

# **Document Title**

# 16M(1M x 16bit) Normal mode & Page mode Static Random Access Memory

# **Revision history**

| Rev. No. | <u>History</u>                                       | Issue Date     | <u>Remark</u> |
|----------|------------------------------------------------------|----------------|---------------|
| 0.0      | Initial issue                                        | March 28, 2005 | Preliminary   |
| 1.0      | Erase non-Pb-free package type Final version release | March 07, 2007 | Final         |



# *MEMORY*

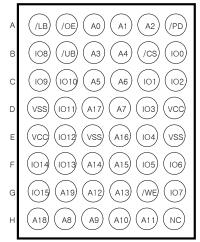
# 16M(1M x 16bit) Normal mode & Page mode Static Random Access Memory

#### DESCRIPTION

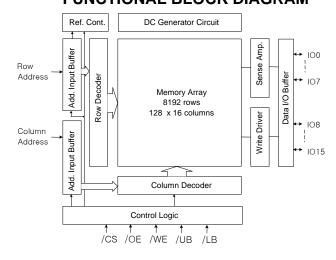
The A64S06161A is a 16Mb high speed, low power Static Random Access Memory(SRAM) organized as 1,048,576 words by 16 bits and supports Page Mode.

The A64S06161A is a Pseudo SRAM based on successfully proven DRAM CELL *SRAM* which was specifically developed for cost sensitive, low power computing and communication applications such as mobile cellular phone handsets, personal digital assistants and other battery-operated consumer products.

#### **FEATURES**


Standard Asynchronous SRAM Interface and Page Mode

Organization : 1M x 16Bit
 Power Supply Voltage : 2.7 ~ 3.3 V
 Page Size : 4 words
 Page Mode Access (tPAA) : 35ns
 Data Retention Voltage : 2.4V
 Tri-state Output and TTL Compatible


#### **PRODUCT FAMILY**

| Product Family | Operating<br>Temperature | Voltage     | Speed | ISB1<br>(Max) | lccDR<br>(Max) | ICC1<br>(Max) | Mode |
|----------------|--------------------------|-------------|-------|---------------|----------------|---------------|------|
| A64S06161A     | -40 ~ 85 °C              | 2.7 ~ 3.3 V | 70    | 100uA         | 100uA          | 2.0mA         | Page |

## **PIN DESCRIPTION**



#### **FUNCTIONAL BLOCK DIAGRAM**



Note: E3 pin (VSS) can be remain as a NC

| Name     | Function            | Name | Function              |
|----------|---------------------|------|-----------------------|
| /CS      | Chip Select Input   | VCC  | Power                 |
| /OE      | Output Enable Input | VSS  | Ground                |
| /WE      | Write Enable Input  | /UB  | Upper Byte (IO8 ~ 15) |
| A0~A19   | Address Input       | /LB  | Lower Byte (IO0~7)    |
| IO0~IO15 | Data Input / Output |      |                       |



#### **PRODUCT LIST**

| Part Name      | Function                                                                                   |
|----------------|--------------------------------------------------------------------------------------------|
| A64S06161A-70U | 16M, 48-FBGA , $$ 70 ns, 3.0V, $$ -40 $$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$ |

#### **ABSOLUTE MAXIMUM RATING**

| ltem                                  | Symbol    | Ratings           | Unit       |
|---------------------------------------|-----------|-------------------|------------|
| Voltage on any pin relative to Vss    | VIN, VOUT | -0.2 to VCC+0.3 V | V          |
| Voltage on Vcc supply relative to Vss | Vcc       | -0.2 to 3.6       | V          |
| Power Dissipation                     | Po        | 1.0               | W          |
| Storage temperature                   | Тѕтс      | −55 to 150        | $^{\circ}$ |
| Operating Temperature (Extended)      | TA        | −40 ~ 85          | °C         |

#### Note:

Stresses greater than those listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device. This is stress rating only and the functional operation of the device under these or any other conditions above those indicated in the operation of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect reliability.

#### **TRUTH TABLE**

| /cs | /PD | /OE | /WE | /LB | /UB | I/O 0~7  | I/O 8~15        | MODE             | Power   |
|-----|-----|-----|-----|-----|-----|----------|-----------------|------------------|---------|
| Н   | Н   | Χ   | Χ   | Χ   | X   | High-Z   | High-Z          | Deselected       | Standby |
| X   | Н   | Χ   | Χ   | Н   | Н   | High-Z   | High-Z          | Deselected       | Standby |
| L   | Н   | Н   | Н   | L   | X   | High-Z   | High-Z          | Output Disabled  | Active  |
| L   | Н   | Н   | Н   | Х   | L   | High-Z   | High-Z          | Output Disabled  | Active  |
| L   | Н   | L   | Н   | L   | Н   | Data Out | High-Z          | Lower Byte Read  | Active  |
| L   | Н   | L   | Н   | Н   | L   | High-Z   | Data Out        | Upper Byte Read  | Active  |
| L   | Н   | L   | Н   | L   | L   | Data Out | Data Out        | Word Read        | Active  |
| L   | Н   | Χ   | L   | L   | Н   | Data In  | High-Z          | Lower Byte Write | Active  |
| L   | Н   | Χ   | L   | Н   | L   | High-Z   | Data In         | Upper Byte Write | Active  |
| L   | Н   | Χ   | L   | L   | L   | Data In  | Data In Data In |                  | Active  |



## RECOMMENDED DC OPERATING CONDITIONS 1)

| Parameter          | Symbol | Min                | Тур | Max                   | Unit |
|--------------------|--------|--------------------|-----|-----------------------|------|
| Supply Voltage (5) | Vcc    | 2.7                | 3.0 | 3.3                   | V    |
| Ground             | Vss    | 0                  | 0   | 0                     | V    |
| Input High Voltage | VIH    | 0.8*Vcc            | -   | Vcc+0.2 <sup>2)</sup> | V    |
| Input Low Voltage  | VIL    | -0.2 <sup>3)</sup> | -   | 0.4                   | V    |

Note:

1.T<sub>A</sub> = -40  $^{\circ}$ C to 85  $^{\circ}$ C, otherwise specified.

2. Overshoot : Vcc + 1.0V in case of pulse width  $\leq$  20 ns.

3. Undershoot : -1.0V in case of pulse width  $\leq$  20 ns.

4. Overshoot and undershoot are sampled, not 100% tested.

5. Stable power supply required 100 us before device operation.

## **CAPACITANCE** (TA = 25 $^{\circ}$ C, f = 1.0MHz)

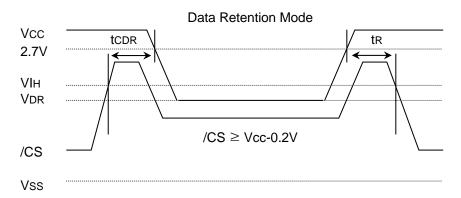
| Symbol | Parameter          | Condition | Max. | Unit |
|--------|--------------------|-----------|------|------|
| CIN    | Input Capacitance  | VIN =0V   | 8    | pF   |
| Соит   | Output Capacitance | VIO=0V    | 10   | pF   |

Note: This parameter is sampled and not 100% tested

#### DC AND OPERATING CHARACTERISTICS

| Parameter              | Symbol | Test Condition                                                                                | Min | Тур | Max | Unit |
|------------------------|--------|-----------------------------------------------------------------------------------------------|-----|-----|-----|------|
| Input Leakage Current  | ILI    | VIN = Vss to Vcc                                                                              | -1  |     | 1   | uA   |
| Output Leakage Current | ILO    | /CS = VIH, /UB=/LB= VIH or /OE=VIH or /WE=VIL, VIO=Vss to Vcc                                 | -1  |     | 1   | uA   |
|                        | Icc1   | Cycle Time = 1 us, 100%duty, IIO=0mA, /CS $\leq$ 0.2V, VIN $\leq$ 0.2V or VIN $\geq$ Vcc-0.2V |     |     | 2.0 | mA   |
|                        | Icc2   | Cycle time=Min, IIO=0mA, 100% duty /CS = VIL,VIN=VIL or VIH                                   |     |     | 20  | mA   |
|                        | Ісср   | /CS1 = VIL, CS2=VIH,Tpwc = min Page address cycling                                           |     |     | 10  | mA   |
| Output Low Voltage     | VOL    | IOL = 2 mA                                                                                    |     |     | 0.4 | ٧    |
| Output High Voltage    | VOH    | IOH = -1 mA                                                                                   | 2.2 |     |     | ٧    |
| Standby Current(TTL)   | ISB    | /CS=VIH, /UB=/LB= VIH, Other inputs = VIH or VIL                                              |     |     | 0.3 | mA   |
| Standby Current(CMOS)  | ISB1   | /CS $\geq$ Vcc-0.2V, /UB=/LB $\geq$ Vcc-0.2V (/UB,/LB Controlled) Other inputs = 0 or Vcc     |     |     | 100 | uA   |




## **Data Retention Electric Characteristic**

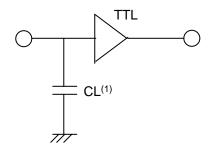
TA = -40  $^{\circ}$ C to 85  $^{\circ}$ C (Normal), unless otherwise specified

| Item                                    | Symbol | Test Condition                                                                                 | Min | Typ. | Max | Unit |
|-----------------------------------------|--------|------------------------------------------------------------------------------------------------|-----|------|-----|------|
| Voltage for Data<br>Retention           | VDR    | /CS=/PD=ViH > Vcc-0.2V or<br>/UB,/LB≥Vcc-0.2V,<br>VIN≥Vcc-0.2V or<br>ViN≤Vss + 0.2V            | 2.4 |      | 3.3 | V    |
| Data Retention<br>Current               | ICCDR  | Vcc=2.4V,<br>/CS=/PD=VIH>Vcc-0.2V or<br>/UB,/LB≥Vcc-0.2V,<br>VIN≥Vcc-0.2V or<br>VIN≤Vss + 0.2V |     |      | 100 | uA   |
| Chip Deselect to Data<br>Retention Time | tCDR   | Refer to data retention wave form                                                              | 0   | _    | ı   | ns   |
| Operating Recovery<br>Time              | tR     |                                                                                                | tRC | _    | -   | ns   |

<sup>(1)</sup> Vcc = 2.4V, T<sub>A</sub> = 25 °C

## **Data Retention Wave Form**






## **AC TEST CONDITIONS**

TA = -40  $^{\circ}$ C to 85  $^{\circ}$ C (Normal), unless otherwise specified

| PARAMETER                               | Value                 |
|-----------------------------------------|-----------------------|
| Input Pulse Level                       | 0.4V to 2.2V          |
| Input Rise and Fall Time                | 5ns                   |
| Input and Output Timing Reference Level | 1.5V                  |
| Output Load                             | CL = 30pF + 1TTL Load |

## **AC TEST LOADS**

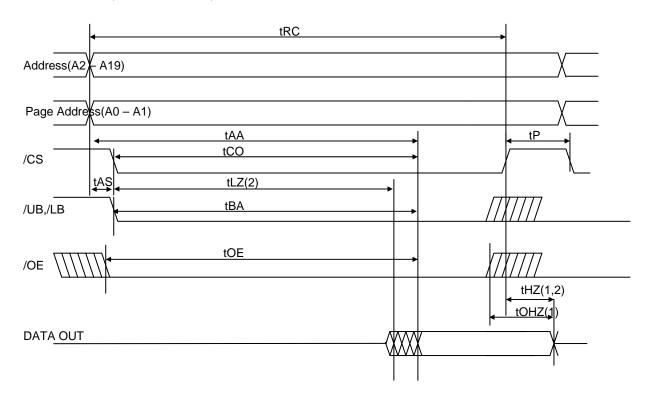


Note: (1) Including jig and scope capacitance

#### **POWER UP TIME**

At starting, maintain stable power for a minimum 100us with /CS = /PD = high.



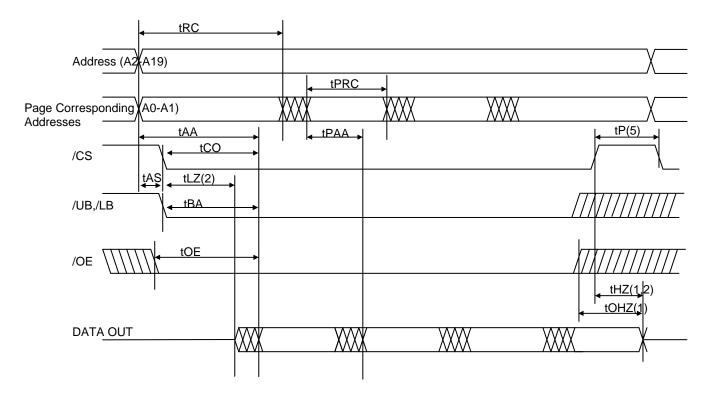

# AC CHARACTERISTICS (Vcc = $2.7 \sim 3.3$ V, T<sub>A</sub> = -40 to 85°C)

|     | Developed Lint                        | Comple ed | 70  | ns  | Unit |
|-----|---------------------------------------|-----------|-----|-----|------|
|     | Parameter List                        | Symbol    | Min | Max | Unit |
|     | Read Cycle Time                       | tRC       | 70  |     | ns   |
|     | Address Set-up Time                   | tAS       | 0   |     | ns   |
|     | Address Access Time                   | tAA       |     | 70  | ns   |
|     | Chip Select to Output                 | tCO       |     | 70  | ns   |
| R   | Output Enable to Valid Output         | tOE       |     | 35  | ns   |
| E   | /UB,/LB Access Time                   | tBA       |     | 70  | ns   |
|     | Chip select to Low-Z Output           | tLZ       | 10  |     | ns   |
| Α   | /UB, /LB Enable to Low-Z Output       | tBLZ      | 10  |     | ns   |
| D   | Output Enable to Low-Z Output         | tOLZ      | 5   |     | ns   |
|     | Chip Disable to High-Z Output         | tHZ       | 0   | 25  | ns   |
|     | /UB, /LB Disable to High-Z Output     | tBHZ      | 0   | 25  | ns   |
|     | Output Disable to High-Z Output       | tOHZ      | 0   | 25  | ns   |
|     | Output Hold from Address Change       | tOH       | 10  |     | ns   |
|     | Page Read Precharge Time              | tP        | 10  |     | ns   |
|     | Page Read Cycle Time                  | tPRC      | 35  |     | ns   |
|     | Page Read Address Access Time         | tPAA      |     | 35  | ns   |
|     | Write Cycle Time                      | tWC       | 70  |     | ns   |
|     | Chip Select to End of Write           | tCW       | 60  |     | ns   |
| w   | Address Valid to End of Write         | tAW       | 60  |     | ns   |
|     | /UB, /LB Valid to End of Write        | tBW       | 60  |     | ns   |
| R   | Write Pulse Width                     | tWP       | 50  |     | ns   |
| l , | Write Recovery Time                   | tWR       | 0   |     | ns   |
|     | Write to Output High-Z                | tWHZ      | 0   | 20  | ns   |
| T   | Data to Write Time Overlap            | tDW       | 40  |     | ns   |
| E   | Data Hold from Write Time             | tDH       | 0   |     | ns   |
|     | End of Write to Output Low-Z          | tOW       | 5   |     | ns   |
|     | Page Write Precharge Time             | tP        | 10  |     | ns   |
|     | Page Write Cycle Time                 | tPWC      | 35  |     | ns   |
|     | Page Write Data to Write Time overlap | tPDW      | 20  |     | ns   |
|     | Page Write Data Hold from Write Time  | tPDH      | 0   |     | ns   |



#### **TIMING DIAGRAMS**

#### READ CYCLE (/PD = /WE = VIH)

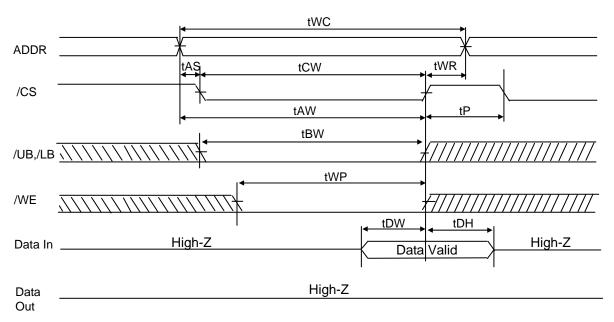



### Note (READ CYCLE):

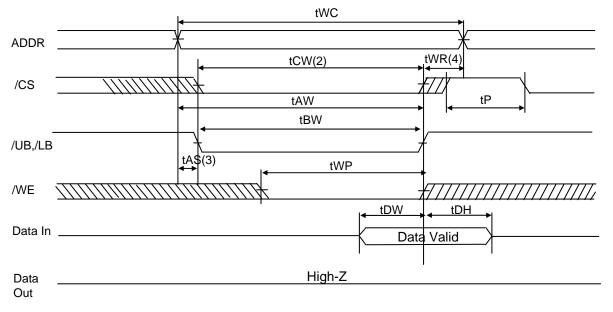
- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels
- 2. At any given temperature and voltage condition, tHZ(max.) is less than tLZ(min.) both for a given device and from device to device.
- 3. /WE is high for the read cycle.
- 4. Do not access device with cycle timing shorter than tRC for continuous periods > 16us.



#### PAGE READ CYCLE (/PD = /WE = VIH)




#### Note (PAGE MODE READ CYCLE):

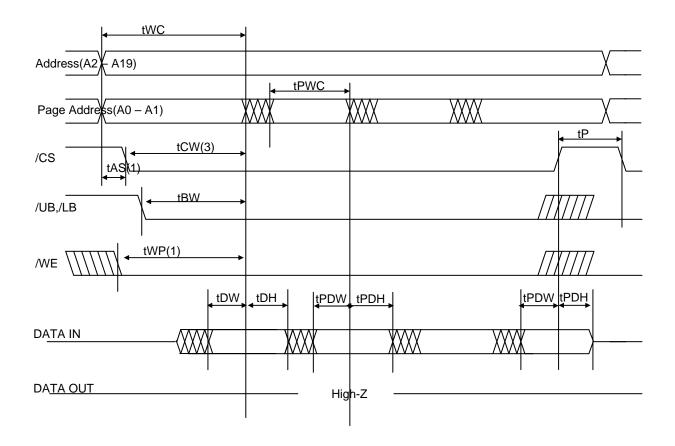

- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels
- 2. At any given temperature and voltage condition, tHZ(max.) is less than tLZ(min.) both for a given device and from device to device.
- 3. /WE is high for the read cycle.
- 4. Do not access device with cycle timing shorter than tRC for continuous periods > 16us.
- 5. tP (precharge time) should be guaranteed for **new Address**.
- 6. After initial page access is accomplished, the page mode operation provides fast read access speed of random locations within that page



## WRITE CYCLE 1 (/CS Controlled, /PD = VIH)



#### WRITE CYCLE 2 (/UB /LB Controlled, /PD = VIH)




#### Notes (WRITE CYCLE):

- 1. A write occurs during the overlap of a low /CS and low /WE. A write begins at the latest transition among /CS going low and /WE going low: A write end at the earliest transition among /CS going high and /WE going high. tWP is measured from the beginning of write to the end of write.
- 2. tCW is measured from the later of /CS going low to the end of write.
- 3. tAS is measured from the address valid to the beginning of write.
- 4. tWR is measured from the end of write to the address change. tWR is applied in case a write ends as /CS.
- 5. Do not access device with cycle timing shorter than tRC for continuous periods > 16us.



#### PAGE MODE WRITE CYCLE (/PD = VIH)



#### Notes (PAGE MODE WRITE CYCLE):

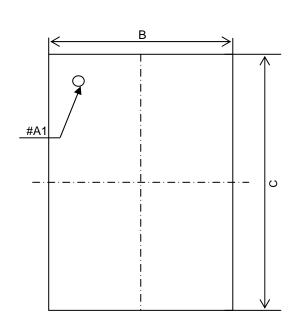
- 1. A write occurs during the overlap of a low /CS and low /WE.
  - A write begins at the latest transition among /CS going low in initial page mode .
  - A write end at the earliest transition among /CS going high and Page Address transition.
  - tWP is measured from the beginning of write to the end of write in initial page access.
- 2. tPWC is measured from Page Address trasition (After initial page access) to Page Address transition or /CS going high.
- 2. tCW is measured from the later of /CS going low to the end of write in initial page access.
- 3. tAS is measured from the address valid to the beginning of write.
- 4. Do not access device with cycle timing shorter than tRC for continuous periods > 16us.
- 5. tP (precharge time) should be guaranteed for new Page Address.
- 6. After initial page access is accomplished, the page mode operation provides fast read access speed of random locations within that page

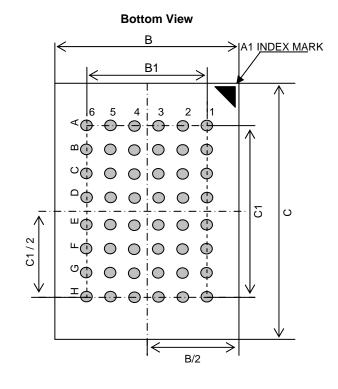


# **Ordering Information**

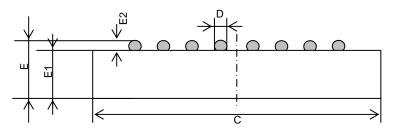
| Part No.         | Access Time (ns) | Operating Current<br>Max. (mA) | Package              |
|------------------|------------------|--------------------------------|----------------------|
| A64S06161AG-70F  | 70               | 20                             | 48B Pb-Free Mini BGA |
| A64S06161AG-70UF | 70               | 20                             | 48B Pb-Free Mini BGA |

•Note : -U is for -40c ~ 85c temperature grade

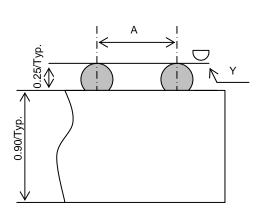




#### PACKAGE DIMENSION FOR BGA TYPE

48 BALL FINE PITCH 6mm x 8mm BGA(0.75mm ball pitch)


Unit: millimeters








Side View



|    | Min  | Typical | Max  |
|----|------|---------|------|
| Α  | -    | 0.75    | -    |
| В  | 5.90 | 6.00    | 6.10 |
| B1 | -    | 3.75    | -    |
| С  | 7.90 | 8.00    | 8.10 |
| C1 | -    | 5.25    | -    |
| D  | 0.30 | 0.35    | 0.40 |
| E  | ı    | ı       | 1.20 |
| E1 | _    | _       | 0.90 |
| E2 | 0.20 | 0.25    | 0.30 |
| Y  | -    | -       | 0.10 |

