

Small Optical Encoder Modules

Technical Data

HEDS-978x Series

Features

- Small Size
- Multiple Mounting Options
- Linear and Rotary Options Available
- No Signal Adjustment Required
- Insensitive to Radial and **Axial Play**
- -40° C to $+85^{\circ}$ C Operating **Temperature**
- Two Channel Quadrature Output

Package Dimensions

6.40 0.252

î.

- TTL Compatible or 5.0 V **CMOS** Compatible
- Single 5 V Supply
- Wave Solderable

Description

The HEDS-978x series is a high performance, low cost, optical incremental encoder module. When operated in conjunction

LEAD THICKNESS - 0.25 mm LEAD PITCH - 2.54 mm

<u>3.8</u> 0.150 (OPTICAL CENTER) 0.50 R <u>1.4</u> 0.055 5.5 0.217

500 PIN 1 IDENTIFIER Ъ 50 <u>7.0</u> 0.276 <u>12.6</u> 0.496 × 0

DIMENSIONS ARE

LEAD THICKNESS: $\frac{0.25}{0.010}$

INCHES

Mounting Option #50 - Standard (Baseplane Mounting)

Contact Factory for Detailed Package Dimensions

ESD WARNING: NORMAL HANDLING PRECAUTIONS SHOULD BE TAKEN TO AVOID STATIC DISCHARGE.

<u>15.0</u> 0.591

20.2 0.795

with either a codewheel or codestrip, this module detects rotary or linear position. The module consists of a lensed LED source and a detector IC enclosed in a small C-shaped plastic package. Due to a highly collimated light source and a unique photodetector array, the module is extremely tolerant to mounting misalignment.

The two channel digital outputs and 5 V supply input are accessed through four solder-plated leads located on 2.54 mm (0.1 inch) centers.

The standard HEDS-978x is designed for use with an 11 mm optical radius codewheel, or linear codestrip. Other options are available. Please contact factory for more information.

Applications

The HEDS-978x provides sophisticated motion detection at a low cost, making closed-loop control very cost-competitive! Typical applications include printers, plotters, copiers, and office automation equipment.

Note: Agilent Technologies encoders are not recommended for use in safety critical applications. Eg. ABS braking systems, power steering, life support systems and critical care medical equipment. Please contact sales representative if more clarification is needed.

Theory of Operation

The HEDS-978x is a C-shaped emitter/detector module. Coupled with a codewheel, it translates rotary motion into a two-channel digital output. Coupled with a codestrip, it translates linear motion into a digital output.

As seen in the block diagram, the module contains a single Light Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms.

The codewheel/codestrip moves between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codewheel/codestrip. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the radius and count density of the codewheel/codestrip. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are fed through the signal processing circuitry. Two comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with channel B (90 degrees out of phase).

Block Diagram

Output Waveforms

Definitions

Count (N) = The number of bar and window pairs or counts per revolution (CPR) of the codewheel, or the number of lines per inch of the codestrip (LPI).

al
•

Pulse Width (P): The number of electrical degrees that an output is high during one cycle. This value is nominally 180°e or 1/2 cycle.

Pulse Width Error (ΔP): The deviation, in electrical degrees, of the pulse width from its ideal value of 180°e.

State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally 90°e.

State Width Error (Δ S): The deviation, in electrical degrees, of each state width from its ideal value of 90°e.

Phase (ϕ): The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B. This value is nominally 90°e for quadrature output.

Phase Error $(\Delta \phi)$: The deviation of the phase from its ideal value of 90°e.

Direction of Rotation: When the codewheel rotates counterclockwise, as viewed looking down on the module (so the marking is visible), channel A will lead channel B. If the codewheel rotates in the opposite direction, channel B will lead channel A.

Optical Radius (Rop): The distance from the codewheel's center of rotation to the optical center (O.C.) of the encoder module.

Angular Misalignment Error (E_A) : angular misalignment of the sensor in relation to the tangential direction. This applies for both rotary and linear motion.

Mounting Position (R_M) : Distance from Motor Shaft center of rotation to center of Alignment Tab receiving hole.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T _S	-40	85	°C	
Operating Temperature	T _A	-40	85	°C	
Supply Voltage	V _{CC}	-0.5	7	V	
Output Voltage	Vo	-0.5	V _{CC}	V	
Output Current per Channel	I _O	-1.0	5	mA	
Soldering Temperature			260	°C	$t \leq 5$ sec.

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Temperature	T _S	-40		85	°C	
Supply Voltage	V _{CC}	4.5	5.0	5.5	V	Ripple < 100 mV_{p-p}
Load Capacitance	C_L			100	pF	$3.2~\mathrm{k}\Omega$ pull-up
Count Frequency				80	kHz	(Velocity (rpm) x N)/60
Angular Misalignment	E _A	-2.0	0.0	+2.0	deg.	Mounting Considerations
Mounting Position	R_{M}		R _{OP} -0.14 (R _{OP} -0.006)		mm (inch)	Image: Shaft I

Electrical Characteristics

Electrical Characteristics over Recommended Operating Range, Typical at 25 °C.

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Supply Current	I _{CC}		17	40	mA	
High Level Output Voltage	V _{OH}	2.4			V	I _{OH} = -200 μA
Low Level Output Voltage	V _{OL}			0.4	V	$I_{OL} = 3.2 \text{ mA}$
Rise Time	t _r		180		ns	$C_{L} = 25 \text{ pF},$
Fall Time	t _f		40		ns	$R_L = 3.2 \text{ k}\Omega \text{ pull-up}$

Encoding Characteristics

Encoding Characteristics over Recommended Operating Condition and recommended mounting tolerances. These characteristics do not include codewheel/codestrip contribution. The Typical Values are averages over the full rotation of the codewheel.

Parameter	Symbol	Typical	Maximum	Units
Pulse Width Error	ΔΡ	5	47	°e
Logic State Width Error	ΔS	3	47	°e
Phase Error	$\Delta \phi$	2	17	°e

Note: 3.2 k\Omega pull-up resistors used on all encoder module outputs.

Recommended Codewheel and Codestrip Characteristics

Parameter	Symbol	Min.	Max.	Units	Notes
Window/Bar Ratio	Ww/Wb	0.7	1.4		
Window Length (Rotary)	Lw	1.80 (0.071)	2.30 (0.091)	mm (inch)	
Absolute Maximum Codewheel Radius (Rotary)	Rc		Rop + 3.40 (Rop + 0.134)	mm (inch)	Includes eccen– tricity errors
Center of Post to Inside Edge of Window	W1	1.04 (0.041)		mm (inch)	
Center of Post to Outside Edge of Window	W2	0.76 (0.030)		mm (inch)	
Center of Post to Inside Edge of Codestrip	L		3.60 (0.142)	mm (inch)	

Optional Packages Available

Mounting Option #54 – Tabless (Baseplane Mounting)

Mounting Considerations

Note: These dimensions include shaft end play and codewheel warp.

For both rotary and linear motion, angular misalignment, E_A , must be $\leq \pm 2$ degrees to achieve Encoding Characteristics. All dimensions for mounting the module and codewheel/codestrip should be measured with respect to the two mounting posts, shown above.

Recommended Screw Size: M2.5 x 0.45 or 2-56

Recommended Wave

Solder Conditions

Flux – RMA Water Soluble (per MIL-F-14256D)

Process Parameters

- 1. Flux
- 2. Pre-heat 60 seconds total Nominal preheat temp: 90°C Min: 85°C Max: 110°C
- 3. Solder Pot Zone

Nominal dip in time: 2.5 - 4.5 seconds Min: 2.5 seconds Max: 5 seconds PCB top side: 140 -160°C PCB bottom side: 240 - 260°C

4. Wave Solder 255°C, 1.2 meters/minute line speed

5. Hot Water Wash

1st: 30°C 45 seconds 2nd: 70°C 90 seconds

6. Rinse

1st: 23°C 45 seconds 2nd: 23°C 45 seconds

7. Dry

1st: 80°C 105 seconds 2nd: 95°C 105 seconds

Ordering Information

Note: Please contact factory for codewheel and codestrip information.

Typical Interface

		50	51	52	53	54	55
HEDS-9780	Α	*					
	G	*				*	
	Η	*					
HEDS-9781	Η	*					

www.agilent.com/semiconductors

For product information and a complete list of distributors, please go to our web site.

For technical assistance call:

Americas/Canada: +1 (800) 235-0312 or (408) 654-8675

Europe: +49 (0) 6441 92460 China: 10800 650 0017

Hong Kong: (+65) 6271 2451

India, Australia, New Zealand: (+65) 6271 2394

Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only) Korea: (+65) 6271 2194

Malaysia, Singapore: (+65) 6271 2054 Taiwan: (+65) 6271 2654

Data subject to change. Copyright © 2002 Agilent Technologies, Inc. Obsoletes 5988-5605EN October 2, 2002 5988-8043EN