ADNS-5000

Data Sheet

Description

The ADNS-5000 is a one-chip USB optical mouse sensor for implementing a non-mechanical tracking engine for computer mice.

It is based on optical navigation technology that measures changes in position by optically acquiring sequential surface images (frames) and mathematically determining the direction and magnitude of movement.

The sensor is in a 18-pin optical package that is designed to be used with the ADNS-5100 Round Lens or ADNS-5100-001 Trim Lens, the ADNS-5200 Clip, and the HLMP-ED80-XX000 LED. These parts provide a complete and compact mouse sensor. There are no moving parts, and precision optical alignment is not required, facilitating high volume assembly.

The output format is USB. This device meets USB revision 1.1 specifications and is compatible with USB Revision 2.0 specification.

Default resolution is specified as 500 counts per inch, with rates of motion up to 16 inches per second and 2 g acceleration. Resolution can also be programmed to 1000 cpi. Frame rate is varied internally by the sensor to achieve tracking and speed performance, eliminating the need for the use of many registers.
A complete mouse can be built with the addition of a PC board, switches, mechanical Z-wheel, plastic case and cable. A 1\% pull up resistor is needed for the USB port to signify a low speed HID device.

Features

- Optical navigation technology
- No mechanical moving parts
- High reliability
- Complete 2-D motion sensor
- High speed motion detection
- Accurate navigation over a wide variety of surfaces
- No precision optical alignment needed
- Wave Solderable
- IEC 60825-1 eye safe under single fault conditions
- Single 5.0 volt power supply
- Meets USB Revision 1.1 Specification and compatible with USB Revision 2.0 specification
- Meets HID Revision 1.1
- On Chip LED Drive with regulated current

Applications

- Mice for desktop PC's, Workstations, and portable PC's
- Trackballs
- Integrated input devices

Theory of Operation

The ADNS-5000 is based on Optical Navigation Technology. It contains an Image Acquisition System (IAS), a Digital Signal Processor (DSP) and USB stream output.

The IAS acquires microscopic surface images via the lens and illumination system provided by the ADNS-5100 Round Lens or ADNS-5100-001 Trim Lens, ADNS-5200, and HLMP-ED80-XX000. These images are processed by the DSP to determine the direction and distance of motion. The DSP generates the Δx and Δy relative displacement values which are converted to USB motion data.

Pinout

Pin	Pin	Description
1	D +	USB D+ line
2	D -	USB D- line
3	ZA	Scroll wheel quadrature input
4	ZB	Scroll wheel quadrature input
5	LGND	LED ground
6	XYLED	XYLED Input
7	VDD5	5 Volt Power (USB VBUS)
8	GND	System ground
9	REG0	3 Volt Power
10	VDD3	3 Volt Power
11	OPT 0	Descriptor Select 1 or B4
12	OPT 1	Descriptor Select 2 or B5
13	GND	System ground
14	OSC_IN	Ceramic resonator input
15	OSC_OUT	Ceramic resonator output
16	B3	Button 3 input (switch to ground)
17	B2	Button 2 input (switch to ground)
18	B1	Button 1 input (switch to ground)

Figure 1. Package outline drawing (top view)


```
Notes:
1. Dimensions in millimeters (inches).
2. Dimensional tolerance: }\pm0.1\textrm{mm}\mathrm{ .
3. Coplanarity of lead: 0.1 mm
4. Lead pitch tolerance: }\pm0.15\textrm{mm}
5. Cumulative pitch tolerance: }\pm0.15\textrm{mm}
6. Angular tolerance: }\pm3.\mp@subsup{0}{}{\circ}\mathrm{ .
7. Maximum flash: + 0.2 mm.
8. Chamfer (25*}\times2) on the taper side of the lead
9. * These dimensions are for references only and
    should not be used to mechamically reference the sensor.
```

Figure 2. Package outline drawing

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Figure 3. Recommended PCB mechanical cutouts and spacing (Top view)

Note: The recommended pin hole dimension of the sensor is 0.7 mm .

Shown with ADNS-5100, ADNS-5200 and HLMP-ED80XX000

Avago Technologies provides an IGES file drawing describing the base plate molding features for lens and PCB alignment.

Figure 4.2D assembly drawing of ADNS-5000

The components interlock as they are mounted onto defined features on the base plate.

The ADNS-5000 sensor is designed for mounting on a through hole PCB, looking down. The aperture stop and features on the package align it to the lens (See figure 3).

The ADNS-5100 Round lens provides optics for the imaging of the surface as well as illumination of the surface at the optimum angle. Lens features align it to the sensor, base plate, and clip with the LED. The lens also has a large
round flange to provide a long creepage path for any ESD events that occur at the opening of the base plate (See figure 4).

The ADNS-5200 clip holds the LED in relation to the lens. The LED must be inserted into the clip and the LED's leads formed prior to loading on the PCB.

The HLMP-ED80-XX000 LED is recommended for illumination. If used with the bin table, sufficient illumination can be guaranteed.

Figure 5. Exploded view drawing

Block Diagram

[^0]
PCB Assembly Considerations

1. Insert the sensor and all other electrical components into PCB.
2. Bend the LED leads 90 degrees and then insert the Led into the assembly clip until the snap feature locks the Led base.
3. Insert the LED/clip assembly into PCB.
4. Wave solder the entire assembly in a no-wash solder process utilizing solder fixture. The solder fixture is needed to protect the sensor during the solder process. The fixture should be designed to expose the sensor leads to solder while shielding the optical aperture from direct solder contact.
5. Place the lens onto the base plate.
6. Remove the protective Kapton tape from optical aperture of the sensor. Care must be taken to keep contaminants from entering the aperture. Recommend not placing the PCB facing up during the entire mouse assembly process. Recommend to hold the PCB first vertically for the Kapton removal process.
7. Insert PCB assembly over the lens onto base plate aligning post to retain PCB assembly. The sensor aperture ring should self-align to the lens.
8. The optical position reference for the PCB is set by the base plate and lens. Note that the PCB motion due to button presses must be minimized to maintain optical alignment.
9. Install mouse top case.

Design considerations for improving ESD Performance

The table below shows typical values assuming base plate construction per the Avago Technologies supplied IGES file and ADNS-5100 Round lens.

Typical distance	A5100	A5100-001
Creepage	40.5 mm	17.9 mm
Clearance	32.6 mm	9.2 mm

Figure 7. Typical Application

Typical Application

Figure 8. Application Schematic for 3 buttons and 5 buttons

Notes on bypass capacitors:

- All caps (except C4) MUST be as close to the sensor pins as possible.
- Caps should be ceramic.
- Caps should have less than 5 nH of self inductance
- Caps connected to VDD3 MUST have less than 0.2Ω ESR
- $1.5 \mathrm{k} \Omega$ resistor should be $\pm 1 \%$ tolerance.
- Z-wheel connections are detailed in Figure 20
- Buttons B1-B5 can be used as button or VID/PID straps (see strap table on page 14). For VID/PID connections, parts must be connected to Vdd3 on 'high' connection, preferably near pin 10
Surface mount parts are recommended

Regulatory Requirements

- Passes FCC B and worldwide analogous emission limits when assembled into a mouse with unshielded cable and following Avago Technologies recommendations.
- Passes EN61000-4-4/IEC801-4 EFT tests when assembled into a mouse with shielded cable and following Avago Technologies recommendations.
- UL flammability level UL94 V-0.
- Provides sufficient ESD creepage/clearance distance to avoid discharge up to 15 kV when assembled into a mouse according to usage instructions above.

Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Units	Notes
Storage Temperature	T_{S}	-40	85	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-15	55	${ }^{\circ} \mathrm{C}$	
Lead Solder Temp			260	${ }^{\circ} \mathrm{C}$	For 10 seconds, 1.6 mm below seating plane.
Supply Voltage	V_{DD}	-0.5	5.5	V	
ESD			2	kV	All pins, human body model MIL 883 Method 3015
Input Voltage	V_{IN}	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V	All I/O pins except OSC_IN and OSC_OUT, $\mathrm{D}+, \mathrm{D}-$
Input Voltage	V_{IN}	-1.0	4.6	V	$\mathrm{D}+, \mathrm{D}-$, AC waveform, see USB specification $(7.1 .1)$
Input Voltage	V_{IN}	-0.5	3.6	V	OSC_IN and OSC_OUT
Input Short Circuit Voltage	V_{SC}	0	$\mathrm{~V}_{\mathrm{DD}}$	V	$\mathrm{D}+, \mathrm{D}-$, see USB specification (7.1.1)

Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Operating Temperature	T_{A}	0		40	${ }^{\circ} \mathrm{C}$	
Power supply voltage	V_{DD}	4.0	5.0	5.25	Volts	For accurate navigation and proper USB operation
Power supply voltage	$\mathrm{V}_{\text {dd }}$	3.8	5.0	5.25	Volts	Maintains communication to USB host and internal register contents.
Power supply rise time	V_{RT}	0.1		100	ms	
Supply noise	V_{N}			100	mV	Peak to peak within 0-100 MHz bandwidth
Velocity	Vel			16	ips	
Acceleration	Acc			2	G	
Clock Frequency	f_{cl}	23.64	24	24.36	MHz	Due to USB timing constraints
Resonator Impedance	$\mathrm{X}_{\text {RES }}$			55	Ω	
Distance from lens refer- ence plane to surface	Z	2.3	2.4	2.5	mm	See Figure 9
Light Level onto IC	IRRINC	80		25,000	$\mathrm{~mW} / \mathrm{m}^{2}$	$=639 \mathrm{~nm}$

Figure 9. Distance from lens reference plane to object surface

AC Electrical Specifications

Electrical Characteristics over recommended operating conditions. Typical values at $25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=5.0 \mathrm{~V}, 24 \mathrm{MHz}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Power up delay	$T_{\text {PUP }}$			50	ms	
Debounce delay on button inputs	$\mathrm{T}_{\text {DBB }}$	5	9	17	ms	"Maximum" specified at 8ms polling rate.
Mechanical Z-Wheel			60	mA	Max. supply current during a VDD ramp from 0 to 5.0 V with >500 s rise time. Does not include charging currents for bypass capacitors.	
Transient Supply Current	IDDT					
Input Capacitance (OSC Pins)	COSC_IN		50		pF	OCS_IN, OSC_OUT to GND

USB Electrical Specifications

Electrical Characteristics over recommended operating conditions.

Parameter	Symbol	Min.	Max.	Units	Notes	
Output Signal Crossover Voltage	$V_{\text {CRS }}$	1.3	2.0	V	$C_{L}=200$ to 600 pF (see Figure 10)	
Input Signal Crossover Voltage	VICRS	1.2	2.1	V	$C_{L}=200$ to 600 pF (see Figure 10)	
Output High	V_{OH}	2.8	3.6	V	with 15 kohm to Ground and 7.5 k to Vbus on D(see Figure 11)	
Output Low	VoL	0.0	0.3	V	with 15 kohm to Ground and 7.5 k to Vbus on D(see Figure 11)	
Single Ended Output	$\mathrm{V}_{\text {SEO }}$		0.8	V		
Input High (Driven)	VI_{H}	2.0		V		
Input High (Floating)	$\mathrm{V}_{\mathrm{IHZ}}$	2.7	3.6	V		
Input Low	VIL		0.8	V	7.5k to Vdd5	
Differential Input Sensitivity	$V_{D I}$	0.2		V	\|(D+)-(D-)	See Figure 12
Differential Input Common Mode Range	$\mathrm{V}_{\text {CM }}$	0.8	2.5	V	Includes V ${ }_{\text {DI }}$, See Figure 12	
Single Ended Receiver Threshold	$\mathrm{V}_{\text {SE }}$	0.8	2.0	V		
Transceiver Input Capacitance	CIN		12	pF	D+ to $V_{B U S}$, D - to V_{B} S	

USB Timing Specifications

Timing Specifications over recommended operating conditions.

Parameter	Symbol	Min.	Max.	Units	Notes
D+/D- Transition rise time	TR	75		ns	$C_{L}=200 \mathrm{pF}$ (10\% to 90\%), see Figure 10
D+/D- Transition rise time	TR		300	ns	$C_{L}=600 \mathrm{pF}$ (10\% to 90\%), see Figure 10
D+/D- Transition fall time	TLF	75		ns	$C_{L}=200 \mathrm{pF}$ (90\% to 10\%), see Figure 10
D+/D- Transition fall time	T_{LF}		300	ns	$\mathrm{C}_{\mathrm{L}}=600 \mathrm{pF}$ (90% to 10\%), see Figure 10
Rise and Fall time matching	TLRFM	80	125	\%	$T_{R} / T_{F} ; C_{L}=200 \mathrm{pF}$; Excluding the first transition from the Idle State
Wakeup delay from USB suspend mode due to buttons push	TWUPB		17	ms	Delay from button push to USB operation Only required if remote wakeup enabled
Wakeup delay from USB suspend mode due to buttons push until accurate navigation	TWUPN		50	ms	Delay from button push to navigation operation Only required if remote wakeup enabled
USB reset time	$\mathrm{T}_{\text {reset }}$	18.7		s	
Data Rate	t LDRATE	1.4775	1.5225	Mb/s	Average bit rate, 1.5 Mb/s +/- 1.5\%
Receiver Jitter Tolerance	$\mathrm{t}_{\text {DJR1 }}$	-75	75	ns	To next transition, see Figure 13
Receiver Jitter Tolerance	$\mathrm{t}_{\text {JJR2 }}$	-45	45	ns	For paired transitions, see Figure 13
Differential to EOP Transition Skew	t LDEOP	-40	100	ns	See Figure 14
EOP Width at Receiver	tLEOPR	670		ns	Accepts EOP, see Figure 14
Source EOP Width	tLEOPT	1.25	1.50	s	
Width of SEO interval during Differential Transition	tLST		210	ns	See Figure 11.
Differential Output Jitter	tud, 1	-95	95	ns	To next transition, see Figure 15
Differential Output Jitter	tudJ2	-150	150	ns	For paired transitions, see Figure 15

Figure 10. Data Signal Rise and Fall Times

Figure 11. Data Signal Voltage Levels

Figure 12. Differential Receiver Input Sensitivity vs. Common Mode Input Range

Figure 13. Receiver Jitter Tolerance

Figure 14. Differential to EOP Transition Skew and EOP Width

Figure 15. Differential Output Jitter

DC Electrical Specifications

Electrical Characteristics over recommended operating conditions. Typical values at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, 24 \mathrm{MHz}$

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Supply current (Sensor only), mouse moving	IDDS		7.2		mA	No load on B1-B3, Z-LED, XYLED ZA, ZB, D+, D-
Supply current (Sensor only), mouse not moving	IDDSN		6.2		mA	No load on B1-B3, Z-LED, XYLED ZA, ZB, D+, D-
Supply current, USB suspend mode	IDDSS			250	$\mu \mathrm{A}$	No load on B1-B3, Z-LED, XYLED ZA, ZB, D+, D-
XYLED current	ILED			30	mA	
XYLED Output Low Voltage	VoL			1.1	V	Refer to Figure 16
Input Low Voltage	VIL			0.5	V	Pins: ZA, ZB, B1, B2, B3, VIL max of $0.5 \mathrm{~V}_{D C}$ is at $\mathrm{V}_{D D} \mathrm{~min}$ of $4 \mathrm{~V}_{D C}$, with a typical of $0.8 \mathrm{~V}_{\mathrm{DC}}$ at V_{DD} of $5 \mathrm{~V}_{\mathrm{DC}}$
Input High Voltage	V_{IH}	$0.6 * V_{\text {DD }}$			V	Pins: ZA, ZB, B1, B2, B3
Input Hysteresis	$\mathrm{V}_{\text {HYST }}$		285		mV	Pins: ZA, B1, B2,
Input Hysteresis	$\mathrm{V}_{\text {HYST }}$		200		mV	Pins: ZB
Button Pull Up Current	Biout	125	275	500	A	Pins: B1, B2, B3

Typical Performance Characteristics

Performance Characteristics over recommended operating conditions. Typical values at $25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=5.0 \mathrm{~V}, 24 \mathrm{MHz}$

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Path Error (Deviation)	PError	0.5	$\%$	Average path error as percent of total $2.5 "$ travel on various standard surfaces		

Typical Performance Characteristics

Performance Characteristics over recommended operating conditions. Typical values at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, 24 MHz

Figure 16. Typical Resolution vs. $Z^{[2,3]}$

The following graphs are the typical performance of the ADNS-5000 sensor, assembled as shown in the 2D assembly drawing with the ADNS-5100 Round Lens/Prism, the ADNS-5200 clip, and the HLMP-ED80-XX000 LED.

Notes:

1. The ADNS-5000 is designed for optimal performance when used with the HLMP-ED80-XX000 (Red LED 639nm).
2. $Z=$ distance from Lens Reference Plane to Surface.
3. $\mathrm{DOF}=$ Depth of Field

Configuration after Power up (Data Values)

Signal Function	State from Figure 9-1 of USB spec: Powered or Default Address or Configured	State from Figure 9 - 1 of USB spec: Suspended from any other state
B1	Hi-Z if tied to VDD3 else pullup active	Hi-Z if tied to VDD3 else pullup active
B2	Hi-Z if tied to VDD3 else pullup active	Hi-Z if tied to VDD3 else pullup active
B3	Hi-Z if tied to VDD3 else pullup active	Hi-Z if tied to VDD3 else pullup active
B4	Hi-Z if tied to VDD3 else pullup active	Hi-Z if tied to VDD3 else pullup active
B5	Hi-Z if tied to VDD3 else pullup active	Hi-Z if tied to VDD3 else pullup active
D-	USB I/O	Hi-Z input
D+	USB I/O	Hi-Z input
OSC_IN	$24 M H z$	pulled low
OSC_OUT	$24 M H z$	Pulled high (off)
XYLED	low (on) or pulsing	Hi-Z input
ZB/Z_LED	Hi-Z input	Hi-Z input
ZA	Hi-Z if ZA tied to GND	

Strap (Jumper) Table

The PID/string strap matrix is the following:

Mouse type	VID	PID	Manuf str.	Product string	B1	B2	B3	OPT 0	OPT 1	ZA	ZB
3-button mse	0x192F	0×0116	""	"USB Optical Mouse"	sw1	sw2	sw3	Vdd3	Vdd3	mech Z-wheel	mech Z-wheel
5-button mse	0x192F	0×0216	${ }^{\prime \prime}$	"USB Optical Mouse"	sw1	sw2	sw3	sw4	sw5	mech Z-wheel	mech Z-wheel

X\& Y Directions

(Looking through an ADNS-5100 Lens)
The positive and negative X and Y directions with respect to the mouse case are shown in the diagram below.

Figure 18. Directions are for a complete mouse, with the ADNS-5100 lens

XYLED

- The peak current values are 30 mA if R1 59ohm and the part meets the IEC 825-1 eye safety regulations.

Buttons

The minimum time between button presses is T_{DB}. Buttons B1 through B3 are connected to a Schmidt trigger input with 100 uA current sources pulling up to +5 volts during normal, sleep and USB suspend modes.

Z-Wheel

The mechanical Z-Wheel connections (A, B) are determined below.

Figure 19. 2 -Wheel A and B connections

Notes:
For mechanical Z-wheels the following must be implemented:

- Use a rotary switch equivalent to the Panasonic part EVQVX at http://industrial.panasonic.com/wwwdata/pdf/ATC0000/ATC0000CE20.pdf (The key point is stable "A" switch state in all detent positions).
- Solder the rotary switch into the PCB such that the common pin is closest to the cable end of the mouse. (Metal plate faces to left)
- Connect the " A " terminal of the rotary switch to "ZA" and the " B " terminal to "ZB". ZA MUST be connected to "Signal A" in Figure 19 where the z-wheel detents are mechanically stable.

USB Commands

Mnemonic	Command	Notes
USB_RESET	D+/D- low > 18.6 us	Device Resets; Address=0
USB_SUSPEND	Idle state $>3 \mathrm{mS}$	Device enters USB low-power mode
USB_RESUME	Non-idle state	Device exits USB low-power mode
Get_Status_Device	8000000000000200	Normally returns 0000 , Self powered 0000 , Remote wakeup 0200
Get_Status_Interface	8100000000000200	Normally returns 0000
Get_Status_Endpt0	82000000 xx 000200	OUT: $x x=00,1 N: x x=80$ Normally returns 0000
Get_Status_Endpt1	8200000081000200	Normally returns 00 00, Halt 0001
Get_Configuration	8008000000000100	Return: 00=not config., 01=configured
Get_Interface	810 A 000000000100	Normally returns 00
Get_Protocol	A1 03000000000100	Normally returns 01, Boot protocol 00
Get_Desc_Device	800600010000 nn 00	See USB command details
Get_Desc_Config	800600020000 nn 00	See USB command details
Get_Desc_String	8006 xx 030000 nn 00	See USB command details
Get_Desc_HID	8106002100000900	See USB command details
Get_Desc_HID_Report	810600220000 nn 00	See USB command details
Get_HID_Input	A1 0100010000 nn 00	Return depends on motion \& config
Get_Idle	A1 02000000000100	Returns rate in multiples of 4 ms
Get_Vendor_Test	C0 010000 xx 000100	Read register xx
Set_Address	0005 xx 0000000000	xx = address
Set_Configuration	0009 xx 0000000000	Not configured: $\mathrm{xx}=00 \mathrm{Configured}$: $\mathrm{xx}=01$
Set_Interface	01 OB 000000000000	Only one interface supported
Set_Protocol	210 Bxx 0000000000	Boot: $\mathrm{xx}=00$, Report: $\mathrm{xx}=01$
Set_Feature_Device	0003010000000000	Enable remote wakeup
Set_Feature_Endpt0	02030000 xx 000000	Halt. OUT: $\mathrm{xx}=00, \mathrm{IN}: \mathrm{xx}=80$
Set_Feature_Endpt1	0203000081000000	Halt
Clear_Feature_Device	0001010000000000	Disable Remote wakeup
Clear_Feature_Endpt0	02010000 xx 000000	Clear Halt; OUT: $\mathrm{xx}=00, \mathrm{IN}$: $\mathrm{xx}=80$
Clear_Feature_Endpt1	0201000081000000	Clear Halt
Set_Idle	210 A 00 rr 00000000	$\mathrm{rr}=$ report rate in multiples of 4 ms
Set_Vendor_Test	40010000 xx yy 0000	Write yy to address xx
Poll_Endpt1		Read buttons, motion, \& Z-wheel

Note:
The last two bytes in a command shown as "nn 00 " specify the 16-bit data size in the order of "LowByte HighByte." For example a two-byte data size would be specifed as "0200." ADNS-5000 will not provide more bytes than the number requested in the command, but it will only supply up to a maximum of 8 bytes at a time. The ADNS-5000 will re-send the last packet if the transfer is not acknowledged properly.

USB COMMAND DETAILS

USB_RESET	D+/D-low for an extended period
A device may reset after seeing an SEO for more than 18.6 uS, and	
definitly after 10 mS .	
After power up and prior to Reset, the device will not respond	
to any USB commands. After the device has been given a USB	
Reset, the device's address will be reset to zero and the	
device will be in the Default state. The chip will default	
to Report protocol and any pending output will be flushed.	

Get_Status_Device	
	8000000000000200
Returns:	xxyy
	$x x[0]=$ Self Powered
	$\mathrm{xx}[1]=$ Remote Wakeup
	$\mathrm{xx}[7: 2]=0$
	yy $=00$ (Reserved)
Default:	Accept (undefined in USB Spec)
Addressed:	Accept
Configured:	
Notes:	Use Set_Feature_Device/Clear_Feature_Device to set/clear remote wakeup.

Returns:
09022200010100 AO
3209040000010301
0200092110010001
22 rr 000705810304
00 OA
$\mathrm{rr}=$ HID Report descriptor length

These values are determined by jumper configuration see strap table.
Without Z-Wheel:

09022200010100 AO		
3209040000010301		
0200092110010001		
2232000705810304		
000 A		
	//	Config Descriptor
109	//	bLength
02	//	bDescriptorType
122	//	wTotalLength (34 decimal)
100	//	high byte of WTotalLength
101	//	bNumInterfaces
101	//	bConfigurationValue
100	//	iConfiguration
\|A0	//	bmAttributes (bus powered/remote wakeup)
\| 32	//	MaxPower (in 100mA in 2 mA units)
	//	Interface Descriptor
109	//	bLength
104	//	bDescriptorType
100	//	binterfaceNumber
100	//	bAlternateSetting
101	//	bNumEndpoints
103	//	bInterfaceClass (HID Class)
101	//	binterfaceSubClass
102	//	binterfaceProtocol
100	//	ilnterface
	//	HID Descriptor
109	//	blength
\| 21	//	bDescriptorType
\|11	//	bcdHID (HID Release \#\#.\#\#; HID 1.1 compliant)
101	//	
100	//	bCountry
101	//	bAvailable
\| 22	//	bType
132	//	wLength (Length of HID Report below)
100	//	
	//	Endpoint Descriptor
107	//	bLength
\|05	//	bDescriptorType
\| 81	//	bEndpointAddress (IN \& \#=1)
103	//	bmAttributes (Interrupt)
104	//	wMaxPacketSize
100	//	
10 A	//	blnterval (10 mS)

With Z-Wheel:			
	09022200010100 AO		
	3209040000010301		
	0200092110010001		
	2234000705810304		
	000A		
		//	Config Descriptor
	109	//	bLength
	102	//	bDescriptorType
	122	//	wTotalLength (34 decimal)
	100	//	high byte of WTotalLength
	\|01	//	bNumInterfaces
	\|01	//	bConfigurationValue
	00	//	iConfiguration
	\|A0	//	bmAttributes (bus powered/remote wakeup)
	\|32	//	MaxPower (in 100 mA in 2 mA units)
		//	Interface Descriptor
	109	//	bLength
	104	//	bDescriptorType
	100	//	binterfaceNumber
	100	//	bAlternateSetting
	101	//	bNumEndpoints
	03	//	blnterfaceClass (HID Class)
	101	//	bInterfaceSubClass
	102	//	binterfaceProtocol
	100	//	ilnterface
		//	HID Descriptor
	109	//	bLength
	\| 21	//	bDescriptorType
	$\mid 11$	//	bcdHID (HID Release \#\#.\#\#; HID 1.1 compliant)
	01	//	
	100	//	bCountry
	01	//	bAvailable
	$\mid 22$	//	bType
	\| 34	//	wLength (Length of HID Report below)
	100	//	
		//	Endpoint Descriptor
	107	//	bLength
	105	//	bDescriptorType
	$\mid 81$	//	bEndpointAddress (IN \& \#=1)
	103	//	bmAttributes (Interrupt)
	104	//	wMaxPacketSize
	100	//	
	OA	//	blnterval (10 mS)
Default:	Accep		
Addressed:	Accep		
Configured: Accept			
Notes:	This is the concatenation of 4 descriptors:		
	Configuration		
	Interface		
	HID		
	Endpt		

Returns: This returns a report descriptor that describes how many buttons and $\mathrm{x}, \mathrm{y}, \mathrm{z}$ data.
These values are determined by jumper configuration see table on page 14:
Without Z-wheel:

$05010902 \mathrm{A1} 010901$		
A1000509190129xx //xx=\# buttons		
15002501750195 xx		// $\mathrm{xx}=$ \# buttons
810275 yy 95018101		// yy $=8$ - \# buttons
0501093009311581		
257 F 750895028106		
COCO		
	//	HID Report
105	//	USAGE_PAGE (Generic Desktop)
01	//	
09	//	USAGE (Mouse)
02	//	
\| ${ }^{\text {A }}$	//	COLLECTION (Application)
101	//	
109	//	USAGE (Pointer)
\|01	//	
\|A1	//	COLLECTION (Physical)
100	//	
05	//	USAGE_PAGE (Button)
109	//	
\| 19	//	USAGE_MINIMUM (Button 1)
01	//	
\| 29	//	USAGE_MAXIMUM (Button \#)
\|xx	//	
15	//	LOGICAL_MINIMUM (0)
100	//	
\| 25	//	LOGICAL_MAXIMUM (1)
101	//	
\|75	//	REPORT_SIZE (1)
101	//	
\|95	//	REPORT_COUNT (Button \#)
\|xx	//	
181	//	INPUT (Data,Var,Abs)
102	//	
\|75	//	REPORT_SIZE (8-Button \#)
\|yy	//	
195	//	REPORT_COUNT (1)
\|01	//	
\|81	//	INPUT (Cnst,Ary,Abs)
101	//	
105	//	USAGE_PAGE (Generic Desktop)
101	//	
109	//	USAGE (X)
\| 30	//	
109	//	USAGE (Y)
\| 31	//	
\| 15	//	LOGICAL_MINIMUM (-127)
\|81	//	
\| 25	//	LOGICAL_MAXIMUM (127)
\|7F	//	
\|75	//	REPORT_SIZE (8)
108	//	
195	//	REPORT_COUNT (2)
\|02	//	
\| 81	//	INPUT (Data,Var,Rel)
106	//	
\| CO	//	END_COLLECTION
\| 00	//	END_COLLECTION

With Z-wheel: $\quad 05010902 \mathrm{A1010901}$	$05010902 \mathrm{A101} 0901$			
	A1000509190129xx $/ / \mathrm{xx}=$ \# buttons			
	15002501750195 xx / //xx=\# buttons			
	810275 yy $95018101 / / \mathrm{yy}=8-\#$ buttons			
	0501093009310938			
	1581257 F 75089503			
	81060000			
		//	HID Report	
	105	//	USAGE_PAGE (Generic Desktop)	
	101	//		
	109	//	USAGE (Mouse)	
	102	//		
	\|A1	//	COLLECTION (Application)	
	101	//		
	109	//	USAGE (Pointer)	
	\|01	//		
	\|A1	//	COLLECTION (Physical)	
	100	//		
	105	//	USAGE_PAGE (Button)	
	109	//		
	\| 19	//	USAGE_MINIMUM (Button 1)	
	101	//		
	\| 29	//	USAGE_MAXIMUM (Button \#)	
	\|xx	//		
	15	//	LOGICAL_MINIMUM (0)	
	100	//		
	\| 25	//	LOGICAL_MAXIMUM (1)	
	101	//		
	\|75	//	REPORT_SIZE (1)	
	101	//		
	\|95	//	REPORT_COUNT (Button \#)	
	\|xx	//		
	181	//	INPUT (Data, Var,Abs)	
	102	//		
	$\mid 75$	//	REPORT_SIZE (8-Button \#)	
	\|yy	//		
	195	//	REPORT_COUNT (1)	
	101	//	INPUT (Cnst,Ary,Abs)	
	$\mid 81$	//		
	101	//	USAGE_PAGE (Generic Desktop)	
	105	//		
	\|01	//		
	109	//	USAGE (X)	
	130	//		
	109	//	USAGE (Y)	
	\|31	//		
	109	//	USAGE (Wheel)	
	\| 38	//	LOGICAL_MINIMUM (-127)	
	\| 15	//		
	181	//		
	125	//	LOGICAL_MAXIMUM (127)	
	\|7F	//		
	\|75	//	REPORT_SIZE (8)	
	108	//		
	\|95	//	REPORT_COUNT (3)	
	103	//		
	$\mid 81$	//	INPUT (Data, Var,Rel)	
	106	//		
	100	//	END_COLLECTION	
	\|c0	//	END_COLLECTION	
Default:	Accept			
Addressed:	Accept			
Configured: Accept				
Notes:	The length of this report is needed in the HID descriptor.			

Get_HID_Input		A10100010000 nn 00
		A101000100000400 OR
		A101000100000300 (if no Z-wheel present)
Returns:		bbxxyy zz OR
		bb xx yy (if no Z-wheel present)
		bb = button byte
		$\mathrm{xx}=\mathrm{X}$ motion byte
		$y \mathrm{y}=\mathrm{Y}$ motion byte
		$\mathrm{zz}=\mathrm{Z}$ motion byte
Default: Addressed: Configured: Accept Notes:		Stall
		Stall
		If the device is configured, it will
		always respond with a report for this command, even if no motion or button changes have occurred. In this case, it would report 00
		for motion and simply report the current button state. If a report
		is pending on endpt1, the data there will be reported and the
		The mouse will only create new button/motion packets when it is in the Configured state.

Set_Address	0005 xx 0000000000
	$\mathrm{xx}=$ new device address, from 00 to 7F
Default:	Accept
Addressed:	Accept
Configured:	Undefined in USB Spec
Set_Configuration	0009 xx 0000000000
	$x \mathrm{x}=00=$ not configured
	$x \mathrm{x}=01=$ configured
Default:	Undefined in USB Spec
Addressed:	Accept
Configured:	Accept

Button information is handled a bit differently. If the Endpt1
buffers are empty, and a button change event occurs, the new button
state is put into the Endpt 1 buffers. At the same time, the button
state that is put in Endpt1 is copied for later use. While Endpt1 is
full, changes in button state are essentially ignored. When Endpt1
is emptied, if the current button state is different than that which
was last loaded into Endpt1, then the new state will be loaded and a
new copy saved. Basically, the button state that is loaded into
Endpt 1 is always the current button state at that point in time.
It should also be noted that there is hardware on the chip to help
de-bounce the buttons.

USB Data Packet Format								
	Bit	7	6	5	4	3	2	1
Byte 1		0	0	0	B5	B4	B3(MB)	B2(RB)
Byte 2	X7	X6	X5	X4	X3	X2	X1	X0
Byte 3		Y7	Y6	Y5	Y4	Y3	Y2	Y1
Byte 4	Z7	Z6	Z5	Z4	Z3	Z2	Z1	Z0

Special note on wLength:

The wLength paramater in commands specifies the maximum number of bytes a device should send back. The commands listed below
are not able to handle a wLength of 0 correctly.

Get_Status_Device
Get_Status_Interface
Get_Status_Endpt0
Get_Status_Endpt1
Get_Configuration
Get_Interface

This chip will send one byte of data rather than none when wLength $=0$ is requested for the above commands.

USB Data Packet Format, With Z wheel

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 1	0	0	0	Button 5	Button 4	Button 3	Button 2	Button 1
Byte 2	$\mathrm{X}[7]$	$\mathrm{X}[6]$	$\mathrm{X}[5]$	$\mathrm{X}[4]$	$\mathrm{X}[3]$	$\mathrm{X}[2]$	$\mathrm{X}[1]$	$\mathrm{X}[0]$
Byte 3	$\mathrm{Y}[7]$	$\mathrm{Y}[6]$	$\mathrm{Y}[5]$	$\mathrm{Y}[4]$	$\mathrm{Y}[3]$	$\mathrm{Y}[2]$	$\mathrm{Y}[1]$	$\mathrm{Y}[0]$
Byte 4	$\mathrm{Z}[7]$	$\mathrm{Z}[6]$	$\mathrm{Z}[5]$	$\mathrm{Z}[4]$	$\mathrm{Z}[3]$	$\mathrm{Z}[2]$	$\mathrm{Z}[1]$	$\mathrm{Z}[0]$

USB Data Packet Format, Without Z wheel

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 1	0	0	0	Button 5	Button 4	Button 3	Button 2	Button 1
Byte 2	$X[7]$	$X[6]$	$X[5]$	$X[4]$	$X[3]$	$X[2]$	$X[1]$	$X[0]$
Byte 3	$Y[7]$	$Y[6]$	$Y[5]$	$Y[4]$	$Y[3]$	$Y[2]$	$Y[1]$	$Y[0]$

Registers

The sensor can be programmed through registers, via the USB port, and configuration and motion data can be read from these registers. Certain registers must be "enabled" after power up but before first read or write to that register. The registers will be "disabled" by VDD going low or sending a USB reset command.

Address	Register
0×00	Product_ID
0×01	Revision_ID
0×02	Motion
0×03	DeltaX
0×04	DeltaY
0×05	SQUAL
0×06	Shutter_Upper
0×07	Shutter_Lower
0×08	Maximum_Pixel
0×09	Average_Pixel
$0 \times 0 a$	Minimum_Pixel
$0 \times 0 \mathrm{~b}$	Pix_Grab
$0 \times 0 \mathrm{c}$	Dz
$0 \times 0 \mathrm{~d}$	Configuration_bits
$0 \times 3 f$	InvRevID

Product_ID Access: Read		Address: 0×00 Reset Value: 0×05							
Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
Field	PID_{7}	PID_{6}	PID_{5}	PID_{4}	PID_{3}	PID_{2}	PID_{1}	PID_{0}	

Data Type: Eight bit number with the product identifier.

USAGE: The value in this register does not change; it can be used to verify that the sensor communications link is OK.

Revision_ID Access: Read	Address: 0×01 Reset Value: $0 \times N N$								
Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
Field	RID_{7}	RID_{6}	RID_{5}	RID_{4}	RID_{3}	RID_{2}	RID_{1}	RID_{0}	

Data Type:
USAGE:

Eight bit number with current revision of the IC.
NN is a value between 00 and FF which represent the current design revision of the device.

For example, NN for IC revision 3.4 is 34.

Motion	Address: 0x02 Recess: Read							Reset Value: Undefined

Register 0x03 must be read before register 0x04 (Delta Y)

DeltaY		Address: 0x04						
Access: Read		Reset Value: 0×00						
Bit	7	6	5	4	3	2	1	0
Field	Y_{7}	Y_{6}	Y_{5}	Y_{4}	Y_{3}	Y_{2}	Y_{1}	Y_{0}
Data Type:		Bit field						
USAGE:		The value in this register reflects the last USB delta Y data output or data queued for output.						
		Register 0x03 should be read before register 0x04 (Delta Y), else Delta Y will return 0.						
			is Dat n.		oose	or n te va		

SQUAL Access: Read		Address: 0x05						
		Reset Value: 0x00						
Bit	7	6	5	4	3	2	1	0
Field	SQ_{7}	SQ_{6}	SQ_{5}	SQ_{4}	SQ_{3}	SQ_{2}	SQ_{1}	SQ_{0}

Data Type:
USAGE:

Eight bit number.
SQUAL is a measure of the number of features visible by the sensor in the current frame. The maximum value is 144 . Since small changes in the current frame can result in changes in SQUAL, slight variations in SQUAL on one surface is expected.

Shutter_Upper Access: Read		Address: 0x06						
		Reset Value: 0x01						
Bit	7	6	5	4	3	2	1	0
Field	SH_{7}	SH_{6}	SH_{5}	SH_{4}	SH_{3}	SH_{2}	SH_{1}	SH_{0}
Data Type:		Eight bit number.						
USAGE:		The combination of Shutter_Upper and Shutter_Lower is a 16-bit number. This is the number of clocks the shutter was open for the last image taken. The units are in main clocks ticks (nominally 24 MHz). To avoid split read issues, read Shutter_Upper first.						

Shutter_Lower Access: Read	Address: 0x07 Reset Value: 0×64								
Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
Field	SL_{7}	SL_{6}	SL_{5}	SL_{4}	SL_{3}	SL_{2}	SL_{1}	SL_{0}	

Data Type: Eight bit number.

USAGE: The combination of Shutter_Upper and Shutter_Lower is a 16-bit number. This is the number of clocks the shutter was open for the last image taken. The units are in main clocks ticks (nominally 24 MHz). To avoid split read issues, read Shutter_Upper first.

Maximum_Pixel Access: Read		Address: 0x08						
		Reset Value: 0×00						
Bit	7	6	5	4	3	2	1	0
Field	MX ${ }_{7}$	MX ${ }_{6}$	MX ${ }_{5}$	MX4	MX ${ }_{3}$	MX 2	MX ${ }_{1}$	MX 0

Data Type: Eight bit number.

USAGE: \quad This is the maximum pixel value from the last image taken.

Data Type:

USAGE:

Eight bit number.
This is the accumulated pixel value from the last image taken. For the 15X15 raw image, only the 8 most interesting bits are reported ([14:7]). To get the true average pixel value, multiply this register value by 1.75 .

Minimum_Pixel Access: Read	Address: 0x0a Reset Value: 0×00							
Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	MN_{7}	MN_{6}	MN_{5}	MN_{4}	MN_{3}	MN_{2}	MN_{1}	MN_{0}
Data Type:		Eight bit number.						
USAGE:	This is the minimum pixel value from the last image taken.							

Pix_Grab Address: 0x0b

Access: Read/Write Reset Value: 0x00

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	PG_{7}	PG_{6}	PG_{5}	PG_{4}	PG_{3}	PG_{2}	PG_{1}	PG_{0}

Data Type:
Bit field.
USAGE: The pixel grabber captures 1 pixel per frame. If there is a valid pixel in the grabber when this is read, the MSB will be set, an internal counter will incremented to captured the next pixel and the grabber will be armed to capture the next pixel. It will take 225 reads to upload the completed image. Any write to this register will reset and arm the grabber to grab pixel 0,0 on the next image.

Pixel Address Map (Looking through the aperture of the sensor)

0	15	30	45	60	75	90	105	120	135	150	165	180	195	210
1	16	31	46	61	76	91	106	121	136	151	166	181	196	211
2	17	32	47	62	77	92	107	122	137	152	167	182	197	212
3	18	33	48	63	78	93	108	123	138	153	168	183	198	213
4	19	34	49	64	79	94	109	124	139	154	169	184	199	214
5	20	35	50	65	80	95	110	125	140	155	170	185	200	215
6	21	36	51	66	81	96	111	126	141	156	171	186	201	216
7	22	37	52	67	82	97	112	127	142	157	172	187	202	217
8	23	38	53	68	83	98	113	128	143	158	173	188	203	218
9	24	39	54	69	84	99	114	129	144	159	174	189	204	219
10	25	40	55	70	85	100	115	130	145	160	175	190	205	220
11	26	41	56	71	86	101	116	131	146	161	176	191	206	221
12	27	42	57	72	87	102	117	132	147	162	177	192	207	222
13	28	43	58	73	88	103	118	133	148	163	178	193	208	223
14	29	44	59	74	89	104	119	134	149	164	179	194	209	224

Figure 20. Pixel Map.

The following images are the output of the pixel dump command. The data ranges from zero for complete black, to 63 for complete white. An internal AGC circuit adjusts the shutter value to keep the brightest feature (max pixel) in the mid 50's.

White Paper

Manila Folder

Figure 21. Pixel Dump Pictures

Dz		Address: 0x0c						
Access: Read		Reset Value: 0x00						
Bit	7	6	5	4	3	2	1	0
Field	Z_{7}	Z_{6}	Z_{5}	Z_{4}	Z_{3}	Z_{2}	Z_{1}	Z_{0}
Data Type:		Bit field						
USAGE:		If mouse is configured to contain a Z-wheel, this register contains the Z-wheel count. Range is from -127 to 127 decimal.						

USAGE: Allows configuration of cpi in sensor

InvRevID Access: Read		Address: 0x03f						
		Reset Value: 0xf0						
Bit	7	6	5	4	3	2	1	0
Field	RRID_{7}	RRID_{6}	RRID ${ }_{5}$	RRID_{4}	RRID_{3}	RRID_{2}	RRID_{1}	RRID 0

Data Type:
USAGE:

Eight bit number with current revision of the IC.
Contains the inverse of the revision ID which is located in register 0×01.
IC Register state after Reset (power up)

Ordering Information

Specify part number as follows:
ADNS-5000 = Sensor IC in a 18-pin staggered DIP, 22 per tube.
ADNS-5100 = Lens
ADNS-5100-001 = Trim Lens
ADNS-5200 = LED clip

[^0]: Figure 6. Block Diagram

