

Description

The AMMC-6333 is a broadband 0.2 W MMIC driver amplifier designed for use in transmitters operating in various frequency bands from 18 GHz to 33 GHz . This small, easy to use device provides over 23 dBm of output power ($\mathrm{P}_{-1 \mathrm{~dB}}$) and more than 20 dB of gain at 25 GHz . It was optimized for linear operation with an output power at the third order intercept point (OIP3) of 30 dBm . The AMMC-6333 features a temperature compensated RF power detection circuit that enables power detection sensitivity of $0.3 \mathrm{~V} / \mathrm{W}$ at 25 GHz . It is fabricated using Avago Technologies unique $0.25 \mu \mathrm{~m}$ E-mode PHEMT technology which eliminates the need for negative gate biasing voltage.

Features

- Frequency range: 18 to 33 GHz
- Small signal gain: 20 dB
- P-1dB:23dBm
- Return Loss (In/Out): -10 dB

Applications

- Microwave Radio systems
- Satellite VSAT, Up/Down Link
- LMDS \& Pt-Pt mmW Long Haul
- Broadband Wireless Access (including 802.16 and 802.20 WiMax)
- WLL and MMDS loops

Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model (Class A) $=90 \mathrm{~V}$ ESD Human Body Model (Class 1A) $=300 \mathrm{~V}$ Refer to Avago Application Note A004R: Electrostatic Discharge, Damage and Control.

Table 1. Absolute Maximum Ratings

Symbols	Parameters	Unit	Maximum Values	Notes
V_{d}	Positive Supply Voltage	V	5.5	2
$\mathrm{~V}_{\mathrm{g}}$	Gate Supply Voltage	V	0 to 5	
I_{d}	Drain Current	mA	TBD	
P_{D}	Power Dissipation	W	2	2 and 3
$\mathrm{P}_{\text {in }}$	CW Input Power	dBm	20	2
$\mathrm{~T}_{\mathrm{ch}}$	Operating Channel Temp	${ }^{\circ} \mathrm{C}$	+150	4
$\mathrm{~T}_{\text {stg }}$	Storage Case Temp.	${ }^{\circ} \mathrm{C}$	-65 to +155	
$\mathrm{~T}_{\max }$	Maximum Assembly Temp (30 sec max)	${ }^{\circ} \mathrm{C}$	+320	

Notes:

1. Operation in excess of any one of these conditions may result in permanent damage to this device.
2. Dissipated power P_{D} depends on the DC voltage and power, input power and power delivered to the load
3. When operate at maximum P_{D} with a base plate temperature of $85^{\circ} \mathrm{C}$, the median time to failure (MTTF) is significantly reduced.
4. These ratings apply to each individual FET. The operating channel temperature will directly affect the device MTTF.

For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.

Table 2. DC Specifications/ Physical Properties

Symbols	Parameters and Test Conditions	Units	Values
I_{d}	Drain Supply Current $\left(V_{d}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{g}}\right.$ set for typical I_{dQ} - quiescent current $)$	mA	230
$\mathrm{~V}_{\mathrm{g}}$	Gate Supply Operating Voltage $\left(I_{\mathrm{dQ}}=230 \mathrm{~mA}\right)$	V	2
I_{g}	Gate Supply Current	mA	7
$\mathrm{R}_{\theta j \mathrm{c}}$	Thermal Resistance (Channel-to-Backside)	${ }^{\circ} \mathrm{C} / \mathrm{W}$	26
$T c h$	Channel Temperature	${ }^{\circ} \mathrm{C}$	115

Table 3. RF Specifications
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{d}}=5, \mathrm{I}_{\mathrm{d}(\mathrm{Q})=230 \mathrm{~mA}, \mathrm{Z}_{\mathrm{o}}=50 \Omega}$

Symbols	Parameters	Units	17-20 GHz			20-30 GHz			$30-33 \mathrm{GHz}$		
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max
G	Small signal Gain	dB	13.5	17		17	22		15	20	
P-1dB	Output Power at 1dB Gain Compression	dBm	19.5	23		20.5	23.5		21.0	23	
P-3dB	Output Power at 3dB Gain Compression	dBm		23.5			24.5			23.5	
OIP3	Third Order Intercept	dBm		28			30			28	
$\mathrm{RL}_{\text {in }}$	Input Return Loss	dB	8	10		13	14		13	10	
RL ${ }_{\text {out }}$	Output Return Loss	dB	13	10		13	14		13	13	
	Reverse Isolation	dB		45			45			45	

Note:

1. Measurements done on amplifier die attached to a metal carrier at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. 100% on-wafer RF test is done at frequency $=17,26$ and 33 GHz . Statistic based on 1500 part sample.

Product Consistency Distribution Charts

Typical distribution of Small Signal Gain and Output Power @P-1dB. Based on 1500 parts sampled over several production lots.

Gain at 17 GHz

Gain at 33 GHz

P1dB at 26 GHz

Gain at 26 GHz

P1dB at 17 GHz

P1dB at 33 GHz

Typical Performance

$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{d}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{dQ}}=230 \mathrm{~mA}, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{\text {out }}=50 \Omega\right)$
(Data obtained from a test fixture with 3.5 mm connectors. Effects of the test fixture - losses and mismatch - have not been removed from the data)

Figure 1. Gain and Reverse Isolation vs Frequency

Figure 3. P-1dB and PAE vs Frequency

Figure 5. Typical Noise Figure vs Frequency

Figure 2. Return Loss vs Frequency

Figure 4. Typical IMD3 vs Frequency (SCL = Single Carrier level)

Figure 6. Output Power, PAE, and Drain Current vs Input Power at 30GHz

Typical Performance (continued)
$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{\text {out }}=50 \Omega\right.$)
(Data obtained from a test fixture with 3.5 mm connectors. Effects of the test fixture - losses and mismatch - have not been removed from the data)

Figure 7. $\mathrm{P}_{-1 \mathrm{~dB}}$ Vs Frequency and Vds, $\left(\mathrm{I}_{\mathrm{dQ}}=230 \mathrm{~mA}\right)$

Figure 9. Small signal gain vs Frequency and Vds, (IdQ=230mA)

Figure 11. IMD3 levels vs Frequency
Fundamental output carriers at +20 dBm each

Figure 8. Small signal gain vs Frequency and $I_{\mathrm{d} Q},(\mathrm{Vds}=5 \mathrm{~V})$

Figure 10. $\mathrm{P}_{-1 \mathrm{~dB}}$ Vs Frequency and $\mathrm{I}_{\mathrm{dQ}},(\mathrm{Vds}=5 \mathrm{~V})$

Figure 12. IMD3 levels vs Frequency
Fundamental output carriers at +10 dBm each

Typical Performance (continued)
$\left(\mathrm{V}_{\mathrm{d}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{dQ}}=230 \mathrm{~mA}, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{\text {out }}=50 \Omega\right)$
(Data obtained from a test fixture with 3.5 mm connectors. Effects of the test fixture - losses and mismatch - have not been removed from the data)

Figure 13. |S11| vs Frequency and Temperature

Figure 15. |S21| vs Frequency and Temperature

Figure 14. |S22| vs Frequency and Temperature

Figure 16. $\mathrm{P}_{-1 \mathrm{~dB}}$ vs frequency and Temperature

Typical Scattering Parameters

$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{d}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{dQ}}=230 \mathrm{~mA}, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{\text {out }}=50 \Omega\right)$
Data obtained from on-wafer measurements

Freq [GHz]	S11			S21			S12			S22		
	dB	Mag	Phase									
1	-0.09	0.99	-19.89	-61.64	8.28E-04	-146.73	-74.90	1.80E-04	103.25	-0.04	1.00	-20.74
2	-0.21	0.98	-39.42	-62.28	7.69E-04	150.43	-75.57	1.67E-04	-150.10	-0.19	0.98	-41.30
3	-0.41	0.95	-58.86	-50.72	$2.91 \mathrm{E}-03$	-163.11	-67.84	4.06E-04	-66.78	-0.37	0.96	-61.20
4	-0.66	0.93	-77.74	-42.91	7.16E-03	125.53	-68.04	3.96E-04	-122.13	-0.65	0.93	-80.93
5	-0.99	0.89	-96.28	-39.71	$1.03 \mathrm{E}-02$	50.44	-65.33	$5.41 \mathrm{E}-04$	70.70	-1.09	0.88	-99.65
6	-1.37	0.85	-114.31	-41.23	8.68E-03	-25.35	-65.06	5.58E-04	17.92	-1.46	0.85	-116.58
7	-1.82	0.81	-131.80	-45.18	5.51E-03	-88.05	-66.55	$4.71 \mathrm{E}-04$	-93.35	-1.67	0.83	-133.89
8	-2.34	0.76	-148.79	-48.76	$3.65 \mathrm{E}-03$	-132.63	-68.24	3.87E-04	-146.85	-1.97	0.80	-152.22
9	-2.91	0.72	-165.32	-49.05	$3.53 \mathrm{E}-03$	-174.61	-64.71	5.81E-04	-165.57	-2.49	0.75	-171.38
10	-3.57	0.66	178.65	-46.39	4.79E-03	136.05	-70.17	$3.10 \mathrm{E}-04$	156.08	-3.32	0.68	168.61
11	-4.31	0.61	163.13	-42.34	7.64E-03	76.57	-64.27	$6.12 \mathrm{E}-04$	146.95	-4.67	0.58	147.60
12	-5.11	0.56	148.13	-40.22	$9.75 \mathrm{E}-03$	5.59	-64.65	5.85E-04	160.52	-6.99	0.45	126.34
13	-6.01	0.50	133.33	-34.51	$1.88 \mathrm{E}-02$	-164.12	-61.33	8.59E-04	110.59	-10.95	0.28	109.21
14	-7.03	0.45	118.85	-16.49	$1.50 \mathrm{E}-01$	104.02	-63.99	$6.32 \mathrm{E}-04$	70.70	-16.89	0.14	113.86
15	-8.27	0.39	104.82	-2.93	7.14E-01	28.77	-63.28	6.86E-04	86.57	-17.23	0.14	150.65
16	-9.77	0.32	91.48	9.17	$2.87 \mathrm{E}+00$	-60.34	-60.82	$9.10 \mathrm{E}-04$	56.53	-14.15	0.20	150.73
17	-11.39	0.27	78.76	16.48	$6.66 \mathrm{E}+00$	-173.35	-61.39	8.52E-04	52.15	-13.39	0.21	137.25
18	-13.91	0.20	66.29	18.45	$8.37 \mathrm{E}+00$	89.94	-63.36	6.79E-04	54.76	-13.75	0.21	128.38
19	-17.70	0.13	61.42	19.57	$9.52 \mathrm{E}+00$	11.09	-65.06	5.58E-04	61.87	-14.19	0.20	120.40
20	-21.98	0.08	87.84	20.85	$1.10 \mathrm{E}+01$	-59.74	-65.09	5.57E-04	41.98	-14.80	0.18	113.61
21	-17.19	0.14	115.36	22.32	$1.31 \mathrm{E}+01$	-129.79	-60.87	9.05E-04	52.67	-15.10	0.18	106.66
22	-13.80	0.20	99.41	23.25	$1.45 \mathrm{E}+01$	158.15	-59.62	$1.05 \mathrm{E}-03$	39.46	-15.89	0.16	99.42
23	-13.53	0.21	79.39	22.97	$1.41 \mathrm{E}+01$	87.48	-60.67	9.26E-04	1.30	-16.97	0.14	92.09
24	-13.98	0.20	70.02	22.06	$1.27 \mathrm{E}+01$	23.98	-61.62	$8.30 \mathrm{E}-04$	19.41	-18.02	0.13	87.64
25	-14.08	0.20	64.47	21.27	$1.16 \mathrm{E}+01$	-33.10	-58.47	1.19E-03	-34.32	-18.97	0.11	88.01
26	-13.85	0.20	55.72	20.93	$1.11 \mathrm{E}+01$	-86.92	-63.04	7.05E-04	-14.74	-19.50	0.11	88.84
27	-13.30	0.22	45.45	21.28	$1.16 \mathrm{E}+01$	-140.04	-58.66	1.17E-03	-40.94	-19.62	0.10	86.23
28	-12.97	0.22	31.03	22.07	$1.27 \mathrm{E}+01$	163.18	-63.21	$6.91 \mathrm{E}-04$	-55.59	-19.64	0.10	89.57
29	-13.18	0.22	12.01	22.94	$1.40 \mathrm{E}+01$	102.00	-61.82	$8.11 \mathrm{E}-04$	-71.10	-18.26	0.12	86.21
30	-14.46	0.19	-12.94	23.54	$1.50 \mathrm{E}+01$	35.50	-64.88	5.70E-04	-88.46	-16.95	0.14	73.26
31	-17.87	0.13	-50.60	23.36	$1.47 \mathrm{E}+01$	-35.54	-74.60	$1.86 \mathrm{E}-04$	-118.24	-16.54	0.15	53.38
32	-24.02	0.06	-147.39	22.16	$1.28 \mathrm{E}+01$	-108.19	-61.30	8.61E-04	10.40	-17.27	0.14	33.25
33	-16.94	0.14	120.38	19.91	$9.89 \mathrm{E}+00$	-178.81	-61.33	8.58E-04	-2.33	-18.91	0.11	9.85
34	-13.08	0.22	82.34	17.11	$7.17 \mathrm{E}+00$	115.36	-64.50	5.96E-04	-32.95	-21.56	0.08	-19.49
35	-11.31	0.27	58.07	14.36	$5.22 \mathrm{E}+00$	52.69	-65.79	5.13E-04	-13.39	-25.28	0.05	-64.03
36	-10.42	0.30	39.12	11.70	$3.85 \mathrm{E}+00$	-9.50	-62.25	7.72E-04	-41.34	-25.01	0.06	-133.57
37	-9.89	0.32	23.90	9.09	$2.85 \mathrm{E}+00$	-72.68	-67.00	$4.47 \mathrm{E}-04$	-169.14	-20.72	0.09	178.46
38	-9.77	0.32	9.70	6.28	$2.06 \mathrm{E}+00$	-139.02	-56.38	$1.52 \mathrm{E}-03$	-65.48	-17.20	0.14	147.77
39	-9.83	0.32	-1.34	2.77	$1.38 \mathrm{E}+00$	150.27	-82.42	7.57E-05	133.91	-14.70	0.18	124.20
40	-9.87	0.32	-10.26	-2.27	$7.70 \mathrm{E}-01$	79.17	-63.48	$6.70 \mathrm{E}-04$	-10.81	-13.07	0.22	104.19

Biasing Considerations

The AMMC-6333 is a balanced amplifier consisting of two four stage single-ended amplifiers, two Lange couplers, a power monitoring detector, a reference detector for temperature compensation, and a current mirror for the gate biasing (Figure 17).

The recommended quiescent DC bias conditions for optimum gain, output power, efficiency, and reliability are: $\mathrm{Vd}=5 \mathrm{~V}$ with Vg set for $\mathrm{I}_{\mathrm{dQ}}=230 \mathrm{~mA}$. The drain bias voltage range is from 3 to 5 V . Drain current range is from 200 mA to 350 mA . The AMMC-6333 can be biased with a dual or single positive DC source (Figure 18).
The output power detection network provides a way to monitor output power. The differential voltage between the DET_R and DET_O outputs can be correlated with the RF power emerging from the RF output port. This voltage is given by:
$\mathrm{V}=\left(\mathrm{V}_{\text {DET_R }}-\mathrm{V}_{\text {DET_O }}\right)-\mathrm{V}_{\mathrm{OFS}}$

Where:
$V_{D E T _R}$ is the voltage at the $D E T _R$ port $V_{\text {DET_o }}$ is a voltage at the DET_O port $V_{\text {OFS }}$ is the offset voltage at zero input power

The offset voltage (V) $\mathrm{V}_{\text {OFS }}$) can be at each power level by turning off the input power and measuring V . The error due to temperature drift should be less than $0.01 \mathrm{~dB} / 50^{\circ} \mathrm{C}$. When $\mathrm{V}_{\text {OFS }}$ is determined at a single reference temperature the drift error should be less than 0.25 dB . Finally, $V_{\text {OFS }}$ be characterized over a range of temperatures and stored in a lookup table, or it can be measured at two temperatures and a linear fit used to calculate $\mathrm{V}_{\text {OFS }}$ at any temperature.

The RF ports are AC coupled at the RF input to the first stage and the RF output of the final stage. No ground wires are needed since ground connections are made with plated through-holes to the backside of the device.

Figure 17. AMMC-6333 schematic

1. Dual positive $D C$ power supply

2. Single positive $D C$ power supply

Figure 18. AMMC-6333 biasing circuits

Assembly Techniques

The chip should be attached directly to the ground plane using electrically conductive epoxy (Note 1). For conductive epoxy, the amount should be just enough to provide a thin fillet around the bottom perimeter of the die. The ground plane should be free of any residue that may jeopardize electrical or mechanical attachment. Caution should be taken to not exceed the Absolute Maximum Rating for assembly temperature and time.

Thermo-sonic wedge bonding is the preferred method for wire attachment to the bond pads. The RF connections should be kept as short as possible to minimize induc-
tance. Double-bonding with 0.7 mil gold wire is recommended. The recommended wire bonding stage temperature is $150 \pm 2^{\circ} \mathrm{C}$.

The chip is $100 \mu \mathrm{~m}$ thick and should be handled with care. This chip has exposed air bridges on the top surface. Handle at the edges or with a custom collet, (do not pick up die with vacuum on die center).

This MMIC is static sensitive and ESD handling precautions should be taken.

Notes:

1. Ablebond 84-1 LM1 silver epoxy is recommended.

Figure 19. Die dimensions

Ordering Information:

AMMC-6333-W10 $=10$ devices per tray
AMMC-6333-W50 $=50$ devices per tray

