DISPLAY Elektronik GmbH

DATA SHEET

LCD MODULE

DEM 40271 SYH-LY-CYR22

Product specification

Version: 0

GENERAL SPECIFICATION

MODULE NO. : DEM 40271 SYH-LY-CYR22

CUSTOMER P/N

VERSION NO.	CHANGE DESCRIPTION	DATE
0	ORIGINAL VERSION	02/03/2007

PREPARED BY: LMM DATE: 02/03/2007

APPROVED BY: MH DATE: 05/06/2007

CONTENTS

1. FUNCTIONS & FEATURES	4
2. MECHANICAL SPECIFICATIONS	4
3. EXTERNAL DIMENSIONS	4
4. BLOCK DIAGRAM	5
5. PIN ASSIGNMENT	5
6. PCB DRAWING AND DESCRIPTION	6
7. BACKLIGHT VOLTAGE & CURRENT	7
8. MAXIMUM ABSOLUTE POWER RATINGS	7
9. ELECTRICAL CHARACTERISTICS	8
10. INSTRUCTION DESCRIPTION	10
11. INTERFACE WITH MPU IN BUS MODE	11
12. STANDARD CHARACTER PATTERN (S6A0069-22)	12
13. LCM INITIALIZING BY INSTRUCTION	13
14. LCD MODULES HANDLING PRECAUTIONS	15
15 OTHERS	15

1. FUNCTIONS & FEATURES

MODULE	LCD TYPE
DEM 40271 SYH-LY-CYR22	STN Yellow Green Transflective Positive Mode

• Viewing Direction : 6 o'clock

• Driving Scheme : 1/16 Duty Cycle, 1/5 Bias

Power Supply Voltage : 5.0 Volt (typ.)
 V_{LCD} Adjustable For Best Contrast : 4.5 V (typ.)
 Display contents : 40 x 2 Characters
 Operating Temperature : -20°C to +70°C

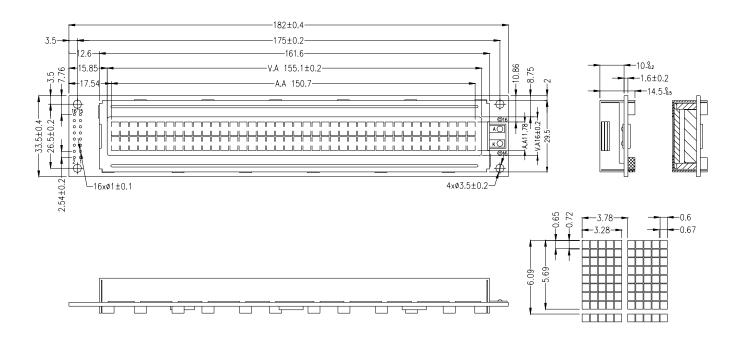
• Storage Temperature : -30°C to +80°C

• IC : Samsung, S6A0069-22 (Cyrillic)

Internal Memory : CGROM (10,080 bits): CGRAM (64 x 8 bits)

: DDRAM (80 x 8 bits)

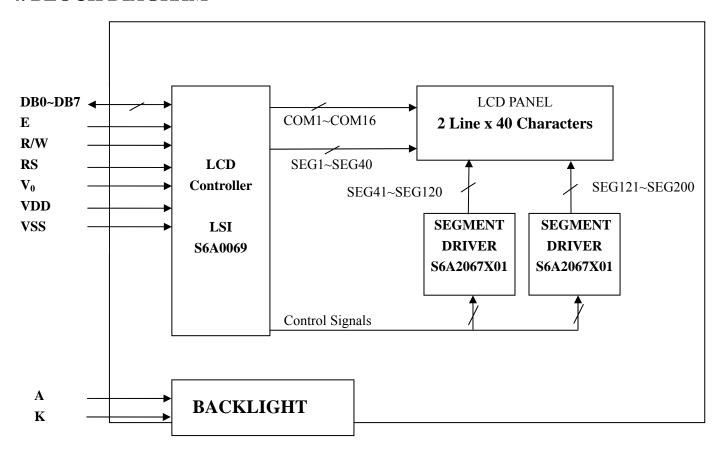
• Interface : Easy Interface with 4-bit or 8-bit MPU


2. MECHANICAL SPECIFICATIONS

• Module Size : 182.00 x 33.50 x 14.5 mm (max.)

Character Pitch
 Character Size
 Character Font
 3.78 x 6.09 mm
 3.28 x 5.69 mm
 5 x 8 dots

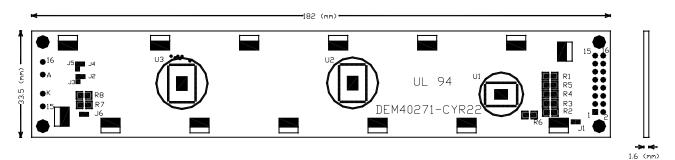
Dot Size : 0.60 x 0.65 mm
 Dot Pitch : 0.07 mm


3. EXTERNAL DIMENSIONS

REMARKS:

UNMARKED TOLERANCE IS ±0.4, 2,THE MATERIAL IS LEAD-FREE.

4. BLOCK DIAGRAM



5. PIN ASSIGNMENT

Pin No.	Symbol	Function
1	VSS	Ground terminal of module.
2	VDD	Power terminal of module 5.0 Volt.
3	V0	Power Supply for liquid crystal drive.
4	RS	Register select RS = 0 (Instruction register) RS = 1 (Data register)
5	R/W	Read /Write R/W = 1 (Read) R/W = 0 (Write)
6	E	Read/Write Enable Signal
7	DB0	
8	DB1	
9	DB2	Bi-directional data bus, data transfer is performed once, thru DB0 to
10	DB3	DB7, in the case of interface data. Length is 8-bits; and twice, thru DB4
11	DB4	to DB7 in the case of interface data length is 4-bits. Upper four bits first
12	DB5	then lower four bits.
13	DB6	
14	DB7	
15	LED – (K)	Disease also refer to 6. DCD drawing and description
16	LED + (A)	Please also refer to 6. PCB drawing and description.

6. PCB DRAWING AND DESCRIPTION

6.1 PCB DRAWING

6.2 DESCRIPTION:

6-1-1. The polarity of the pin 15 and the pin 16:

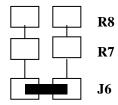
	symbol	J3,J5	J2,J4	LED Polarity			
symbol	state	15,15	J2,J4	15 Pin	16 Pin		
J2,J4	Each solder-bridge	Each open	Each closed	Anode	Cathode		
J3,J5	Each solder-bridge	Each closed	Each open	Cathode	Anode		

Note: In application, J3=J5=0 Ohm, and J2, J4 should be open.

6-1-2. The metal-bezel is set be on ground when the J1 is closed ...

Note: In application, J1= 0 Ohm

6-1-3. The LED resistor should can be bridged when the J6 is closed.


Note: In application J6 should be opened.

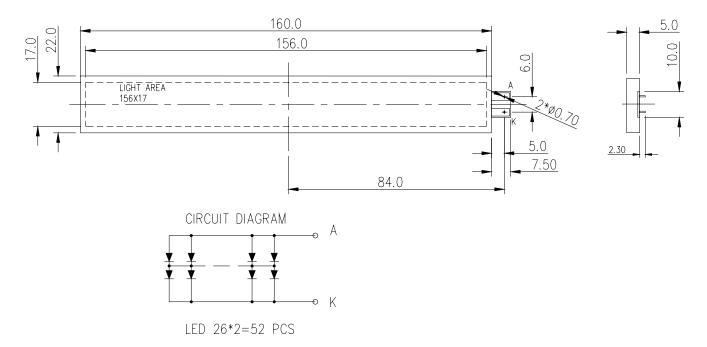
6-1-4. The R7 and the R8 are the LED resistor.

Note: In application, R7=R8=10 Ohm

6.3 Example application

6-2-1. The LED resistor should be bridged as following.

6-2-2. The 15 pin is the anode and the 16 pin is the cathode as following.



6-2-4. The metal-bezel is on ground as following.

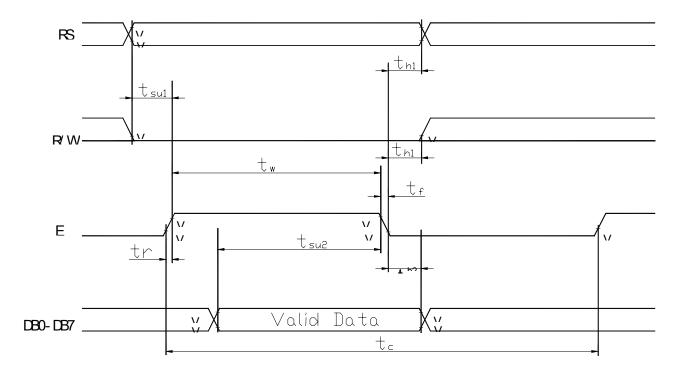
7. BACKLIGHT VOLTAGE & CURRENT

Item	Symbol	MIN.	TYP.	MAX.	Unit	Conditions
Forward Voltage	Vf		4.1	4.6	V	If=250mA
Forward Current	If		260	520	mA	
Power Dissipation	Pd		1.066		W	If=250mA
Reverse Voltage	VR		10.0		V	
Reverse Current	IR		0.20		mA	
Luminous Intensity	L		150		cd/m ²	If=250mA
Luminous Uniformity	ΔL		75		%	If=250mA
Emission Wavelength	λр		572		nm	If=10mA, Ta=25°C
Spectral Range	Δλ		35			Each chip

8. MAXIMUM ABSOLUTE POWER RATINGS

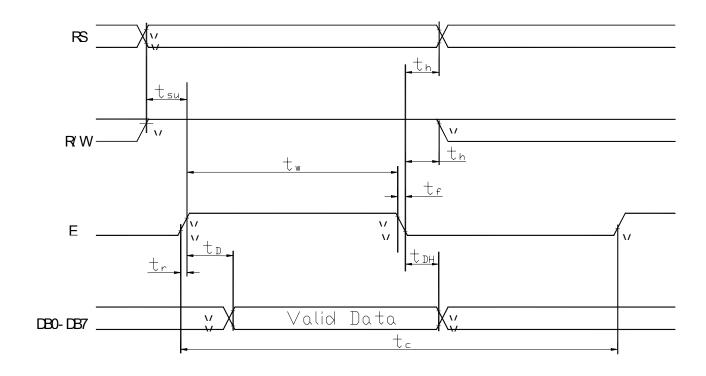
Item	Symbol	Standard value	Unit
Power supply voltage (1)	V_{DD}	-0.3~+7.0	V
Power supply voltage (2)	V ₀	V _{DD} -15.0~V _{DD} +0.3	V
Input voltage	V _{IN}	-0.3~V _{DD} +0.3	V
Operating temperature	Topr	-20~+70	°C
Storage temperature	Tstg	-30~+80	°C

9. ELECTRICAL CHARACTERISTICS


9-1 DC Characteristics ($V_{DD} = 4.5V \sim 5.5V$)

Item	Cymbol	Stan	dard Va	lue	Test	Unit	
Item	Symbol	MIN	TYP	MAX	Condition	Oillt	
Operating Voltage	$V_{ m DD}$	4.5	5	5.5		V	
Supply Current	I_{DD1}		0.35	0.6	V _{DD} =5V,fosc=270kHz	mA	
LCD Driving Voltage	VLCD	3.0	4.6	13.0	VDD-V5 (1/5,1/4 Bias)	V	

9-2 AC Characteristics (V_{DD}=4.5V~5.5V)


9-2-1. Write mode (writing data from MPU to module)

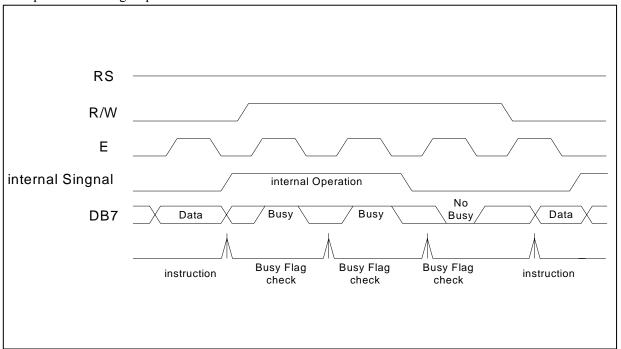
Characteristic	Symbol	Min	Тур	Max	Unit	Test PIN
E Cycle Time	t _C	500			ns	E
E Rise Time	t _R			20	ns	E
E Fall Time	t _F			20	ns	E
E Pulse width (High, Low)	t _W	230			ns	E
R/W and RS Set-up Time	t _{SU1}	40			ns	R/W, RS
R/W and RS Hold Time	t _{H1}	10			ns	R/W, RS
Data Set-up Time	t _{SU2}	80			ns	DB0~DB7
Data Hold Time	t _{H2}	10			ns	DB0~DB7

9-2-2.Read mode (Reading data from module to MPU)

Characteristic	Symbol	Min	Тур	Max	Unit	Test PIN
E Cycle Time	t _C	500			ns	Ш
E Rise Time	t _R			20	ns	Е
E Fall Time	t _F			20	ns	Е
E Pulse width (High, Low)	t _W	230			ns	E
R/W and RS Set-up Time	t _{SU}	40			ns	R/W, RS
R/W and RS Hold Time	t _H	10			ns	R/W, RS
Data output Delay Time	t _D			120	ns	DB0~DB7
Data Hold Time	t _{DH}	5			ns	DB0~DB7

10. INSTRUCTION DESCRIPTION

Instruction table

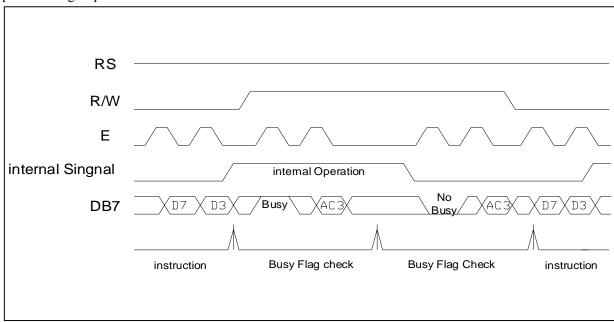

Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description Instruction Code	Execution time (fosc=270KHz)
Clear Display	L	L	L	L	L	L	L	L	L	Н	Write "20H" to DDRAM and DDRAM address to "00H" for AC	1.53ms
Return home	L	L	L	L	L	L	L	L	Н	Х	Set DDRAM address to "00H" form AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry mode set	L	L	L	L	L	L	L	Η	I/D	SH	Assign cursor moving direction and make shift of entire display enable.	39us
Display on/off control	L	L	L	L	Ш	L	Ι	D	C	В	Set display(D), cursor(C), and blinking of cursor(B) on/off control bit.	39us
Cursor Display Shift	L	L	L	L	L	Н	S/C	R/L			Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	39us
Function Set	L	L	L	L	I	DL	N	F	X-	Х	Set interface data length (DL: 4-bit/8-bit), numbers of display line (N: 1-line/2-line), display font type(F: 5×8 dots/5×11 dots)	39us
Set CGRAM address	L	L	L	Н	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39us
Set DDRAM address	L	L	Н	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39us
Read busy Flag and Address		Ι	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0us
Write data to RAM	Н	L	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal ARM (DDRAM/CGRAM).	43us
Read data from RAM	Н	Н	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal ARM (DDRAM/CGRAM).	43us

11. INTERFACE WITH MPU IN BUS MODE

11.1Interface with 8-bit MPU

When interfacing data length are 8-bit, transfer is performed all at once through 8-ports, from DB0 to DB7.

An example of the timing sequence is shown below.

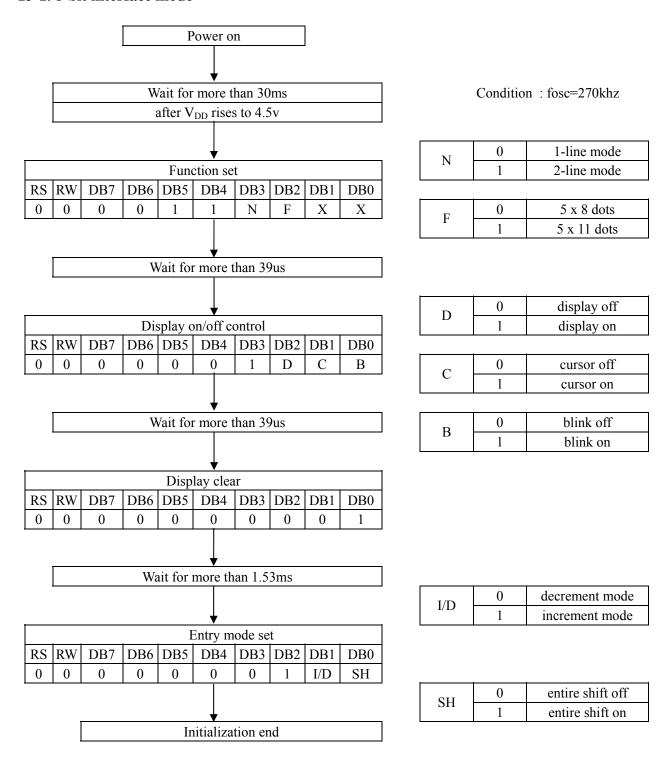

Example of 8-bit bus mode timing diagram

11.2Interface with 4-bit MPU

When interfacing data length are 4-bit, only 4 ports, from DB4 to DB7, are used as data bus.

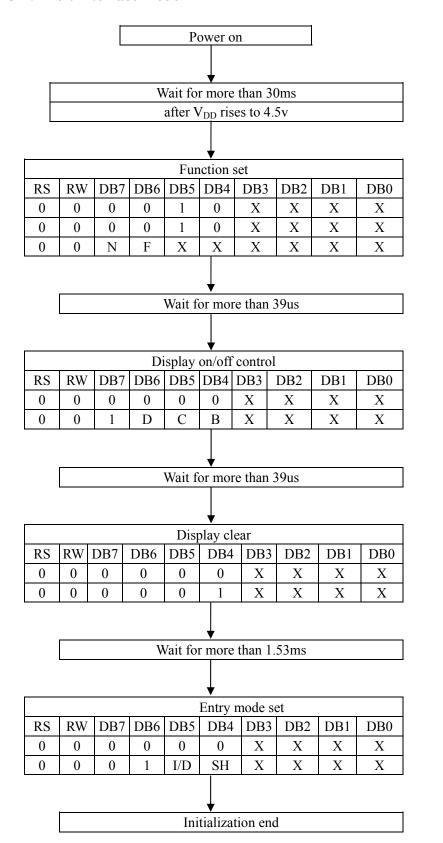
At first, higher 4-bit (in case of 8-bit bus mode, the contents of DB4 to DB7) are transferred, and then the lower 4-bit (in case of 8-bit bus mode, the contents of DB0 to DB3) are transferred. So transfer is performed in two parts. Busy flag outputs"1"after the second transfer are ended.

Example of timing sequence is shown below.


Example of 4-bit bus mode timing diagram

12. STANDARD CHARACTER PATTERN (S6A0069-22)

Upper(4bit)																
Lowerr(4bit)	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	LHHH	HLLL	HLLH	HLHL	HLHH	HHLL	HHLH	HHHL	нннн
шп	CG RAM (1)															
LLLH	(2)															
LLHL	(3)															
LLHH	(4)															
LHLL	(5)															
LHLH	(6)													**		
LHHL	(7)															
LHHH	(8)															
HLLL	(1)															
HLLH	(2)															
HLHL	(3)															
нінн	(4)															
HHLL	(5)														W	
HHLH	(6)															
ННН	(7)															
нннн	(8)															


13. LCM INITIALIZING BY INSTRUCTION

13-1. 8-bit interface mode

Condition: fosc=270khz

13-2. 4-bit interface mode

N	0	1-line mode
	1	2-line mode
F	0	5 x 8 dots
	1	5 x 11 dots

D	0	display off
	1	display on
С	0	cursor off
	1	cursor on
В	0	blink off
	1	blink on

I/D	0	decrement mode
	1	increment mode
SH	0	entire shift off
	1	entire shift on

14. LCD MODULES HANDLING PRECAUTIONS

- Please remove the protection foil of polarizer before using.
- The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- If the display panel is damaged and the liquid crystal substance inside it leaks out, do not get any in your mouth. If the substance come into contact with your skin or clothes promptly wash it off using soap and water.
- Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarize carefully.
- To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - -Be sure to ground the body when handling the LCD module.
 - -Tools required for assembly, such as soldering irons, must be properly grounded.
 - -To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
 - -The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

Storage precautions

When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. Keep the modules in bags designed to prevent static electricity charging under low temperature / normal humidity conditions (avoid high temperature / high humidity and low temperatures below 0°C). Whenever possible, the LCD modules should be stored in the same conditions in which they were shipped from our company.

15. OTHERS

- Liquid crystals solidify at low temperature (below the storage temperature range) leading to defective orientation of liquid crystal or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subjected to a strong shock at a low temperature.
- If the LCD modules have been operating for a long time showing the same display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. Abnormal operating status can be resumed to be normal condition by suspending use for some time. It should be noted that this phenomena does not adversely affect performance reliability.
- To minimize the performance degradation of the LCD modules resulting from caused by static electricity, etc. exercise care to avoid holding the following sections when handling the modules:
 - Exposed area of the printed circuit board
 - Terminal electrode sections