Data Sheet

Lead (Pb) Free
RoHS 6 fully compliant

RoHS 6 fully compliant options available; -xxxE denotes a lead-free product

Description

The ACPL-M50L (single-channel) and ACPL-054L (dualchannel) are low power, low-input current, high speed digital optocouplers in a SO-5 and SO-8 footprint respectively.

This digital optocouplers use an insulating layer between the light emitting diode and an integrated photon detector to provide electrical insulation between input and output. Separate connections for the photodiode bias and output transistor collector increase the speed up to a hundred times over that of a conventional photo-transistor coupler by reducing the base-collector capacitance.
The ACPL-M50L/054L have an increased common mode transient immunity of $15 \mathrm{kV} / \mu \mathrm{s}$ minimum at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$ over a temperature range of -40 to $105^{\circ} \mathrm{C}$. The current transfer ratio (CTR) is 140% typical at $\mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}$. This digital optocoupler can be use in any TTL/CMOS, TTL/LSTTL or wide bandwidth analog applications.

Functional Diagram

TRUTH TABLE

LED	Vo
ON	LOW
OFF	HIGH

$$
\begin{aligned}
& \text { ^ Advanced information, } \\
& \text { may subject to changes. }
\end{aligned}
$$

The connection of a $0.1 \mu \mathrm{~F}$ bypass capacitor between pins 4 and 6 for ACPL-M50L and between pins 5 and 8 for ACPL-054L is recommended.

Features

- Wide supply voltage: 2.7 V to $24 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- Low Drive Current: 3mA
- Open-Collector Output
- TTL compatible
- Compact SO-5 (ACPL-M50L) and SO-8 (ACPL-054L) package
- $15 \mathrm{kV} / \mu \mathrm{s}$ High Common-Mode Rejection at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$
- Guaranteed performance across Temperature Range: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
- Low Propagation Delay: $1 \mu \mathrm{~A}$ max at 5 V
- Worldwide Safety Approval (Pending):
- UL1577 recognized, 3750Vrms/1min
- CSA Approval
- IEC/EN/DIN EN 60747-5-5 Approval

Applications

- Communications Interface
- Digital Signal Isolation
- Micro-controller Interface
- Feedback Elements in Switching Power Supplies
- Digital isolation for A/D, D/A conversion Digital field

Part number	Option	Package	Surface Mount	IEC/EN/DIN EN Tape \& Reel $\quad 60747-5-5$		Quantity
	RoHS Compliant					
ACPL-M50L	-000E	SO-5	X			100 per tube
	-500E		X	X		1500 per reel
	-560E		X	X	X	1500 per reel
ACPL-054L^	-000E	SO-8	X			100 per tube
	-500E		X	X		1500 per reel
	-560E		X	X	X	1500 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

ACPL-M50L-500E to order product of Mini-flat Surface Mount 5-pin package in Tape and Reel packaging with RoHS compliant.

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
\wedge Advanced information, may subject to changes.

Package Outline Drawings

ACPL-M50L Small Outline S0-5 Package (JEDEC M0-155)

Land Pattern Recommendation

ACPL-054L (Small Outline SO-8 Package)

* Total package length (inclusive of mold flash) 5.207 ± 0.254 (0.205 ± 0.010)
Dimensions in Millimeters (Inches).
Lead coplanarity $=0.10 \mathrm{~mm}$ (0.004 inches) max.
Option number 500 not marked.

Note: Floating lead protrusion is 0.15 mm (6 mils) max.

Solder Reflow Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.

Regulatory Information

The ACPL-M50L/054L will be approved by the following organizations:

UL

Approval under UL 1577, component recognition program up to $\mathrm{V}_{\mathrm{ISO}}=3750 \mathrm{~V}_{\mathrm{RMS}}$.

CSA

Approval under CSA Component Acceptance Notice \#5.

IEC/EN/DIN EN 60747-5-5 (Option 060E only)

Insulation and Safety Related Specifications

Parameter	Symbol	ACPL-M50L	ACPL-054L	Units	Conditions
Minimum External Air Gap (Clearance)	$\mathrm{L}(101)$	5	4.9	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	$\mathrm{L}(102)$	5	4.8	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance) Tracking Resistance (Comparative Tracking Index) CTI Isolation Group	0.08	0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emmitter and detector.	

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics*

Description	Symbol	Characteristic	Unit
Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage $\leq 150 \mathrm{Vrms}$ for rated mains voltage $\leq 300 \mathrm{Vrms}$ for rated mains voltage ≤ 600 Vrms		$\begin{aligned} & \text { I - IV } \\ & \text { I - III } \\ & \text { I III } \end{aligned}$	
Climatic Classification		55/105/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	VIORM	560	Vpeak
Input to Output Test Voltage, Method b* $V_{\text {IORM }} \times 1.875=V_{\text {PR }}, 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$V_{P R}$	1063	Vpeak
Input to Output Test Voltage, Method a* $V_{\text {IORM }} \times 1.6=$ VPR , Type and Sample Test, $\mathrm{t}_{\mathrm{m}}=10 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	896	Vpeak
Highest Allowable Overvoltage (Transient Overvoltage $\mathrm{t}_{\text {ini }}=60 \mathrm{sec}$)	VIOTM	6000	Vpeak
Safety-limiting values - maximum values allowed in the event of a failure. Case Temperature Input Current Output Power	Ts $\mathrm{I}_{\mathrm{S}, \text { INPUT }}$ Ps, output	$\begin{aligned} & 175 \\ & 230 \\ & 600 \end{aligned}$	${ }^{\circ} \mathrm{C}$ mA mW
Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{\mathrm{IO}}=500 \mathrm{~V}$	RS	$>10^{9}$	Ω

[^0]
Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units
Storage Temperature		T_{S}	-55	150	${ }^{\circ} \mathrm{C}$
Operating Temperature		T_{A}	-40	105	${ }^{\circ} \mathrm{C}$
Lead Soldering Cycle	Temperature			260	${ }^{\circ} \mathrm{C}$
	Time			10	s
Average Forward Input Current ${ }^{[1]}$		$\mathrm{I}_{\text {(}}$ (avg)		20	mA
Peak Forward Input Current ${ }^{[2]}$ (50\% duty cycle, 1 ms pulse width)		$\mathrm{IF}_{\text {(peak }}$		40	mA
Peak Transient Input Current ($\leq 1 \mu$ s pulse width, 300 ps)		$\mathrm{IF}_{\mathrm{F} \text { (trans) }}$		1	A
Reversed Input Voltage		V_{R}		5	V
Input Power Dissipation ${ }^{[3]}$		PIN		36	mW
Output Power Dissipation ${ }^{\text {[4] }}$		Po		45	mW
Average Output Current		lo (AVG)		8	mA
Peak Output Current		$\mathrm{l}_{\text {(PEAK }}$		16	mA
Supply Voltage		$\mathrm{V}_{\text {CC }}$	-0.5	30	V
Output Voltage		V_{O}	-0.5	24	V
Solder Reflow Temperature Profile		See Package Outline Drawings section			

Notes

1. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.0 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V_{CC}	2.7	24	V
Input Current, High Level	I_{FH}	3	10	mA
Operating Temperature	T_{A}	-40	105	${ }^{\circ} \mathrm{C}$

Electrical Specifications (DC)

Over recommended operating $T_{A}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$, supply voltage ($2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 24 \mathrm{~V}$) and unless otherwise specified. All typicals are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Notes:

1. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, I_{O}, to the forward LED input current, IF, times 100%.

Switching Specifications

Over recommended operating ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$), $\mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA},\left(2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 24 \mathrm{~V}\right.$), unless otherwise specified.

Parameter	Symbol	Min	Typ	Max	Units	Test Condi	ons	Fig.	
Propagation Delay Time to Logic Low at Output	$\mathrm{T}_{\text {PHL }}$		0.2	0.5	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=10 \mathrm{kHz}, \text { Duty cycle }=50 \%, \\ & \mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{THHL}}=1.5 \mathrm{~V} \end{aligned}$	14	
			0.2	1	$\mu \mathrm{S}$			6,14	
			0.22	0.5	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=10 \mathrm{kHz} \text {, Duty cycle }=50 \%, \\ & \mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\text {THHL }}=1.5 \mathrm{~V} \end{aligned}$	14	
			0.22	1	$\mu \mathrm{s}$			7,14	
			0.33	0.7	$\mu \mathrm{S}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=10 \mathrm{kHz} \text {, Duty cycle }=50 \%, \\ & \mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{THHL}}=1.5 \mathrm{~V} \end{aligned}$	14	
			0.33	1.3	$\mu \mathrm{S}$			8,14	
Propagation Delay Time to Logic High at Output	TPLH		0.38	0.8	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=10 \mathrm{kHz} \text {, Duty cycle }=50 \%, \\ & \mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{THHL}}=2.0 \mathrm{~V} \end{aligned}$	14	
			0.38	1.2	$\mu \mathrm{s}$			6,14	
			0.31	0.7	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Pulse: } f=10 \mathrm{kHz}, \text { Duty cycle }=50 \%, \\ & I_{\mathrm{F}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{THHL}}=2.0 \mathrm{~V} \end{aligned}$	14	
			0.31	1	$\mu \mathrm{s}$			7,14	
			0.3	0.7	$\mu \mathrm{S}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Pulse: } f=10 \mathrm{kHz}, \text { Duty cycle }=50 \%, \\ & I_{\mathrm{F}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & C_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\text {THHL }}=2.0 \mathrm{~V} \end{aligned}$	14	
			0.3	1	$\mu \mathrm{s}$			8,14	
Pulse Width Distortion ${ }^{[1]}$	PWD		0.18	0.8	$\mu \mathrm{S}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Pulse: } f=10 \mathrm{kHz}, \text { Duty cycle }=50 \%, \\ & I_{F}=3 \mathrm{~mA}, V_{C C}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.2 \mathrm{k} \Omega, \\ & C_{L}=15 \mathrm{pF}, \mathrm{~V}_{\text {THHL }}=1.5 \mathrm{~V}, V_{\text {THL }}=2.0 \mathrm{~V} \end{aligned}$	14	
			0.18	1.2	$\mu \mathrm{S}$			14	
			0.1	0.7	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=10 \mathrm{kHz}, \text { Duty cycle }=50 \%, \\ & \mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{THHL}}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {THLH }}=2.0 \mathrm{~V} \end{aligned}$	14	
			0.1	1	$\mu \mathrm{S}$			14	
			0.1	0.7	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=10 \mathrm{kHz}, \text { Duty cycle }=50 \%, \\ & \mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & C_{L}=15 \mathrm{p}, \mathrm{~V}_{\text {THHL }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {THL }}=2.0 \mathrm{~V} \end{aligned}$	14	
			0.1	1	$\mu \mathrm{S}$			14	
Propagation Delay Difference Between Any two Parts ${ }^{[2]}$	$t_{\text {psk }}$		0.18	0.8	$\mu \mathrm{S}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=10 \mathrm{kHz}, \text { Duty cycle }=50 \%, \\ & I_{\mathrm{F}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.2 \mathrm{k} \Omega, \\ & C_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\text {THHL }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {THLH }}=2.0 \mathrm{~V} \end{aligned}$		
			0.1	0.7	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=10 \mathrm{kHz}, \text { Duty cycle }=50 \%, \\ & I_{\mathrm{F}}=3 \mathrm{~mA}, V_{C C}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \\ & C_{L}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{THHL}}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {THL }}=2.0 \mathrm{~V} \end{aligned}$		
			0.1	0.7	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=10 \mathrm{kHz}, \text { Duty cycle }=50 \%, \\ & I_{\mathrm{F}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \\ & C_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\text {THHL }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {THLH }}=2.0 \mathrm{~V} \end{aligned}$		
Common Mode Transient Immunity at Logic High Output ${ }^{[3]}$	\|CMH		10	15		kV/ $\mu \mathrm{s}$		$\begin{aligned} & V_{C M}=1500 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \left(R_{\mathrm{L}}=1.2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}\right) \text { or } \\ & \left(\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}\right) \end{aligned}$	15
Common Mode Transient Immunity at Logic Low Output ${ }^{[4]}$	$\left\|C M_{L}\right\|$	10	15		kV/ $\mu \mathrm{s}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \left(\mathrm{R}_{\mathrm{L}}=1.2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}\right) \text { or } \\ & \left(\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}\right) \end{aligned}$	15	

Notes

1. Pulse Width Distortion (PWD) is defined as $\left|t_{P H L}-t_{P L H}\right|$ for any given device.
2. The difference between $t_{\text {PLH }}$ and $t_{\text {PHL }}$ between any two parts under the same test condition. (See IPM Dead Time and Propagation Delay Specifications section.)
3. Common transient immunity in a Logic High level is the maximum tolerable (positive) $d V_{C M} / d t$ on the rising edge of the common mode pulse, $V_{C M}$, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$).
4. Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the falling edge of the common mode pulse signal, V_{CM} to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).

Package Characteristics

All Typical at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Input-Output Momentary Withstand Voltage ${ }^{[1,2]}$	VISO	3750			$\mathrm{V}_{\text {rms }}$	$\begin{aligned} & \mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min} ., \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
Input-Output Resistance ${ }^{[1]}$	$\mathrm{R}_{\text {l-O }}$		10^{12}		Ω	$\mathrm{V}_{\text {I-O }}=500 \mathrm{Vdc}$
Input-Output Capacitance [1]	$\mathrm{Cl}_{1-\mathrm{O}}$		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Input-Output Insulation ${ }^{\text {[1] }}$	$\mathrm{I}_{\text {-O }}$			1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{RH} \leq 45 \%, \mathrm{t}=5 \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{I}-\mathrm{O}}=3 \mathrm{kVdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
Input-Input Insulation Leakage Current ${ }^{[3]}$	I_{1-1}			0.005	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{RH} \leq 45 \%, \mathrm{t}=5 \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{l}-\mathrm{I}}=500 \mathrm{Vdc} \end{aligned}$
Input-Input Resistance ${ }^{\text {[3] }}$	R_{l}		10^{11}		Ω	
Input-Input Capacitance [3]	Cl_{H}		0.25		pF	$\mathrm{f}=1 \mathrm{MHz}$

Notes:

1. Device considered a two terminal device: pins 1 and 3 shorted together and pins 4,5 and 6 shorted together for ACPL-M50L, pins $1,2,3$ and 4 shorted together and pins 5, 6, 7 and 8 shorted together for ACPL-054L.
2. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 4500 \mathrm{~V}_{\text {RMS }}$ for 1 second (leakage detection current limit, $\mathrm{I}_{-\mathrm{O}} \leq 5 \mu \mathrm{~A}$).
3. Measured between pins 1 ad 2 shorted together, and pins 3 and 4 shorted together.

Figure 1. Input Current vs. Forward Voltage

Figure 3. Typical Current Transfer Ratio vs. Temperature

Figure 5. Typical Logic High Output Current vs. Temperature

Figure 2. Typical Current Transfer Ratio vs. Temperature

Figure 4. Typical Logic High Output Current vs. Temperature

Figure 6. Typical Propagation Delay vs. Temperature

Figure 7. Typical Propagation Delay vs. Temperature

Figure 9. Typical Propagation Delay vs. Load Resistance

Figure 8. Typical Propagation Delay vs. Temperature

Figure 10. Typical Propagation Delay vs. Load Resistance

[^1]

Figure 12. Typical Propagation Delay vs. Supply Voltage

Figure 13. Typical Propagation Delay vs. Supply Voltage

Figure 14. Switching Test Circuits

Figure 15. Test Circuit for Transient Immunity and typical waveforms

[^0]: * Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/ DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles.

[^1]: Figure 11. Typical Propagation delay vs. Load Capacitance

