TV-4 rated. 2a 3A/5A power relays

LA RELAYS (ALA)

FEATURES

1. 2 Form A slim type $24(\mathrm{~L}) \times 12(\mathrm{~W}) \times 25(\mathrm{H}) \mathrm{mm}$ $.945(\mathrm{~L}) \times .472(\mathrm{~W}) \times .984(\mathrm{H})$ inch
2. 3A type and 5A TV type

3A type: Contact reliability and break performance best suited for protecting and switching speakers.
5A TV type: Tough against inrush current and optimal for turning on and off the power supply. Rated TV-4 (UL, CSA).
3. High insulation resistance

- Creepage distance and clearances between contact and coil: Min. 6 mm .236 inch (In compliance with IEC65)
- Surge withstand voltage between contact and coil: 10,000 V

4. High noise immunity realized by the card separation structure between contact and coil
5. Conforms to the various safety standards

- UL, CSA, VDE, TÜV, SEMKO approved

TYPICAL APPLICATIONS

- Audio devices
- Monitor
- Automatic vending machine

ORDERING INFORMATION

Note: Certified by UL, CSA, VDE, TÜV, SEMKO and TV-4

TYPES

Contact arrangement	Coil voltage	Part No.	
		3A type	5A TV type (TV-4)
2 Form A	12 V DC	ALA2F12	ALA2PF12

Standard packing Carton: 100 pcs. Case: 500 pcs.
Note: $4.5 \mathrm{~V}, 5 \mathrm{~V}, 9 \mathrm{~V}$ and 18 V DC types are also available. Please consult us for details.
RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
12 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$5 \% \mathrm{~V}$ or more of nominal voltage (Initial)	44.2 mA	272Ω	530 mW	15.6 V DC
24 V DC			22.1 mA	1,087 Ω		31.2 V DC

2. Specifications

Characteristics	Item		Specifications	
			3A type	5A TV type (TV-4)
Contact	Arrangement		2 Form A	
	Contact resistance (Initial)		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6V DC 1A)	Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6V DC 1A)
	Contact material		Gold-clad, AgNi type	AgSnO_{2} type
Rating	Nominal switching capacity (resistive load)		3A 125V AC	5A 277V AC
	Max. switching power (resistive load)		625 VA	1,385VA
	Max. switching voltage		125 V AC	277V AC
	Max. switching current		5A (AC)	
	Min. switching capacity*1		100mA 5V DC	
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Breakdown voltage" section.	
	Breakdown voltage (Initial)	Between contact sets	1,000 Vrms for 1 min . (Detection current: 10 mA)	
		Between open contacts	1,000 Vrms for 1 min . (Detection current: 10 mA)	
		Between contact and coil	4,000 Vrms for 1 min . (Detection current: 10 mA)	
	Temperature rise (coil)		Max. $45^{\circ} \mathrm{C} 113^{\circ} \mathrm{F}$ (with nominal coil voltage and at 3 A contact carrying current, at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)	Max. $45^{\circ} \mathrm{C} 113^{\circ} \mathrm{F}$ (with nominal coil voltage and at 5 A contact carrying current, at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)
	Surge breakdown voltage*2 (Between contact and coil) (Initial)		10,000 V	
	Operate time (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 15 ms (excluding contact bounce time.)	
	Release time (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 15 ms (excluding contact bounce time) (With diode)	
Mechanical characteristics	Shock resistance	Functional	$200 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	$1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	10 to 55 Hz at double amplitude of 1.5 mm	
Expected life	Mechanical		Min. 10^{6} (at 180 times/min.)	
	Electrical (at 20 times/min.)		Min. 5×10^{4} (ON: OFF=1.5s: 1.5 s) (at nominal switching capacity)	
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$, Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature), Air pressure: 86 to 106 kPa	
	Max. operating speed		20 times/min. (at nominal switching capacity)	
Unit weight			Approx. $13 \mathrm{~g} \mathrm{}$.	

${ }^{*}$. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
*3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT section in Relay Technical Information.

REFERENCE DATA

1. Max. switching power (AC resistive load)

2-(1). Life curve (250 V AC resistive load) for 5A type

2-(2). Life curve (125 V AC resistive load) for 3A type

3-(1). Coil temperature rise Sample: ALA2F12, 6 pcs. Measured portion: coil inside Contact current: $0 \mathrm{~A}, 3 \mathrm{~A}$

3-(2). Coil temperature rise
Sample: ALA2PF12, 6 pcs.
Measured portion: coil inside
Contact current: 0 A, 5A

4. Ambient temperature characteristics and coil applied voltage
Contact current: ALA2F=3A
ALA2PF=5A

Change of contact resistance

Change of contact resistance

5-(2). Electrical life test
(5 A 250 V AC, resistive load)
Sample: ALA2PF12, 6 pcs.
Operation frequency: 20 times $/ \mathrm{min}$.
(ON/OFF = 1.5s: 1.5s)
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
Circuit:

Change of pick-up and drop-out voltage

5-(3). Electrical life test
(UL lamp load test TV-4)
Tested sample: ALA2PF12, 6 pcs.

- Overload test

Load: 6.0 A 120 V AC (60 Hz),
Inrush: 91 A
Operation frequency: 10 times $/ \mathrm{min}$
(ON: OFF = $1 \mathrm{~s}: 5 \mathrm{~s}$)
No. of operations: 50 ope.

- Endurance test

Load: 4A 120 V AC (60 Hz),
Inrush: 65 A
Operation frequency: 10 times/min
(ON: OFF = $1 \mathrm{~s}: 5 \mathrm{~s}$)
No. of operations: 25,000 ope.

Change of pick-up and drop-out voltage

Change of contact resistance

PC board pattern (Bottom view)

Schematic (Bottom view)

General tolerance

Less than 1 mm . O39inch: \quad| $\pm 0.1 \pm .004$ | |
| :--- | :--- |
| Min 1 mm | 039 inch less than 3 mm |
| $0.2+.008$ | |

Min. 1 mm .039 inch less than 3 mm .118 inch: $\pm 0.2 \pm .008$
Min. 3 mm .118 inch:
$\pm 0.3 \pm .012$

SAFETY STANDARDS

Item	UL/C-UL (Recognized)		CSA (Certified)		VDE (Certified)		$\begin{aligned} & \hline \text { TV rating (UL/ } \\ & \text { CSA) } \\ & \hline \end{aligned}$		TÜV (Certified)		SEMKO (Certified)	
	File No.	Contact rating	File No.	Contact rating	File No.	Contact rating	File No.	Rating	File No.	Rating	File No.	Contact rating
Standard	E43149	$\begin{aligned} & 3 \mathrm{~A} \mathrm{125V} \text { AC } \\ & 3 \mathrm{~A} \mathrm{30V} \text { DC } \\ & 5 \mathrm{~A} 50 \mathrm{~V} \text { DC } \end{aligned}$	LR26550 \|etc.	$\begin{aligned} & 3 \mathrm{~A} \mathrm{125V} \text { AC } \\ & 3 \mathrm{~A} \mathrm{30V} \text { DC } \\ & 5 \mathrm{~A} 50 \mathrm{~V} \text { DC } \end{aligned}$	40012000	$\begin{aligned} & \text { 3A 125V AC (} \cos \varphi=1.0) \\ & 3 \mathrm{~A} 30 \mathrm{~V} \text { DC (0ms) } \end{aligned}$	-	-	$\begin{array}{\|l\|} \hline \text { B } 1105 \\ 13461298 \\ \hline \end{array}$	$\begin{aligned} & 3 \mathrm{~A} \mathrm{125V} \mathrm{AC}(\cos \varphi=1.0) \\ & 3 \mathrm{~A} \mathrm{30V} \mathrm{DC} \mathrm{(0ms)} \end{aligned}$	817139	$\begin{aligned} & 3 \mathrm{~A} \mathrm{125V} \text { AC } \\ & 3 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$
High capacity	E43149	$\begin{aligned} & 5 \mathrm{~A} 277 \mathrm{~V} \text { AC } \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{aligned} & \hline \text { LR26550 } \\ & \text { etc. } \end{aligned}$	$\begin{aligned} & \text { 5A 277V AC } \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	40012000	$\begin{aligned} & \text { 5A 250V AC (} \cos \varphi=1.0) \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC (0ms) } \end{aligned}$	UL E43149 CSA LR26550	TV-4	$\begin{array}{\|l\|} \hline \text { B } 1105 \\ 13461298 \\ \hline \end{array}$	5 A 250 V AC $(\cos \varphi=1.0)$ 5A 30V DC (0ms)	817139	4/65A 250V AC

For Cautions for Use, see Relay Technical Information.

