
INTEGRATED CIRCUITS

Preliminary specification File under Integrated Circuits, IC01 1998 Sep 04

SAA1305T

FEATURES

- 8 accurate Schmitt trigger inputs with clamp circuits
- Very low quiescent current
- Reset generator circuit
- Changed information output
- On/off output to control a regulator IC which supplies the microcontroller
- 32.768 kHz RC oscillator and/or a 32.768 kHz crystal oscillator
- No delayed reset needed (start-up behaviour oscillator fixed by internal logic)
- Watchdog timer function
- Blinking LED oscillator with drive circuit for LED
- Watch function.

GENERAL DESCRIPTION

The SAA1305T is an on/off logic IC, intended for use in car radios to interface between a microcontroller and various input signals such as ignition, low supply detection, on/off key and external control signals. BUS

The SAA1305T can replace an existing on/off logic built-up with discrete components.

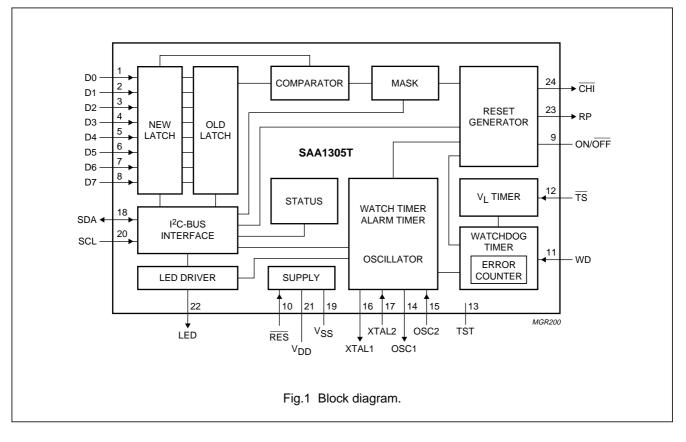
The SAA1305T contains 8 inputs with accurate Schmitt triggers and clamp circuits. The main function of this IC is an intelligent I/O expander with 2 modes of operation:

- 1. Normal I/O expander: the microcontroller (master) is running and the SAA1305T acts like a slave.
- Sleep mode of the total application: the microcontroller is stopped and the SAA1305T acts like a master. During an event, the microcontroller is awakened.

The communication with the IC is performed via the I^2C -bus (400 kHz). Extra functions of the SAA1305T are:

- LED blinker circuit
- One-day watch
- Watchdog timer.

QUICK REFERENCE DATA


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DD}	supply voltage	operating	4.5	5.0	5.5	V
l _q	quiescent supply current	V _{DD} = 5 V; standby mode	_	130	200	μA
f _{SCL(max)}	maximum SCL clock frequency		-	-	400	kHz
T _{vj}	operating virtual junction temperature		_	—	150	°C

ORDERING INFORMATION

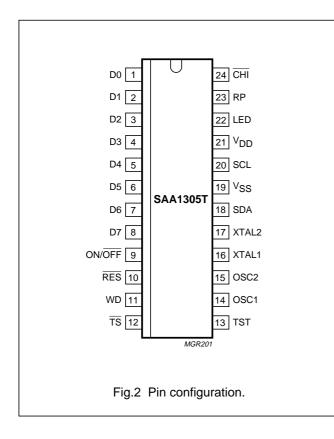
TYPE NUMBER	PACKAGE				
	NAME	NAME DESCRIPTION VERSION			
SAA1305T	SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1		

SAA1305T

BLOCK DIAGRAM

SAA1305T

PINNING


SYMBOL	PIN	DESCRIPTION
D0	1	input D0; generates a reset pulse on pin RP and a LOW-level voltage on pin CHI
D1	2	input D1; generates a reset pulse on pin RP and a LOW-level voltage on pin CHI
D2	3	input D2; generates a reset pulse on pin RP and a LOW-level voltage on pin CHI
D3	4	input D3; generates a reset pulse on pin RP and a LOW-level voltage on pin CHI
D4	5	input D4; generates a reset pulse on pin RP and a LOW-level voltage on pin CHI
D5	6	input D5; generates a reset pulse on pin RP and a LOW-level voltage on pin CHI
D6	7	input D6; generates a reset pulse on pin RP and a LOW-level voltage on pin CHI
D7	8	input D7; generates a reset pulse on pin RP and a LOW-level voltage on pin CHI
ON/OFF	9	on/off output (off is active LOW); for controlling the enable of a separate power supply IC from the microcontroller
RES	10	reset input (active LOW); for power-on or system reset for the IC
WD	11	Watchdog timer trigger input signal from the microcontroller
TS	12	timer start input (active LOW); to trigger the V_L (is an under voltage) timer (250 ms)
TST	13	test purpose input; must be connected to V _{SS}
OSC1	14	RC oscillator output (32.768 kHz)
OSC2	15	RC oscillator input (32.768 kHz)
XTAL1	16	crystal oscillator output (32.768 kHz)
XTAL2	17	crystal oscillator input (32.768 kHz)
SDA	18	I ² C-bus serial data input/output; interface to the microcontroller
V _{SS}	19	ground supply (0 V)
SCL	20	I ² C-bus serial clock line input; interface to the microcontroller
V _{DD}	21	supply voltage; 5 \pm 10% V with a current consumption of maximum 200 μ A (without LED current)
LED	22	light emitting diode output; to drive a LED up to 20 mA (high side switch to V_{DD})
RP	23	reset pulse output
СНІ	24	change information output (active LOW); note 1

Note

- 1. The following results in a LOW-level voltage on pin \overline{CHI} :
 - a) A change on any of the (non-masked) inputs D0 to D7.
 - b) A device reset.
 - c) An alarm or V_{L} timer event.
 - d) An oscillator fault or a failed I²C-bus read sequence after a change information signal.
 - e) A failed Watchdog timer trigger sequence.

SAA1305T

On/off logic IC

FUNCTIONAL DESCRIPTION

Figure 1 shows the block diagram for the SAA1305T. Details are explained in the subsequent sections.

Watch and alarm functions

An internal RAM (watch register) counts automatically the seconds for one-day (one-day reset also automatically). The watch register can be set and read from the I²C-bus. An alarm function is possible via a second RAM (alarm register) and is programmable via the I²C-bus. The alarm timer triggers pin CHI and if enabled the reset pulse on pin RP. After a device reset the content of the alarm register is FFFFH (alarm function is disabled) and the content of watch register is 0000H.

LED control

The I^2C -bus interface control (see Table 10) for the LED contains:

- Two function control bits
- Two control bits for the blink LED frequency
- Two control bits for the blink LED duration time.

All bits are combined within the LED register.

Reset time

The pulse time on pin RP is selectable via an I²C-bus command (see Table 8). The default value after Power-on reset is the longest time (20 ms). Selectable pulse times via the control register are: 1, 5, 10 and 20 ms.

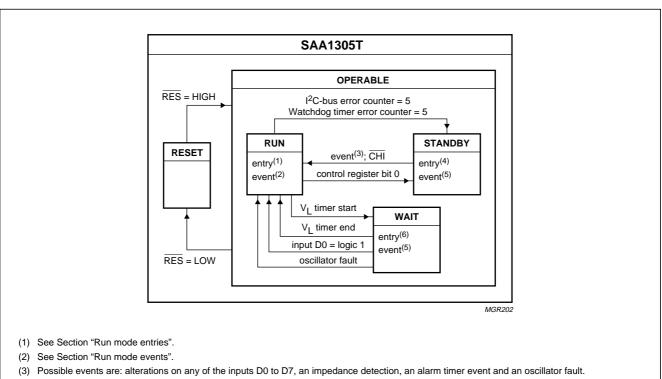
With the rising edge of the reset pulse all inputs, except the Watchdog timer and V_L timer, are disabled until the I²C-bus command ENABLE-RESET. Each pulse on pin RP resets the internal I²C-bus interface.

On/off

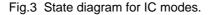
The output signal on pin ON/OFF remains HIGH after a trigger event. Trigger sources are:

- Alterations on any of the inputs D0 to D7
- An impedance detection
- A device reset
- A V_L (is an under voltage) timer or alarm timer event
- An oscillator fault.

In the event of a five time failed Watchdog timer trigger or missed I²C-bus read sequence (after a change information indication), an internal logic circuit will reset pin ON/ \overline{OFF} and set the IC in the standby mode. It is also possible to control pin ON/ \overline{OFF} during the run mode via an I²C-bus command (see Table 8, bit 1). In principal two stable IC modes are possible (see Fig.3):


- Standby mode: an oscillator fault and the following IC function groups can trigger a reset pulse to enter the run mode;
 - a) Watch (alarm timer).
 - b) Supply (device reset).
 - c) Inputs D0 to D7 (a change on any of these inputs or an impedance detection).

The Watchdog timer and the V_L timer are disabled in the standby mode.


 Run mode: only the Watchdog timer (WD), an oscillator fault, a missed I² C-bus communication and the reset input (RES) can trigger a reset pulse. It is possible to enter the standby mode via control register bit 0 (see Table 8).

The dynamic mode or wait mode is possible but can only be started from the run mode (see Section " V_L timer").

SAA1305T

- (4) See Section "Standby mode entries".
- (5) Not available.
- (6) See Section "Wait mode entries".

RUN MODE ENTRIES

- · Reset Watchdog timer error counter
- Enable Watchdog timer
- Enable V_L timer function
- Generate reset pulse
- Disable reset generation via inputs D0 to D7 changes (inclusive impedance detection) and watch compare
- Reset I²C-bus interface
- Set pin CHI to LOW (LOW = active)
- Set pin ON/OFF to HIGH (ON is active).

RUN MODE EVENTS

- I²C-bus read and write commands
- Watchdog timer reset
- Missed I²C-bus communication after a (CHI) change information signal
- Oscillator fault.

WAIT MODE ENTRIES

- Disable Watchdog timer
- Reset I²C-bus error counter
- · Reset Watchdog timer error counter
- Start V₁ timer
- Set pin CHI in 3-state
- Set pin ON/OFF to LOW (OFF is active).

STANDBY MODE ENTRIES

- Disable Watchdog timer
- · Reset Watchdog timer error counter
- Reset I²C-bus error counter
- Disable V_L timer function
- Enable reset generation via inputs D0 to D7 changes (inclusive impedance detection) and watch compare
- Set pin ON/OFF to LOW (OFF is active)
- Set pin CHI in 3-state.

Serial I/O

The hardware of the l^2C -bus interface (slave) operates with a maximum clock frequency of 400 kHz.

Inputs

Pins D0 to D7 are connected to latches (new register). Each latch contains and stores the input change until the read out via the l²C-bus (read out of new register). A second register (old register, latches) contains the input situation before a 'reset pulse' signal or HIGH-to-LOW transition of pin CHI. After a level change on any of the inputs D0 to D7 (content of new register into 'old' register), pin CHI will indicate this event. Reading the 'old' register has no influence on any latch content. Reading the new register will shift the content into the old register. During the l²C-bus read sequence of the new register the latch content will be shifted into the corresponding old latch and afterwards the new latches are enabled until the next change on this input. The functions of the inputs D0 to D7 are shown in Table 1.

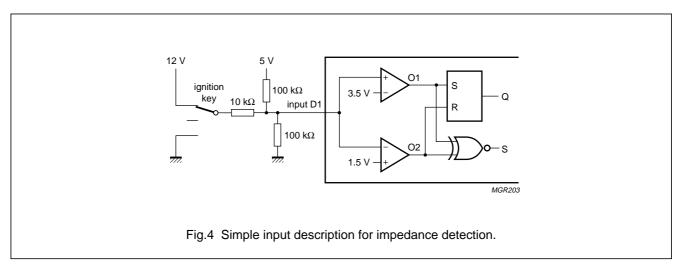
SAA1305T

Due to the fact, that a 'reset pulse' signal or a 'change information' signal are also possible via the Watchdog timer, V_L timer, alarm timer, impedance detection, oscillator fault or after a device reset, the information about these different events is also available via corresponding bits within the status register (see Table 5).

A status I²C-bus read sequence resets the status register and pin CHI. Only after a change on any of the inputs D0 to D7, an I²C-bus read sequence of the status register, old register and new register is it necessary to reset pin CHI. The inputs D4 to D7 are maskable via the I²C-bus (see Table 8). All masked inputs (defined via the control register) are blocked to trigger pins CHI and RP. During the disable phase of the masked inputs the corresponding bits within the old and new registers will be continuously refreshed with the actual input level.

Table 1	Input logic levels and functions
---------	----------------------------------

INPUT	SCHMITT TRIGGER INPUT	SPECIAL INPUT	MASKABLE	V _L TIMER INTERRUPT	IMPEDANCE DETECTION
D7	X	-	Х	-	-
D6	Х	-	Х	—	-
D5	X	-	Х	—	-
D4	-	Х	Х	-	-
D3	-	Х	_	—	-
D2	-	Х	_	—	—
D1	X	_	_	_	Х
D0	Х	_	_	Х	_

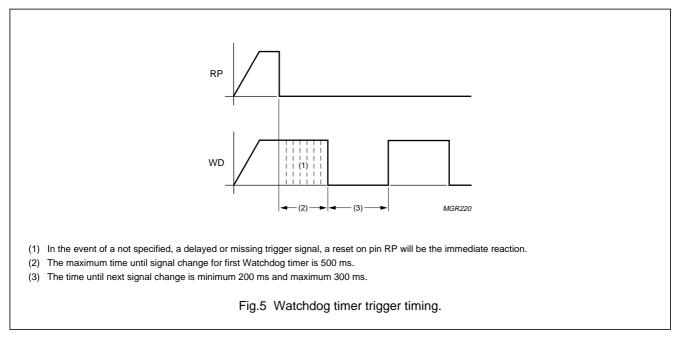

SAA1305T

IMPEDANCE DETECTION

Input D1 is a normal input with comparable behaviour like the other seven inputs. The only difference is an additional internal exclusive-NOR (EXNOR) connected between the two comparator outputs for high and low detection (see Fig.4). The EXNOR signal indicates, in combination with a special external circuit on input D1, a voltage of $\frac{1}{2}V_{DD}$ on this input.

The simple input description for impedance detection is probably not the real solution, but helps to explain the function. Input D1 can be used as a normal input and for impedance detection as described in Table 2. For normal use the output Q acts like every other input, but for impedance detection the EXNOR output S is also important. Output S is linked to the status register bit 6 and indicates the $\frac{1}{2}V_{DD}$ (see Table 5).

Between detection and indication via the status register bit 6, a delay time is integrated (programmable via the impedance register bits 1 and 0, see Table 15). When the $1/_2V_{DD}$ value is detected the EXNOR output will be set to logic 1 (active) and after the programmed delay time the status register bit 6 will be set to logic 1 (active). This event will also be indicated via pin \overline{CHI} and (if enabled) pin RP. The impedance information (bit 6 is active) within the status register is present until the I²C-bus status is read. With the disappearance of the impedance information no further actions will be generated. Every impedance signal change during the delay time will restart the delay time. However an impedance detection is only possible in the event of a stable signal, at least for the programmed delay time. Setting the status register bit 6 with a repetition time which equals the 'impedance delay time' as long as input D1 stays in high-impedance state is implemented.


Table 2 Logic levels for impedance detection

IGNITION KEY	01	02	Q	S
12 V	1	0	1	0
Open-circuit (V _I = 2.5 V)	0	0	0 or 1	1
Ground ($V_I < 1.5 V$)	0	1	0	0

SAA1305T

Watchdog timer

An internal Watchdog timer is active after each reset pulse output and can be triggered via pin WD. In the event of a not specified pulse, a delayed or missing trigger pulse, a reset on pin RP will be the immediate reaction. After the HIGH-to-LOW transition of the reset pulse output, the first transition change within 500 ms on pin WD will be detected as the first trigger from the microcontroller. The timing diagram for the Watchdog timer trigger signal is shown in Fig.5.

Oscillators

Two oscillator types are built-in, a RC oscillator (designed for 32.768 kHz) and a crystal oscillator (32.768 kHz), both with separate pins. For a proper device function an oscillator control circuit is integrated. This circuit supervises the oscillator function and creates a reset and oscillator restart in the event of an oscillator failure.

In the event of an oscillator fault, the event will be indicated after a restart via the status register bit 5. During the oscillator failure phase some outputs remain at a defined level as shown in Table 3.

The RC oscillator accuracy is 5%.

When operating with the RC oscillator, pin XTAL2 must be connected to V_{DD} or V_{SS} to minimize the quiescent current. When operating with the crystal oscillator pin OSC2 must be connected to V_{SS} or V_{DD} .

V_L timer

A built-in timer, which can be started with a HIGH-to-LOW transition on pin TS, triggers, after 250 ms, pins RP and CHI and sets pin ON/OFF. The V_L timer starts only once after a valid start condition. Default state after a Power-on reset is not active. A V_L timer start resets the Watchdog timer. During run time of the V_L timer is ON/OFF = LOW, CHI = 3-state and the Watchdog timer is disabled.

Pin \overline{TS} is only active during the run mode. During run time of the V_L timer the IC remains in the wait mode. Only a HIGH-level signal on input D0 can stop the V_L timer in the same way as after 250 ms. In the event of an oscillator fault the IC also enters the run mode but without an influence on the status register bit 2. During the wait mode an influence of the status register via other sources (e.g. timer and inputs) is possible, but a transition from wait mode to run mode is only possible as described above.

SAA1305T

Power-on or system reset

The reset input (pin RES) is of the CMOS input levels type. During a LOW level on pin RES the outputs are as shown in Table 3 for $\overline{\text{RES}}$ = LOW.

After the system reset (rising edge on pin $\overline{\text{RES}}$) all internal registers are in a defined condition (see Table 4) and the outputs are as shown in Table 3 for $\overline{\text{RES}}$ = HIGH.

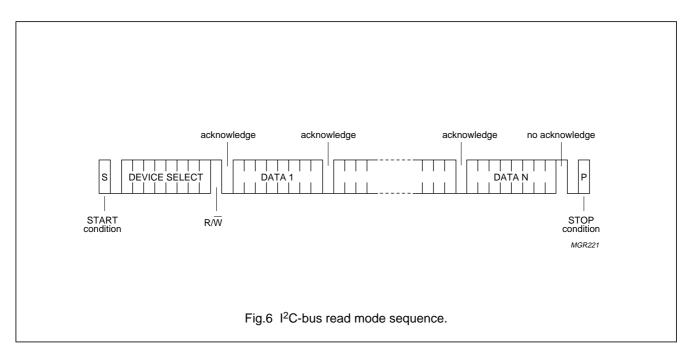
Table 3 Logic leve	RES = LOW	The second se	OSCILLATOR FAILURE
RP	HIGH	HIGH (voltage on V _{DD}) 3-state [after a defined time (maximum reset time)]	3-state
ON/OFF	LOW	HIGH	LOW
LED	LOW	LOW	LOW
SDA	3-state	3-state (receiving mode if RP = LOW)	3-state
СНІ	3-state	LOW (information for microcontroller)	LOW

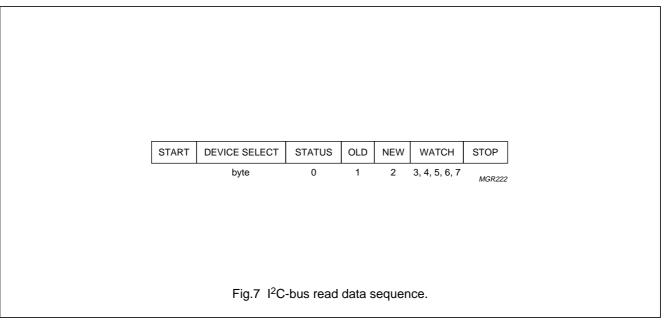
Table 4	Defined condition after reset for the regist	ers; RES = HIGH

REGISTER	CONTENTS
Status register	02 (HEX)
New register	all input latches are enabled
Old register	same levels as corresponding inputs during falling edge on pin RES
Control register	03 (HEX)
LED register	04 (HEX)
Alarm register	FFFF (HEX); see Table 7
Watch register	0000 (HEX)
Impedance register	03 (HEX)

SAA1305T

I²C-BUS INTERFACE COMMANDS


I²C-bus communication is only possible in the run mode.


Read mode operations

Only the sequential read mode is possible. The IC starts after every device select (code 48) to output data 1. However, in this event the master does acknowledge the data output and the IC continues to output the next data in sequence (see Figs 6 and 7).

To terminate the stream of bytes, the master must not acknowledge the last byte output, but must generate a STOP condition. The output data is from consecutive byte addresses, with the internal byte address counter automatically incremented after each byte output. In the event of higher read sequences than available data bytes, the 7th and 8th bit content are 0 and the address counter will generate a wrap around (output at address 0).

The definitions of the bits are given in Tables 5, 6 and 7.

SAA1305T

BIT	DESCRIPTION
7	a logic 1 indicates a change on any of the inputs D7 to D0
6	a logic 1 indicates a ½V _{DD} on input D1 (impedance detection)
5	a logic 1 indicates a reset after an oscillator fault
4	a logic 1 indicates a reset caused by a missed I ² C-bus communication after a change information signal (no communication between two Watchdog timer trigger pulses)
3	a logic 1 indicates a timer alarm
2	a logic 1 indicates a V _L timer reset
1	a logic 1 indicates a device reset (via pin RES)
0	a logic 1 indicates a Watchdog timer reset

Table 6 Definition of the old and new register bits

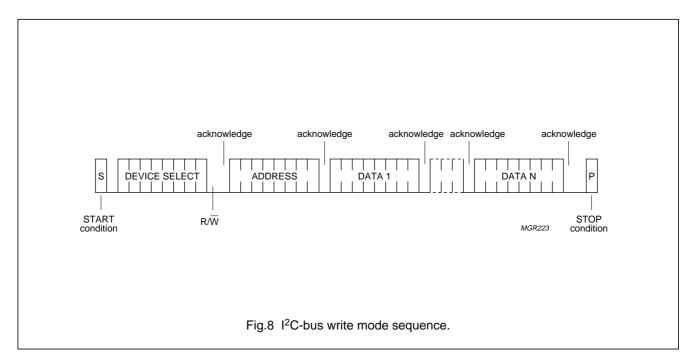
BIT	DESCRIPTION
7	data of input D7
6	data of input D6
5	data of input D5
4	data of input D4
3	data of input D3
2	data of input D2
1	data of input D1
0	data of input D0

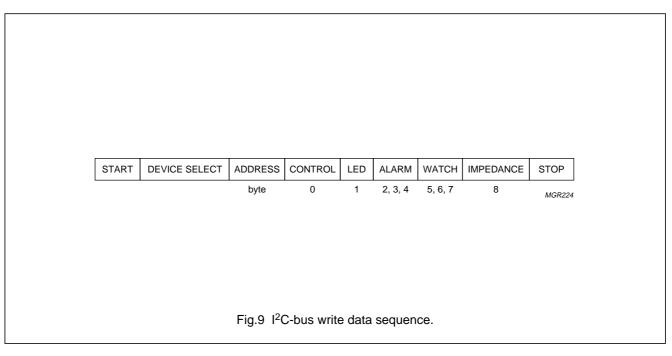
 Table 7
 Definition of the watch and alarm register bits (read mode); note 1

ADDRESS (HEX)	DATA BITS	DESCRIPTION	VALUES	DEFAULT
2	4 to 0	hours of alarm	0 to 31	31
3	5 to 0	minutes of alarm	0 to 63	63
4	5 to 0	seconds of alarm	0 to 63	63
5	4 to 0	hours of watch	0 to 23	0
6	5 to 0	minutes of watch	0 to 59	0
7	5 to 0	seconds of watch	0 to 59	0

Note

1. The alarm is disabled by writing a time larger than 24:00:00. With the default values the alarm function is disabled.


SAA1305T


Write mode operations

After a START condition the master sends a device select code with the R/\overline{W} bit reset to logic 0 (see Fig.8). The IC acknowledge this and waits for the address byte. After the address the master sends the corresponding data, which is acknowledged by the IC. It is possible to continue with the data transfer, each byte is acknowledged by the IC. The internal byte address counter is incremented after

each data transmission. The transfer is terminated when the master generates a STOP condition. In the event of a wrong address decoding the IC sends a no acknowledge signal and ignores all following data.

Figure 9 shows the sequence for write data mode. Both alarm and watch registers consist of 3 bytes. The first byte (2 and 5) is the most significant byte. The definitions of the bits are given in Tables 8, 10, 14 and 15.

SAA1305T

BIT	DESCRIPTION
7	part of the mask register; corresponds to input D7; a logic 1 disables input D7 (no influence on pin CHI)
6	part of the mask register; corresponds to input D6; a logic 1 disables input D6 (no influence on pin CHI)
5	part of the mask register; corresponds to input D5; a logic 1 disables input D5 (no influence on pin CHI)
4	part of the mask register; corresponds to input D4; a logic 1 disables input D4 (no influence on pin CHI)
3	content of bits 3 and 2 corresponds with the pulse width of the reset pulse output; see Table 9
2	
1	control bit for pin ON/ \overline{OFF} ; a logic 0 sets pin ON/ \overline{OFF} to V _{SS} ; a logic 1 sets pin ON/ \overline{OFF} to V _{DD}
0	control bit (ENABLE-RESET) for the IC modes; only setting a logic 0 is possible; standby mode with disabled Watchdog timer, enabled reset generation, $ON/\overline{OFF} = LOW$ and $\overline{CHI} = 3$ -state; with the rising edge of the reset pulse output the IC enters the run mode with enabled Watchdog timer, disabled reset generation, $ON/\overline{OFF} = HIGH$ (but controllable via control register bit 1) and $\overline{CHI} = HIGH$ (is active, not in 3-state)

Table 9 Pulse width of the reset pulse output

BIT 3	BIT 2	PULSE WIDTH (ms)
0	0	20
0	1	10
1	0	5
1	1	1

Table 12 Control bits for the blink LED frequency

BIT 3	BIT 2	FREQUENCY	
0	0	2 Hz (0.5 s)	
0	1	1 Hz (1 s)	
1	0	0.67 Hz (1.5 s)	
1	1	0.5 Hz (2 s)	

Table 10 Definition of the LED register bits

BIT	DESCRIPTION
7	bits 7 and 6 are function control bits;
6	see Table 11
5	no function
4	reset I ² C-bus error counter
3	bits 3 and 2 are control bits for the blink LED
2	frequency (output LOW time); see Table 12
1	bits 1 and 0 are control bits for the blink LED
0	duration time; see Table 13

Table 11 Function control bits

BIT 7	BIT 6	FUNCTION	
0	0	LED output switched to ground	
0	1	blink function according the LED register bits 0 to 3	
1	0	LED output switched to V _{DD}	
1	1	blink function according the LED register bits 0 to 3	

Table 13 Control bits for the blink LED duration time

BIT 1	BIT 0	DURATION TIME (ms)	
0	0	20	
0	1	30	
1	0	40	
1	1	50	

SAA1305T

ADDRESS (HEX)	DATA BITS	DESCRIPTION	VALUES	DEFAULT
2	4 to 0	hours of alarm	0 to 31	31
3	5 to 0	minutes of alarm	0 to 63	63
4	5 to 0	seconds of alarm	0 to 63	63
5	4 to 0	hours of watch	0 to 23	0
6	5 to 0	minutes of watch	0 to 59	0
7	5 to 0	seconds of watch	0 to 59	0

Table 14 Definition of the watch and alarm register bits (write mode); notes 1, 2 and 3

Notes

1. The alarm is disabled by writing a time larger than 24:00:00. With the default values the alarm function is disabled. The alarm is also disabled if hours >23 or minutes >59 or seconds >59.

- 2. There are several attention points if a senseless time is written to the alarm register, for example:
 - a) Write 25 to address 2; data bits 4 to $0 = 25 \Rightarrow$ hours = 25 (alarm disabled).
 - b) Write 70 to address 3; data bits 5 to $0 = 6 \Rightarrow$ minutes = 6.
 - c) Write 81 to address 4; data bits 5 to $0 = 17 \Rightarrow$ seconds = 17.
- 3. There are several attention points if a senseless time is written to the watch register, for example:
 - a) Write 25 to address 5; data bits 4 to $0 = 25 \Rightarrow$ hours = 23 (limited).
 - b) Write 70 to address 6; data bits 5 to $0 = 6 \Rightarrow$ minutes = 6.
 - c) Write 81 to address 7; data bits 5 to $0 = 17 \Rightarrow$ seconds = 17.

Table 15 Definition of the impedance register bits

BIT	DESCRIPTION		
7	no function		
6	no function		
5	no function		
4	no function		
3	no function		
2	enable or disable bit for the impedance detection		
	0 = inactive $(\frac{1}{2}V_{DD})$ detection without influence on the status register)		
	1 = active $(\frac{1}{2}V_{DD})$ detection with influence on the status register)		
1	bits 1 and 0 are control bits for the impedance detection delay time; see Table 16		
0			

Table 16 Control bits for the impedance detection delay time

BIT 1	BIT 0	DELAY TIME
0	0	100 ms
0	1	250 ms
1	0	500 ms
1	1	1 s

SAA1305T

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DD}	supply voltage	operating	-0.5	+6.5	V
lq	quiescent supply current	V _{DD} = 5 V; standby mode	-	200	μA
V _{I(n)}	input voltage on pins	f _{osc} = 32 kHz			
	SDA, SCL, $\overline{\text{RES}}$, WD and $\overline{\text{TS}}$		-0.5	+6.5	V
	D0 to D7	with 5 k Ω series resistor	-0.5	+17	V
V _{O(n)}	output voltage on pins CHI, RP, ON/OFF and LED	f _{osc} = 32 kHz	-0.5	+6.5	V
f _{SCL(max)}	maximum SCL clock frequency		-	400	kHz
T _{vj}	operating virtual junction temperature		-	150	°C
T _{stg}	storage temperature		-65	+150	°C
T _{amb}	operating ambient temperature		-40	+85	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	78	K/W

CHARACTERISTICS

 V_{DD} = 5 V; T_{amb} = 25 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Supply	Supply						
V _{DD}	supply voltage	operating	4.5	5.0	5.5	V	
l _q	quiescent supply current	note 1	_	130	200	μA	
Inputs							
PINS D0 TC) D7						
V _{i(clamp)}	input clamping voltage	I _{clamp} = 2 mA	5.5	6.5	8.3	V	
I _{clamp(h)}	high clamping current	V_{D0} to $V_{D7} > V_{DD}$	_	-	2	mA	
I _{LI}	input leakage current	$V_{Dx} = 5 V$	-	-	1	μA	
SCHMITT TR	RIGGER INPUTS FOR PINS D0, D1 AND D5	то D7					
V _{th(r)}	rising threshold voltage		3.4	3.5	3.6	V	
V _{th(f)}	falling threshold voltage		1.4	1.5	1.6	V	
V _{hys}	hysteresis voltage		1.8	2	2.2	V	
SPECIAL IN	PUTS FOR PINS D2, D3 AND D4				·		
V _{th(r)}	rising threshold voltage		2.4	2.5	2.6	V	
V _{th(f)}	falling threshold voltage		1.7	1.8	1.9	V	
V _{hys}	hysteresis voltage		0.5	0.7	0.9	V	

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
PIN SCL				1	1	
V _{IL}	LOW-level input voltage		0	_	1.5	V
VIH	HIGH-level input voltage		3	_	V _{DD}	V
ILI	input leakage current	$V_i = 5 V$; with output off	_	_	1	μA
f _{SCL(max)}	maximum SCL clock frequency		_	-	400	kHz
t _{i(r)}	input rise time		_	tbf	-	μs
t _{i(f)}	input fall time		_	tbf	-	μs
Ci	input capacitance		_	_	7	pF
PINS RES,			•		•	
V _{IL}	LOW-level input voltage		0	_	0.2V _{DD}	V
V _{IH}	HIGH-level input voltage		0.8V _{DD}	_	V _{DD}	V
ILI	input leakage current	$V_i = 5$ V; with output off	_	_	1	μA
Ci	input capacitance		_	_	7	pF
Inputs/out	puts			I	ł	•
PIN SDA	<u> </u>					
V _{IL}	LOW-level input voltage		0	_	1.5	V
V _{IH}	HIGH-level input voltage		3	_	V _{DD}	V
V _{OL}	LOW-level output voltage	I _{OL} = 3 mA	0	-	1	V
I _{off}	3-state off current	V _i = 5 or 0 V	_	-	10	μA
t _{i(r)}	input rise time		-	_	2	μs
t _{i(f)}	input fall time		_	_	2	μs
t _{o(f)}	output fall time	$1 V \leq V_i \leq 3 V$	-	-	200	ns
Ci	input capacitance		-	-	7	pF
CL	load capacitance		-	-	400	pF
CRYSTAL O	SCILLATOR; notes 2 and 3; see Fig.10					
P _{dr}	drive level power		-	10	-	μW
CL	load capacitance		_	7 to 12	-	pF
Rs	series resistance		_	40	-	kΩ
f _{osc}	oscillator frequency		_	32.768	-	kHz
Q	Q factor		-	40000	100000	
RC OSCILL	ATOR; note 4; see Fig.11			_		
Cosc	oscillator capacitance		100	300	-	pF
R _{osc}	oscillator resistance		5	90	-	kΩ
f _{osc}	oscillator frequency	$C_{osc} = 300 \text{ pF};$ $R_{osc} = 90 \text{ k}\Omega; \text{ note 5}$	_	32.768	-	kHz
f _{clk(min)}	minimum clock frequency	note 6	_	_	10	kHz

SAA1305T

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Outputs	1		I	1	1	
PIN LED						
V _{OL}	LOW-level output voltage	I _{OL} = 16 mA	0	-	0.5	V
V _{OH}	HIGH-level output voltage	I _{OL} = 16 mA	4	_	V _{DD}	V
I _{OH}	HIGH-level output current	V _{OH} > 1 V	-20	_	-	mA
PIN ON/OF	Ŧ			1	1	•
V _{OL}	LOW-level output voltage	$I_{OL} = 4 \text{ mA}$	0	_	0.5	V
V _{OH}	HIGH-level output voltage	I _{OH} = -600 μA	4.8	_	V _{DD}	V
		I _{OH} = -4 mA	4	_	V _{DD}	V
PIN CHI	•					•
V _{OL}	LOW-level output voltage	I _{OL} = 200 μA	0	-	0.5	V
I _{LO}	output leakage current	V _{OH} = V _{DD}	_	_	5	μA
PIN RP						·
V _{OH}	HIGH-level output voltage	I _{OH} = -4 mA	4	-	V _{DD}	V
I _{off}	3-state off current	$V_o = V_{DD} \text{ or } V_{SS}$	-	-	5	μA

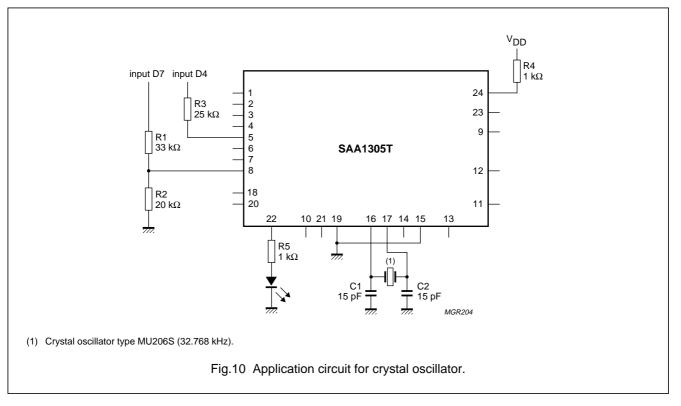
Notes

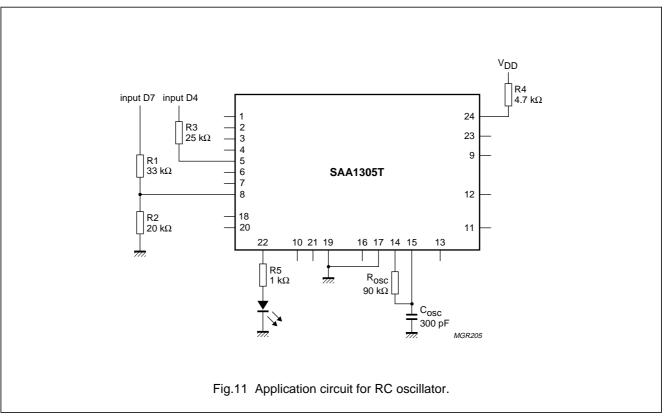
1. The IC is programmed to standby mode via the I²C-bus command, no LED is connected, no I²C-bus communication, one oscillator is running and the Watchdog timer is disabled.

2. When running on crystal oscillator, the input of the RC oscillator must be connected to V_{DD} or V_{SS} .

3. Preferable crystal types: MU206S and DMX38.

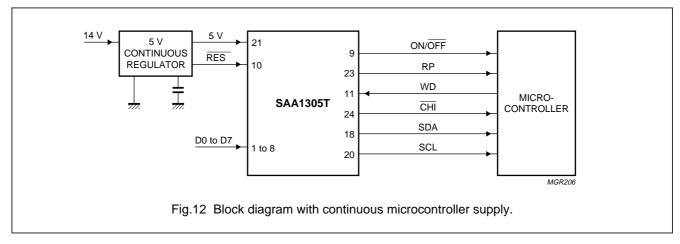
4. When running on RC oscillator, the input of the crystal oscillator must be connected to V_{DD} or V_{SS} .

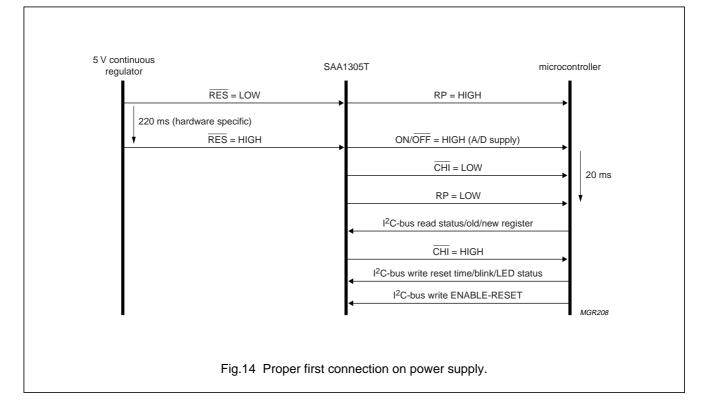

5. The RC oscillator frequency
$$f_{osc} = \frac{0.87}{R_{osc} \times C_{osc}}$$

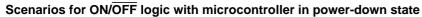

The RC oscillator frequency tolerance $\Delta f_{osc} = \sqrt{\Delta R_{osc}^2 + \Delta C_{osc}^2 + (0.05 \times f_{osc})^2}$

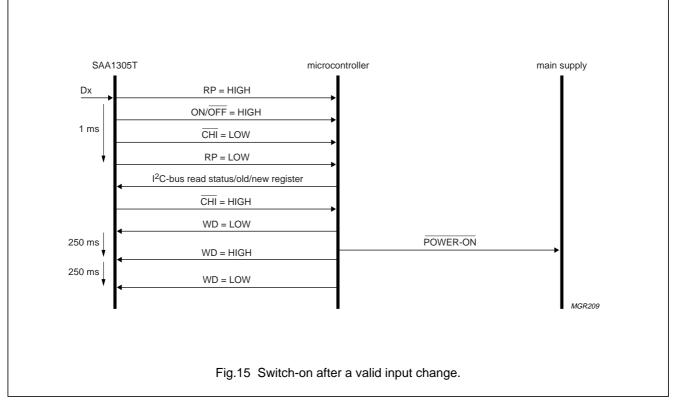
6. Below this maximum value the IC will detect an oscillator fault.

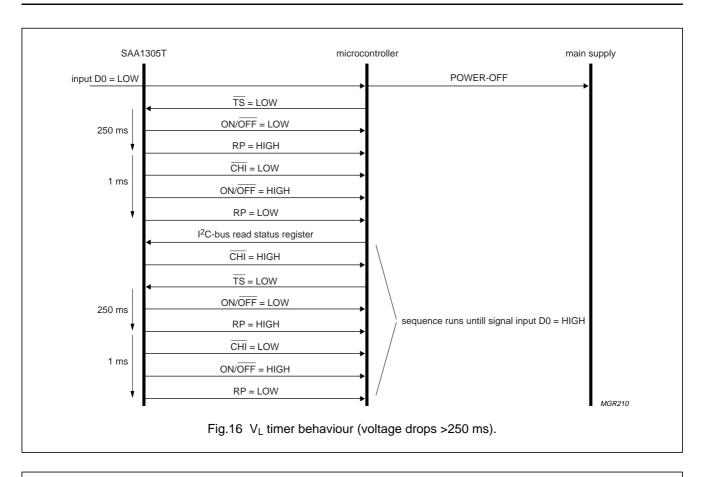
SAA1305T

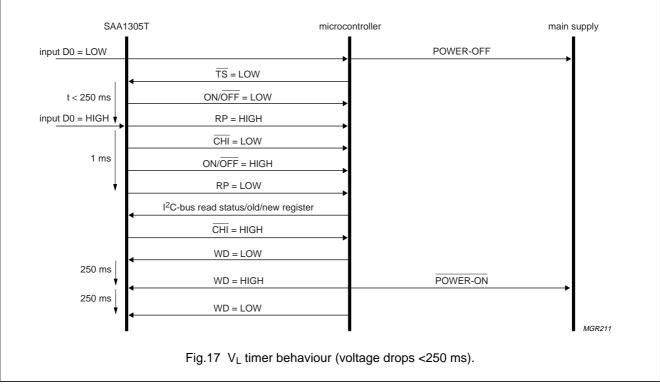

APPLICATION CIRCUITS

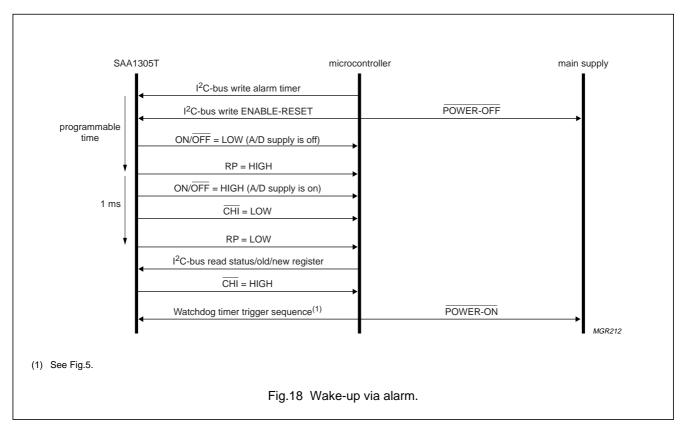

ON/OFF LOGIC WITH MICROCONTROLLER IN POWER-DOWN STATE

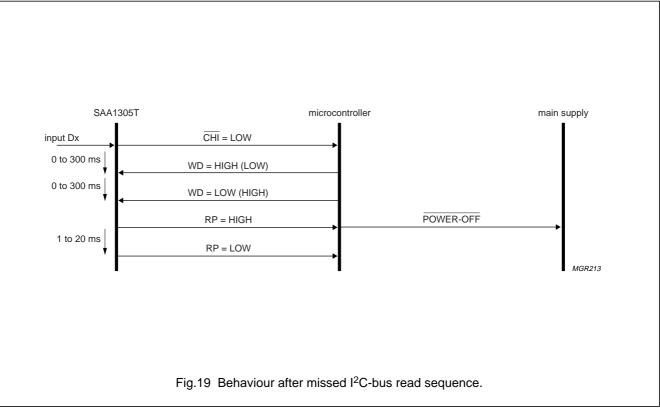

SAA1305T

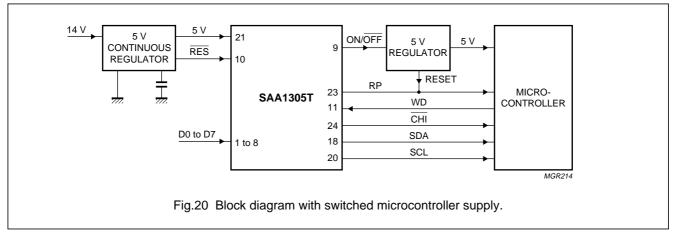


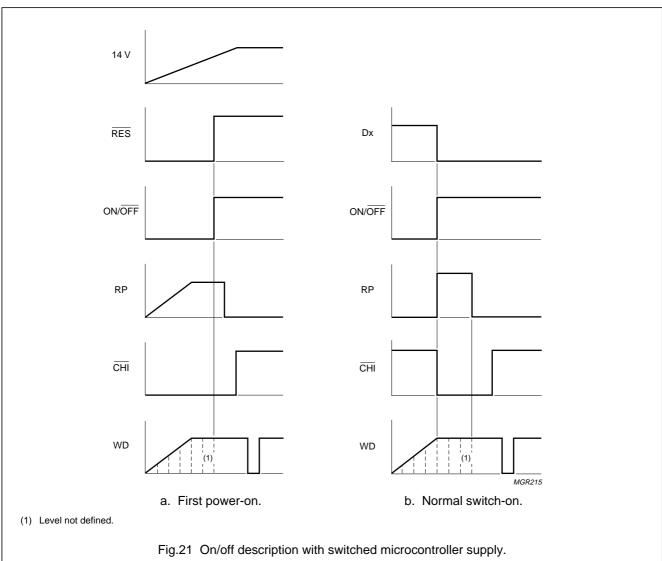

14 V RES Dx ON/OFF RP CHI ON/OFF RP CHI WD WD . (1) (1) MGR207 a. First power-on. b. Normal switch-on. (1) Level not defined.

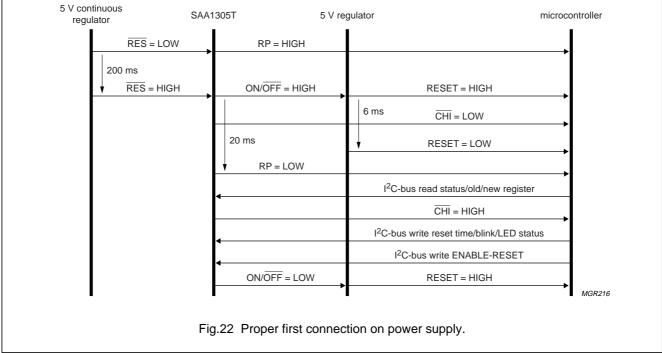

Fig.13 Timing diagrams with continuous microcontroller supply.

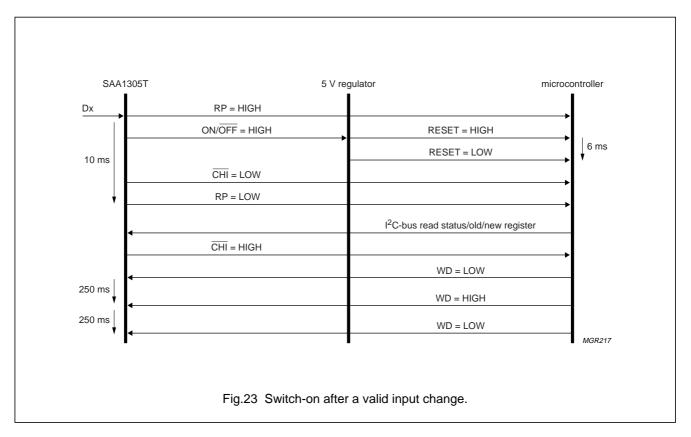


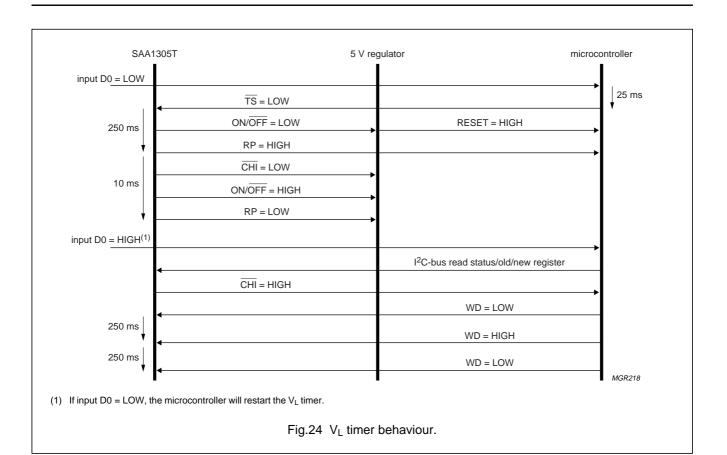


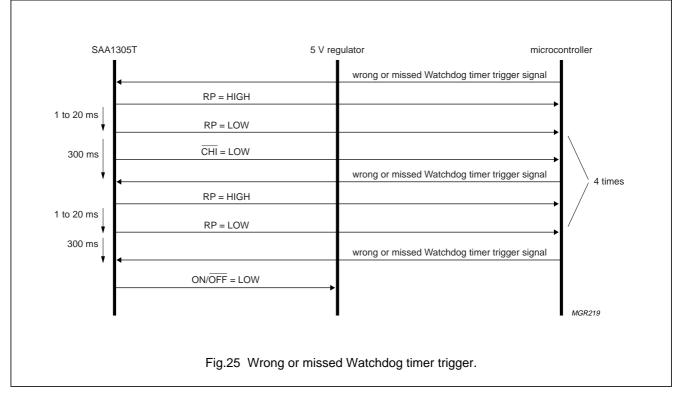


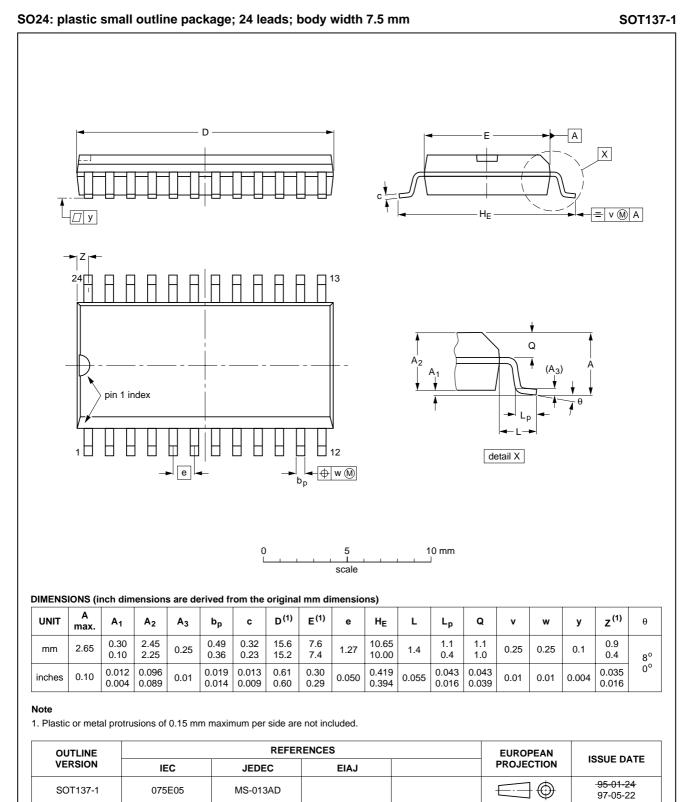












SAA1305T

PACKAGE OUTLINE

SAA1305T

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"Data Handbook IC26; Integrated Circuit Packages"* (order code 9398 652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

Wave soldering

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

SAA1305T

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
more of the limiting values of the device at these or at	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or may cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification limiting values for extended periods may affect device reliability.
Application information	
	ing in given it is achieved and do not found part of the analytication

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.

SAA1305T

NOTES

SAA1305T

NOTES

Philips Semiconductors – a worldwide company

Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43 160 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 32 88 2636, Fax. +45 31 57 0044 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 1 4894 339/239, Fax. +30 1 4814 240 Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080 Ireland: Newstead, Clonskeagh, DUBLIN 14 Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381

For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,

Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO,

Tel. +47 22 74 8000, Fax. +47 22 74 8341 **Pakistan:** see Singapore

Pakistan: see Singapore

Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474

Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327

Portugal: see Spain

Romania: see Italy

Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,

Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria Slovenia: see Italy

South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494

South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382

Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107

Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745

Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263

Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793

Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707

Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381

Uruguay: see South America

Vietnam: see Singapore

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 625 344, Fax.+381 11 635 777

Internet: http://www.semiconductors.philips.com

© Philips Electronics N.V. 1998

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

545102/750/01/pp32

Date of release: 1998 Sep 04

Document order number: 9397 750 03808

SCA60

Let's make things better.

