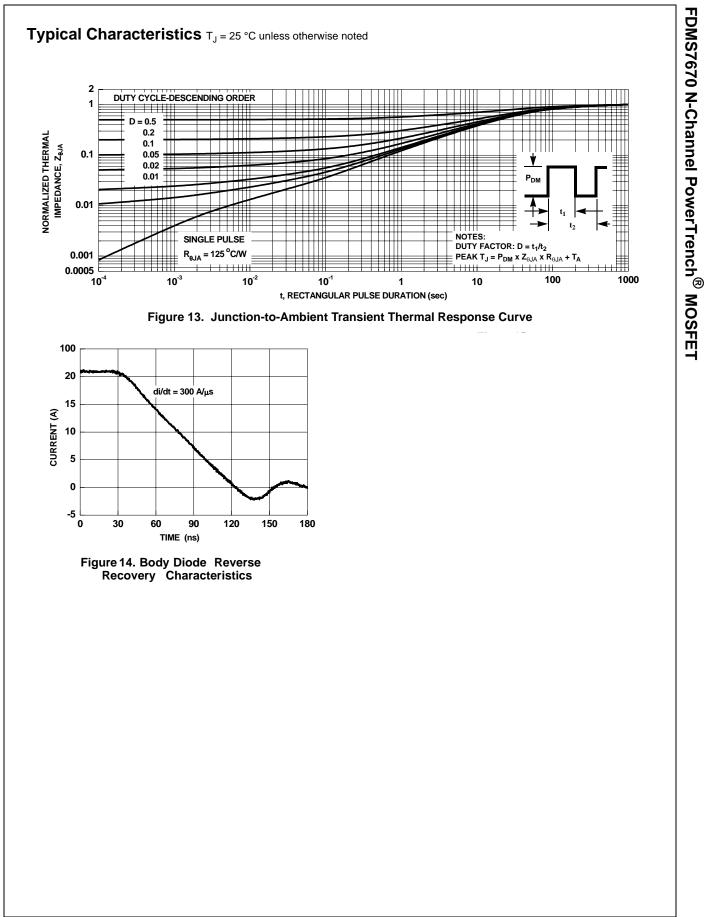
54

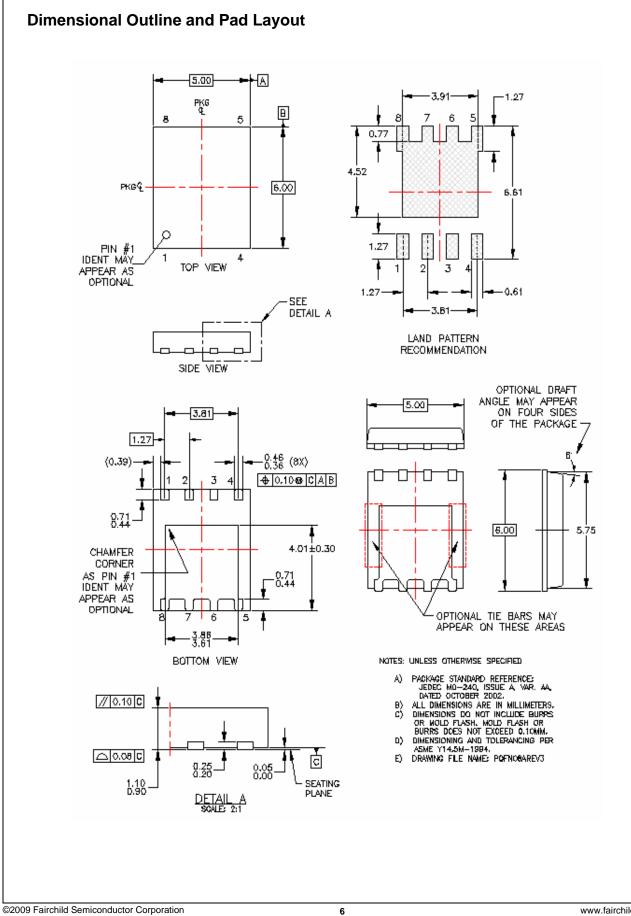

ns

nC



2. Pulse Test: Pulse Width < 300 $\mu\text{s},$ Duty cycle < 2.0%.


3. E_{AS} of 144 mJ is based on starting T_J = 25 °C, L = 1 mH, I_{AS} = 17 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L = 0.3 mH, I_{AS} = 22 A.



©2009 Fairchild Semiconductor Corporation FDMS7670 Rev. C2

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserve make changes at any time without notice to improve the design.		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

www.fairchildsemi.com