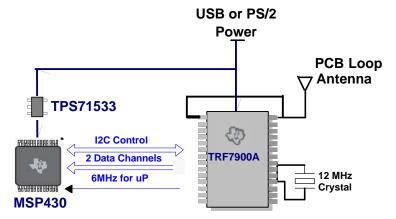


Fully Integrated Analog Front-End Dual Receiver Base Unit for 27-MHz Wireless Mouse and Keyboard Systems

FEATURES

- 23 Discrete Components Intgrated into One Chip
 - Only External Components are Bypass and Filter Capacitors, and One Crystal
- RF Tuner, Mixer, Transistors, Passives, Coils, and Ceramic Filter Functionality All on One Chip
- Integrated Phase Locked Loop
- 8 User-Selectable Frequencies
 - Each Channel (Mouse and Keyboard) Can Independently Select Any of the Available Frequencies
- Internally Generated 6-MHz Clock to Drive USB Microcontroller


- High Data Throughput Rate
 - 5-kHz Square Wave Simultaneously per
 - 10 kbps Miller Encoded Data
- I²C Control Interface
- Received Signal Strength Indicator
- 5-V Supply
- Available in 28-Pin TSSOP (PW) Pacakge

APPLICATIONS

- 27-MHz Wireless Mouse and Keyboard Systems
- Human Interface Devices
- Wireless Control
- Remote Control Toys
- · Wireless Headset
- Remote instrumentation

DESCRIPTION

The TRF7900A is a dual integrated RF transceiver designed for human-interface devices (HID). Operating at 27 MHz, it integrates multiple components (PLL, RF mixer, simulated SAW filter, tuning circuit, and miscellaneous passive components) to provide frequency selection from 8 discrete channels. This integration lowers component, manufacturing and system costs.

The TRF7900A simplifies system design by reducing system component count and manual circuit tuning. By integrating the PLL, SAW filter, and RF mixer, the TRF7900A eliminates the manual tuning of RLC circuits required in traditional implementations.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

The receiver also generates 8 frequencies that can be programmatically selected via the I²C interface bus for both the mouse channel and/or the keyboard channel. Another 6-MHz clock is internally generated to clock the USB microcontroller; this enables a single crystal to be used to supply the clock needs for the receiver channels and the microcontroller.

The optimized receiver design enables simultaneous reception on both parallel channels up to 5 kHz (10 kbps Miller encoding) per channel. A receive strength signal indicator register can be read via the I²C bus to determine the signal strength. Correlating the RSSI reading to the packet error rate enables the controller to diagnose the signal and understand the user condition.

ORDERING INFORMATION

PACKAGED DEVICES	PACKAGE TYPE	TRANSPORT MEDIA, QUANTITY
TRF7900APW	TSSOP - 28	Rails, 50
TRF7900APWR	TSSOP - 28	Tape and Reel, 2000

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)

		VALUE	UNIT ⁽¹⁾
V _{S-} to V _{S+}	Supply voltage	5.5	V
V _I	Input voltage	±V _S ± 0.5	V
V_{ID}	Differential input voltage	±2	V
	Continuous power dissipation	See Dissipation Rating Table	
T _J	Maximum junction temperature, any condition (2)	150	°C
T_J	Maximum junction temperature, continuous operation, long term reliability(3)	125	°C
T _{stg}	Storage temperature range	-65 to 150	°C
	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	300	°C
	ESD ratings: Human Body Model	4000	V
	ESD ratings: Charged Device Model	1500	V
	ESD ratings: Machine Model	200	٧

⁽¹⁾ The absolute maximum ratings under any condition is limited by the constraints of the silicon process. Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

DISSIPATION RATINGS

PACKAGE	0	θ _{JA} (1)	POWER F	RATING ⁽²⁾
FACRAGE	AC		T _A ≤ 25°C	T _A = 85°C
PW (28)	13.7	56.5	1.77 W	708 mW

⁽¹⁾ This data was taken using the JEDEC standard high-K test PCB.

⁽²⁾ The maximum junction temperature for continuous operation is limited by package constraints. Operation above this temperature may result in reduced reliability and/or lifetime of the device.

⁽²⁾ Power rating is determined with a junction temperature of 125°C. This is the point where distortion starts to substantially increase. Thermal management of the final PCB should strive to keep the junction temperature at or below 125°C for best performance and long term reliability.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V_{S-} to V_{S+}	Suppy voltage, analog	4.0		5.5	V

ELECTRICAL CHARACTERISTICS

 $V_S = 5 \text{ V}, T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Io	Output current		100	100	mA
RF Spe	cifications				
	Precision of required external 12-MHz crystal			50	ppm
	Channel spacing		50		kHz
			26.995		MHz
			27.045		MHz
			27.095		MHz
			27.145		MHz
	Communication spacing		27.195		MHz
	Antenna Input Resistance		27.295		MHz
		Optional channel	27.245		MHz
		Optional channel	26.945		MHz
		DC Differential	<100		kΩ
		27 MHz	5		kΩ
R _O	Output resistance, Out_1 and Out_2		1.2		kΩ